The Effect of Different Pouring Interval of Conventional Impression on the Marginal Accuracy of Full Contour Zirconia Crowns in Comparison with Digital Impression (An *in vitro* study)

Elaf A. Hadi, B.D.S. ⁽¹⁾ Adel F. Ibraheem, B.D.S., M.Sc. ⁽²⁾

ABSTRACT

Background: The success and maintenance of indirect dental restorations is closely related to the marginal accuracy, which is affected by many factors like preparation design, using of different fabrication techniques, and the time of taking final impression and pouring it. The purpose of this *in vitro* study was to evaluate the effect of different pouring time of conventional impression on the vertical marginal gap of full contour zirconia crowns in comparison with digital impression technique.

Materials and Methods: Forty sound recently extracted human permanent maxillary first premolar teeth of comparable size and shape were collected. Standardized preparation of all teeth samples were carried out to receive full contour zirconia crown restoration with deep chamfer finishing line all around the tooth with (1mm) depth, axial length (4mm) and convergence angle (6 degree). The specimens separated into two groups; Group A; eight specimens were scanned digitally by using Omnicam scanner; Group B; conventional impressions were taken for the remaining thirty two specimens and further subdivided to four groups according to the time of impression pouring; Group B1: PVS were poured after 30 minutes; Group B2: PVS were poured after 24 hours; Group B3: PVS were poured after 7 days; Group B4:PVS were poured after 14 days. Marginal discrepancy was measured at four points at each tooth surface. Sixteen points per tooth were measured using digital microscope at (180X) magnification. One-way ANOVA test and LSD test were carried out to see if there was any significant difference among the means of the conventional impression groups. Independent samples t-test was carried out to examine if there is any significant difference between digital and conventional impression technique.

Results: group B2 had the least mean of marginal gap with statistically significant difference when compared to group B1 and statistically highly significant difference when compared to group B3 and B4. There was a statistically highly significant difference in the vertical marginal gap between digital impression technique and conventional impression.

Conclusions: the pouring of conventional impression after 24 hours provides better marginal fit than other pouring time. The digital impression provides better marginal fit than conventional impression.

Key words: marginal accuracy, pouring time, conventional impression, (J Bagh Coll Dentistry 2018; 30(1): 17-22)

INTRODUCTION

The first step required to fabricate well-fitting indirect restorations is precise dental impressions with high degree of dimensional stability and fine details reproducibility. The accuracy of the impression material reflects its ability to be dimensionally stable over time, therefore the amount of time elapses between securing the impression and casting in gypsum greatly affect the quality of restoration ⁽¹⁾. Although the delay of pouring period allows both the release of volatile substances and elastic recovery of the material, it should be limited; otherwise distortions of the impression will occur. PVS impression materials are the most dimensionally stable and can be poured hours, days or even weeks after impression taking. However, their dimensional stability also depends on the exact time of pouring stone dies ⁽²⁾.

The most important factor that determines the survival and success of fixed prosthesis is the marginal fitness. Marginal misfit or large gap negatively affects the prosthesis, which may lead to microleakage with plaque accumulation thus increasing the risk of recurrent caries and periodontal inflammation ^(3, 4).

Marginal gap does not only depend on the design of the tooth preparation, finishing line type, type of cementation medium only but also on the proper impression ⁽⁵⁾.

The dimensional accuracy of the elastomeric impression materials based on various factors such as the delay or second pour, humidity, temperature, and impression techniques ⁽⁶⁾. The introduction of CAD/CAM systems in 1980s to the dental field resolved a wide range of these limitations found in the conventional impression techniques since they provide speed, property of storing and transferring captured images indefinitely with no distortion ⁽⁷⁾. Studies have been reported the average marginal discrepancies for CAD/CAM restoration range from 24-110 $\mu m^{(8)}$.

⁽¹⁾ M.Sc. student, Department of Conservative Dentistry, College of Dentistry, University of Baghdad.

⁽²⁾ Professor, Department of Conservative Dentistry, College of Dentistry, University of Baghdad.

MATERIALS AND METHODS

Samples preparation

Each tooth sample was prepared to receive full contour zirconia crown with the following preparation features; a flat occlusal surface with 4mm axial length, deep chamfer finishing line 2 mm coronal to the cemento-enamel junction all around the tooth with 1mm depth, and convergence angle of 6° ^(9,10) as shown in figure 1.

Conventional impression procedure

Eight impression trays especially designed for this study were made with three pins in the base of the special tray to engage the three holes on the acrylic base of each specimen, these holes serve as a guide and stopper for the special tray during impression procedure. The top surface of the special tray has a metal rod attached to the suspending arm of the dental surveyor during impression taking procedure to ensure a standardized path of insertion and removal of the special tray during impression taking.

One step impression technique was done for four subgroups (B1, B2, B3, and B4) by using heavy and light viscosity polyvinyl siloxane impression materials. The heavy viscosity impression material (ExpressTM XT PentaTM Heavy) was loaded in the special tray, while light viscosity Vinyl polysiloxane impression material (Express TM XT) was injected all around the prepared tooth. The tray was then seated over the specimen until the three guided pins completely engaged the holes in the acrylic base of the specimen and the tray kept under a defined load of 500g until the complete set of impression material ⁽¹¹⁾ (Fig. 2). After about 3.5 minutes, the two impression materials were set (according to the manufacturer's instructions) and removed from the specimen.

Pouring procedure

The impression was poured with type IV gypsum (die stone) which was mixed with distilled water with a powder/water ratio of (100g/25mL). The amount of powder was measured using a digital scale, while the amount of water was measured using a graduated glass tube, and mixed for 60 seconds. The impression was poured using a vibrator. The stone die was separated from the impression after 45 minutes according to the manufacturer's instructions.

The same pouring procedure was repeated for subgroups B1, B2, B3, and B4 after the storage of impressions at different times (30 minutes, 24 hours, 7 days, and 14 days respectively) in an incubator at room temperature (25°C) according to the manufacturer's instructions.



Figure 1: Tooth preparation using a modified dental surveyor.

Figure2: Impression taking with the dental surveyor.

Fabrication of crowns

Scanning the teeth for group A was taken using omnicam scanner (Sirona Dental Systems, Bensheim, Germany). The scanning was carried out by moving the camera head over the teeth in a single flowing motion from buccal, occlusal and palatal surfaces in continuous motion, and then the data was generated successively into a 3D model on the monitor with natural color (Fig. 3). The scanning of the dies for subgroups B1, B2, B3, and B4 was carried out using inEosX5 Blue scanner (Sirona Dental Systems, Bensheim, Germany) as shown in figure 4.

The designing of the crown in "MODEL" phase was the next step. The margin of the preparation was automatically detected by the software system. The undercut was checked and the path of insertion was determined. Crown milling parameters were determined according to Sirona instructions as follows: die and tooth spacer (80µm), marginal thickness (150µm), minimum radial wall thickness (500µm), minimum occlusal thickness (700µm), and margin thickness (150µm).

Milling of InCoris TZI C disk using Sirona CEREC inLab MCX5. After the milling was completed, zirconia crowns were chalky in color and milled approximately 20-25% greater in size; therefore, they needed dense sintering process in inFire HTC Speed oven (Sirona, Germany) at 1540° C for two hours.

Measurement of marginal gap

The vertical marginal gap was measured at four indentations on the margin area at the midpoint of buccal, mesial, palatal and distal surfaces of the tooth by using a digital microscope (12, 13).

In order to maintain a constant seating pressure between the crown and the tooth during measurement of MG, the specimen attached to specimen holding device which specially designed to maintain constant pressure of 50N nearly equal to 5Kg and placed under the digital microscope⁽¹⁴⁾.

The digital microscope was used at a magnification of 180X that was fixed in a manner that maintains its lens perpendicular to the crown/tooth margin during measurement procedure and connected via the computer. The digital images were captured and the measurements were done using IMAGE J software which calculated the values in pixels ⁽¹⁵⁾ (Fig 5). For the calibration of the software, a photograph of a(1mm) increment taken at the same focal length and input into IMAGE J by the option of set scale, which converted all the calculated reading from pixels to $\mu m^{(16)}$.

Statistical analyses

Data were collected and analyzed using SPSS (statistical package of social science) software version 15 for windows 8.1 (Chicago, USA). The following statistics were used:

A- Descriptive statistic: including mean, standard deviation, statistical tables and graphical presentation by bar charts.

B- Inferential statistics

1- One-way ANOVA (analysis of variance) test was carried out to test difference among conventional impression groups.

- 2- LSD (least significant difference) test was used to examine the source of difference.
- 3- Independent samples t-test was carried out to examine the difference between digital and conventional impression technique.

Figure 3: Scanning of teeth using omnicam scanner

Figure 4: Scanning of die stone using inEos **X5** Blue scanner

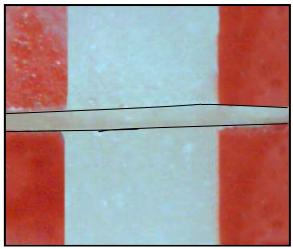


Figure 5: Digital image captured by digital microscope.

RESULTS

Total of 640 measurements of vertical marginal gap from five groups were recorded, with 16 measurements for each crown.

Table 1 showed that the highest mean of vertical marginal gap was recorded in group B4 (90.971 \pm 5.470) (pouring polyvinyl siloxane impression after 14 days) while the lowest mean marginal gap was recorded in group A (40.635 \pm 2.447) (digital impression using Omnicam scanner) and this clearly explained in figure 6.

Table 2 showed that there was a statistically highly significant difference in the vertical marginal gap among the four subgroups (B1, B2, B3, and B4)

Table 3 showed that there was a statistically significant differences in the marginal gap mean values between subgroup B1 and subgroup B2, and a highly statistically significant differences in the marginal gap mean values between subgroups B1 and B3, B1 and B4, B2 and B3, B2 and B4, and between subgroups B3 and B4.

Table 1: Descriptive statistics of vertical marginal gap for the five groups in (µm).

Group	No.	Mean	S.D.	Min.	Max.
A-Omnicam scanner	8	40.635	±2.447	37.961	44.673
B1- pouring conventional impression after 30 minutes	8	52.775	±2.760	48.036	55.579
B2- pouring conventional impression after 24 hours	8	48.867	±3.306	41.736	52.059
B3- pouring conventional impression after 7 days	8	71.676	±4.620	65.436	76.769
B4- pouring conventional impression after 14 days	8	90.971	±5.470	83.893	97.525

Figure 6: the mean values of the vertical marginal gap of all groups.

Table 4 showed that there was a statistically highly significant difference in the vertical marginal gap between digital and conventional impression.

Table 2: One- way ANOVA test among thefour conventional impression subgroups.

ANOVA	Sum of Squares	df	Mean square	F-test	p- value
Between Groups	8993.429	3	2997.810		0.000
Within Groups	488.821	28	17.458	171.717	0.000 (HS)
Total	9482.250	31			

Significant at P≤ 0.05

Table 3: LSD test for comparison of significance between subgroups.

	0	Moon difference no no no ha			
		Mean difference	p-value		
	B2	3.908	0.042 (S)		
B1	B3	-18.901	0.000 (HS)		
	B4	-38.196	0.000(HS)		
B2	B3	-22.809	0.000 (HS)		
B 2	B4	-42.104	0.000 (HS)		
B3	B4	-19.295	0.000 (HS)		

Table 4: Independent samples t-test between
group A and B2.

	t-test for equality of means			
	t	df	Sig. (2-tailed)	
Equal variance assumed	-5.660	14	0.000	
Equal variance not assumed	-5.660	12.901	0.000	

DISCUSSION

The results of this study revealed that the pouring of the conventional impression after 24 hours provided less marginal gap than other times of pouring of conventional impression. This may be due to shrinkage of the addition silicone towards the tray which produced larger die, therefore provided better seating of the crown with less marginal gap than the marginal gap of crowns fabricated from pouring the impression after 30 min. This explanation comes in agreement with Kumar *et al* ⁽¹⁷⁾ who concluded that addition silicones after 24 hours contracted towards the tray and gave a die slightly bigger in diameter than the standard master die.

The gap of the zirconia crowns that fabricated after 7 and 14 days of impression pouring were increased, this might be due to delay shrinkage of impression away from the tray which was lead to smaller die and result in an increase in the gap between the crown and the tooth. This delay in dimensional changed of addition silicone is explained by Fano *et al.* ⁽¹⁸⁾ who concluded that the instability of PVS due to the polymerization reaction is complete after hours, but the contribution of the constituent evaporation can have a significant long-term role.

This dimensional change of the impression over time is in agree with Garrofé *et al.* ⁽¹⁹⁾ who study the accuracy of three types of addition silicone over time up to 14 days and found significant differences for time-material interaction.

The dimensional changes with delay in pouring occurred in addition silicone may result, among other reasons, from incomplete elastic recovery due to viscoelastic behavior of the material, relaxation of stresses, or from residual polymerization in which new covalent bonds are formed within the material molecules reducing the volume occupied by them. Thus loss of accuracy will occur over time ⁽¹⁸⁻²⁰⁾.

The results of this study revealed that the digital impression technique provided less marginal gap than the conventional impression. The difference in the marginal gap between two groups might be due to the steps that required with conventional impression procedure like tray selection, disinfection, casting stone model, manual die trimming, and other steps needed for articulation are eliminated (21). Furthermore, an enhanced intraoral optical camera might have the ability to recording fine details which in turn lead to a better adaptation of crown (22). This result comes in agree with previous studies (9,23) who concluded that crown restorations fabricated using chairside intraoral scanner showed better marginal adaptation than those made from dental casts scanning. However, this finding is not in agreement with ⁽²³⁾ who concluded that accuracy of the digital impression is similar to that of the conventional impression. Such disagreement could be due to the difference in the methodology used.

REFERENCES

- Neethu L, Gilsa KV. Comparative evaluation of dimensional stability of three different elastomeric impression materials – An In vitro study. JDMS, 2015; 14(9): 89-93.
- Eduardo BF, Leonardo FC, Ana RB. Effect of storage period on the accuracy of elastomeric impressions. J Appl Oral Sci 2007; 15(3): 195-8.
- Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: A systematic review. J Prosthet Dent 2013; 110: 447-54.
- Hamza TA, Ezzat HA, El-Hossary MM, Katamish HA, Shokry TE, Rosenstiel SF. Accuracy of ceramic restorations made with two CAD/CAM systems. J Prosthet 2013;109: 83-7.
- 5. Anadioti E. Internal and marginal fit of pressed and cad lithium disilicate crowns made from digital and

conventional impressions. Master thesis, Department of Oral Science, University of Iowa. 2013.

- Pant R, Juszczyk AS, Clark RKF, Radford DR. Longterm dimensional stability and reproduction of surface detail of four polyvinyl siloxane duplicating materials. J Dent 2008; 36(6): 456-61.
- Kim SY, Kim MJ, Han JS, Yeo IS, Lim YJ, Kwon HB. Accuracy of dies captured by an intraoral digital impression system using parallel confocal imaging. Int J Prosthodont 2013; 26(2): 161-3.
- Karatasli O, Kursoglu P, Capa N, Kazazaoglu E. Comparison of the marginal fit of different coping materials and designs produced by computer aided manufacturing systems. Dent Mater J 2011; 30(1): 97-102.
- Bindl A, Mormann WH. Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 2005; 32: 441-7.
- Al-Joboury AI. An evaluation of the influence of different finishing lines on the fracture strength of full contour zirconia CAD/CAM and heat press allceramic crowns. Master thesis, College of Dentistry, University of Baghdad, 2013.
- Duseja S, Shah RJ, Shah DS, Duseja SH. Dimensional measurement accuracy of recent polyether and addition silicone monophase impression materials after immersion in various disinfectants: An in vitro study. Int J Healthcare Biomed Res 2014; 2(4): 87-97.
- Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989; 62(2): 405-8.
- Holden J, Goldstein G, Hittelman E, Clark E. Comparison of the marginal fit of pressable ceramic to metal ceramic restorations. J Prosthodont 2009; 18: 645-8.
- 14. Dittmer MP, Borchers L, Stiesch M, Kohorst P. Stresses and distortions within zirconia-fixed dental prostheses due to the veneering process. Acta Biomater 2009; 5: 3231-9.
- 15. Tan PL, Gratton DG, Diaz-arnold AM, Homles DC. An in vitro comparison of vertical marginal gaps of CAD/CAM titanium and conventional cast restorations. J Prosthodont 2008; 17(5): 378-83.
- 16. Romoe E, Iorio M, Syorelli S, Camandona M, Abati S. Marginal adaptation of full coverage CAD/CAM restorations: In vitro study using a non-destructive method. Minerva Stomatol 2009; 58(3): 61-72.
- 17. Kumar D, Madihalli AU, Reddy KK, Rastogi N, Pradeep NT. Elastomeric impression materials: a comparison of accuracy of multiple pours. J Contemp Dent Pract 2011; 12(4), 272-8.
- Fano V, Gennari PU, Ortalli I. Dimensional stability of silicone-based impression materials. Dent Mater J 1992; 8: 105-9.
- Garrofé AB, Ferrari BA, Picca M, Kaplan AE. Linear dimensional stability of elastomeric impression materials over time. Acta Odontol Latinoam 2011; 24(3): 289-94.
- 20. Mehta R, Dahiya A, Mahesh G, Kumar A, Wadhwa S, Duggal N, Pande S. Influence of delayed pours of addition silicone impressions on the dimensional accuracy of casts. JOHCD 2014; 8(3): 148-53.
- Burgess JO, Lawson NC, Robles A. Digital Impression System Considerations. J Inside Dent 2015; 11(9): 70-77.
- 22. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM

generated restorations. Br Dent J 2008; 204(9): 505-11.

23. Khdeir RM, Ibraheem AF. The marginal fitness of CAD/CAM all ceramic crowns constructed by two

types of direct digitization techniques (an in vitro study). J Bagh Coll Dentistry 2016; 28(2): 30-3.

24. Ender A, Mehl A. Full arch scans: conventional versus digital impressions—an in-vitro study. Int J Comput Dent 2011; 14(1): 11-21.

الخلاصة

ير تبط نجاح وديمومة التركيبات السنية غير المباشرة ارتباطا وثيقا بالدقية الهامشية, والذي يتأثر بعدة عوامل مثل تصميم التحضير, استخدام طرق تصنيع مختلفة, ووقت اخذ الطبعة النهائية وصبها. لذلك فأن الهدف من هذه الدراسة المختبرية هو تقييم تأثير اختلاف اوقات صب الطبعات التقليدية على التطابق الهامشي العمودي للتيجان الزركونية كاملة الشكل بالمقارنة مع تقنية الطبعة الرقمية.

تم تجميع (٤٠) نموذج من الاسنان الضواحك الاولى العليا المقلوعة لغرض العلاج التقويمي ذات حجم وشكل متقارب تم تنفيذ تحضير قياسي لكل عينات الاسنان لتلقى التيجان الزركونية كاملة الشكل مع حافة لثوية نوع الشذف العميق بعمق (١مم),وطول محوري (٤ ملم), وزاوية ميلان (٦ در جات). تم فصل العينات الى مجموعتين: المجموعة (أ)تحتوي على ٨ عينات تم تصوير ها بواسطة كاميرا (اومنيكام), المجموعة (ب) اخذت الطبعات التقليدية ل ٣٢ عينة متبقية وتنقسم أيضا على أربع مجموعات وفقا لوقت صب الطبعات (ب١) تم صب طبعات البولي فينيل سيلكون بعد ٣٠ دقيقة , (ب٢) تم صب طبعات البولي فينيل سيلكون بعد ٢٤ ساعة , (ب٣) تم صب الطبعات (ب١) تم صب طبعات البولي فينيل سيلكون بعد طبعات البولى فينيل سيلكون بعد ١٤ يوم.

وقد تم قياس التباين الهامشي في أربع نقاط على كل سطح من اسطح الأسنان اي قياس١٦ نقطة لكل سنبواسطة المجهر الرقمي بتكبير (١٨٠مرة) .

نت انج هذه الدراسة اظهرت أن اقسل فجوة هامشية سجلت للمجموعة (أ) (٢،٤٤ ± ٢،٢٥٥ سايكرون) بينما اكبر فجوة هامشية سجلت للمجموعة (ب٤) (٢٠٩ ± ٢،٤٠ مايكرون). بالنسبة لوقت صب الطبعات اختبار ANOVA احادي الاتجاه اظهر اختلافا احصائيا هاما للغاية بين المجموعاتونت انج ال LSD اظهرت ان المجموعة (ب٢) ذو اقل فجوة هامشية (٢،٤٦ ± ٤،٢،٣ مايكرون) يختلف اختلافا احصائيا هاما بالمقارنة مع المجموعاتونت انج ال LSD وفتلاف احصائيا هاما للغاية بالمقارنة مع المجامع (ب٤). كما اظهر اختبار (١٢ مايكرون) م هناك اختلاف احصائيا هاما للغاية في الفجوة الهامشية المعمودية بين تقنية الطبعة الرقمية والطبعة التقليدية.

وكاستنتاج فأن صبب الطبعات التقليدية بعد ٢٤ ساعة تـوفر دقـة هامشـية افضـل من الاوقـات الاخـري لصب الطبعـات.وان تقنيـة الطبعـة الرقميـة تـوفر دقة هامشية افضل من الطبعة التقليدية.