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Abstract 

This paper is devoted to find the approximate solution of the coupled Burgers 

equation and advection diffusion equation by the Variational Iteration Method 

(VIM). This method provides a sequence of functions which converges to the 

exact solution of the system. It has been shown that the (VIM) is quite efficient 

and suitable for finding the approximate solution of this couple of PDE. 
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1. Introduction 

The understanding and the design of energy efficiency in buildings, (the 

adjustment and optimization of ventilation, heating and air conditioning), has a 

considerable attention in the scientific community [2]. However, the coupling of a 

temperature field and a velocity field is a major problem of understanding 

because the complex dynamics of thermal flow in buildings. This coupling 

naturally involves Burger’s equation and heat equation. Burger’s equation has a 

wide variety of application in physics and engineering and is defined as, 

 
where  is a function in time and space and represent a velocity field and 

 is the viscosity coefficient. This equation is a model that captures the 
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interaction of convection and diffusion, so it’s used to study the fluid flow. As 

well as this equation can be coupled with another convection diffusion equation 

(heat equation) to study the interaction between the temperature field and the 

velocity field.  This couple of equations describes the incompressible fluid flow 

coupled to the thermal dynamics, which used to model the thermal fluid dynamics 

of air in building. Our system is defined by the coupled of partial differential 

equations 

 

 
 

 
 

The function (t,x) can be viewed as a temperature field where  is the thermal 

conductivity and  is the coefficient of the thermal expansion,  are the 

forces on the  system. Herein, the temperature drives the velocity field and the 

velocity field provides the convective term. In Section 2 we describe the VIM. 

The  

Convergence of the method and its application to our coupled is describe in 

section 3. A test problem and numerical result are given in section 4. 

2. VIM Analysis. 

The variational iteration method (VIM) was proposed In 1999 by the Chinese 

mathematician  He [4-6  ] as a modification of a general Lagrange multiplier 

method. This method is used to solve linear and nonlinear partial differential 

equation and gives rapidly convergent successive approximations of the exact 

solution if such a solution exists; otherwise a few approximations can be used for 

numerical purposes [10]. Unlike the traditional numerical methods, VIM needs no 

discretization, linearization, transformation or perturbation. For our purpose we 

write our system in an operator form 
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, 

, 

 

with the initials 

 

 

 

where are linear operators and are nonlinear operators  

and   are source terms.  According to variational iteration method the  

correction functional for our system can be written as 

 

 

                                                             (2.1) 

where  are  general Lagrange multipliers, which can be identified 

optimally via the variational theory and using the integration by parts. The 

subscript  denotes the  approximation and  are restricted 

variations, that is, The successive approximations 

 

of the solution  and  will be readily obtained upon using the 

obtained Lagrange multiplier and by using any selective function 

. Consequently, the exact solution may be obtained by using 
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3. Convergence of the variational iteration method. 

Definition[10].  A variable quantity 𝜈  is a functional dependents on a 

function  if to each function  of a certain class of functions   there 

corresponds a value 𝜈 ,  . 

Theorem[10]. (Banach’s fixed point theorem). Assume that  be a Banach 

space and      is  a nonlinear mapping, and suppose that  

 

for some  Then  has a unique fixed point. Furthermore, the sequence 

 with an arbitrary choice of , converges to the fixed point 

of . 

According to this theorem, a sufficient condition for convergence of the  

variational iteration method is strictly contraction of , i.e., 

 

 

3.1. Convergence of the method for the coupled equations 
 

The proof of convergence of VIM for our system comes from theorem 1, as the 

following way. 

Consider the following nonlinear mapping 

 

  










































































































tt

tt

dfT
x

u

x

uu
udfT

x

u

x

u
u

u
uuH

dfT
x

u

x

uu
udfT

x

u

x

u
u

u
uuH

0

12

2
2

0

12

2

0

12

22

0

12

2

2

1

2

1













where, ),( txuu  .  According to the theorem 1, we get 
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By using norm we get 
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Using the same way to proof the convergence of the component ( , ),T x t  
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Where, ),( txTT  . According to the above theorem, we get 
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By using norm, we have 
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(where ' s are the absolute value of differential operators which appear in 

partial differential equations)  

4. Test Problem. 

For a particular case, we consider the following coupled of equation 
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(3) 

subject to the initial condition  

 

 

the exact solution is given by 

 

 

where  and  

 

To solve the problem (4) by using VIM, we consider the correction functionals 

(2.1) as 
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where, 21
,  are the general Lagrange multiplier. The value of 21

,  can be 

found by considering 
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restricted variations in equations (5), then by integration by part we obtain 
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(5) 

Using the above iteration formulas (5) and the initial approximation, we can 

obtain the following approximations 
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and we can continue to find the other iterations. The values of VIM for  

are depicted in Tables 1, 2, 3, and 4. 
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Table 1: The absolute error of the approximate velocity at t=0.5, 

(where  is the exact solution at t=0.5). 

 
 

 
 

 

                   0 
   3.86498837799179 e-006 
   3.44003648004498 e-007 
   6.61009865904166 e-006 
   1.63499999994432 e-006 
   2.60056436004583 e-007 
   2.25199999998238 e-007 
   5.96063880001936 e-006 
   2.44500097501957 e-006 
   1.73547684770766 e-007 
                   0 

                   0 
5.379899999865633 e-005 
4.343799875878512 e-005 
7.249699876889492 e-005 
2.722998764778933 e-006 
1.394284376589445 e-005 
1.642999865389401 e-006 
2.499408765438004 e-005 
8.288999464785661 e-005 
1.976008656601246 e-005 
                   0 

     0 
0.314159265358979 
0.628318530717959 
0.942477796076938 
1.256637061435917 
1.570796326794897 
1.884955592153876 
2.199114857512855 
2.513274122871835 
2.827433388230814 

3.1415926535897 
Table 2: The absolute error of the approximate velocity at t=1, 

(where  is the exact solution at t=1). 

 
 

  

0 
1.444000973600320e-006 
5.988598853998120e-006 
2.114199754999740e-005 
1.079700050875113e-005 
9.097009948001350e-006 
1.133090476539978e-005 
2.907993864399891e-005 
1.708076320888049e-005 
1.860700865400022e-005 
0 

0 
2.312289974958399 e-004 
4.543900853000887 e-005 
1.638520000000263 e-005 
1.232810000000200 e-004 
5.427199999848737 e-005 
7.762610009875000 e-004 
2.707180085470035 e-004 
4.400069999999217 e-005 
3.290780008430010 e-004 
0 

0 
0.314159265358979 
0.628318530717959 
0.942477796076938 
1.256637061435917 
1.570796326794897 
1.884955592153876 
2.199114857512855 
2.513274122871835 
2.827433388230814 

3.1415926535897 
 

Table 3: The absolute error of the approximate temperature at t=0.5, 

(where  is the exact solution at t=0.5). 

  

 
 

 
 

                   0 
   1.65804545500260 e-006 
   4.62046587400662 e-006 
   1.66275750001338 e-007 

                   0 
   8.88293657899918 e-005 
   2.83099967400232 e-005 
   1.79657464740904 e-005 

     0   

0.314159265358979   

0.628318530717959   

0.942477796076938   
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   3.84000565900867 e-006 
   2.24345567554000 e-007 
   1.40006798000262 e-005 
   7.54996484699718 e-006 
   6.85069697900227 e-007 
   1.09903005700996 e-006 
                   0 

   5.19700957769007 e-006 
   2.69369075494000 e-005 
   7.17899349998983 e-006 
   1.94079967892985 e-006 
   1.38491638949926 e-005 
   3.14699457990640 e-005 
                   0 

1.256637061435917   

1.570796326794897   

1.884955592153876   

2.199114857512855   

2.513274122871835   

2.827433388230814 

 3.1415926535897 
 

Table 4: The absolute error of the approximate temperature at t=1, 

(where  is the exact solution at t=1). 

 
 

 
 

 

                   0 
   6.43710035690006 e-005 
   4.83835789879996 e-005 
   3.60810764380072 e-005 
   2.84870006864007 e-005 
   1.59229003650000 e-005 
   1.06710008750038 e-005 
   1.06470802530025 e-005 
   5.66000000340074 e-006 
   6.08240075400010 e-005 
                   0 

                   0 
   2.20199000325504 e-004 
   3.77225996543994 e-003 
   1.91654488530001 e-004 
   2.29150006433405 e-005 
   3.02334000007740 e-004 
   7.56250999642899 e-004 
   2.98446006374008 e-003 
   1.77713964903995 e-004 
   2.93936068600002 e-004 
                   0 

     0   

0.314159265358979   

0.628318530717959   

0.942477796076938   

1.256637061435917   

1.570796326794897   

1.884955592153876   

2.199114857512855   

2.513274122871835   

2.827433388230814 

 3.1415926535897 

4.1. Discussion 

In this paper the approximate solution of the coupled Burger’s equation and 

advection diffusion equation is obtained by using the variational iteration method  

in the domain  where the initials are functions of the variable , and the  

external Forces . We calculate the absolute error of the second 

and third iteration with the exact solution at times t=0.5 and t=1 as shown in the 

tables 1, 2, 3, and 4. The results shows that the errors are decreasing with  

increasing the iteration and increasing with time. Moreover, the results proved 

that this method is converge rapidly to the exact solution with less iteration. 
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Conclusion 

The aim of this work is employing the powerful variational iteration method to 

investigate coupled of nonlinear equations, which is a coupled Burger’s equation 

and advection diffusion equation (heat equation). It is obvious that the method 

gives rapidly convergent successive approximations through determining the 

Lagrange multipliers. Moreover, this method is quite efficient and suitable for 

finding the approximate solution of this couple of PDE. 
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