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Abstract

In this work, we introduce the concept of P-Module as a generalization of the concept Q-Module. Many
characterizations and properties of P-Modules are obtained. We investigate conditions for P-Modules to be Q-Modules.
Modules which are related to P-Modules are studied. Some classes of modules which are P-Modules are given.
Furthermore, characterizations of P-Modules in some classes of modules are obtained.

Introduction

Throughout this paper, R will denote an associative ring
with identity, and all R-modules are unitary (left) R-
modules. An R-module M is called a Q-Module, if every
submodule of M is a quasi-injective [12]. An R-module
M is called a quasi-injective, if for each submodule N of
M and each R-homomorphism from N into M can be
extended to an R-homomorphism from M into M [9]. An
R-module M is called a pseudo-injective, if for each
submodule N of M and each R-monomorphism from N-
into M can be extended to an R-homomorphism from M
into M. For an R-module M, E(M) stand for the injective
envelope of M. A submodule of an R-module M is called
a fully invariant if f(N) © N, for each f € End (M)
[18]. An R-module M is called uniform, if every
submodule of M is essential in M, where we said that a
submodule N of M is essential in M if N n K = (0) for

each submodule K of M. which is equivalent to say that
0==mEM, there exists 0=+ € R such that
0 = mr € N.[6].

81 Basic properties of P-Modules

In this section, we introduce the definition of P-Module
and give examples characterizations and some basic
properties of this concept.

Definition 1.1

An R-module M is called a P-Module, if every
submodule of M is a pseudo-injective.

Examples and Remarks 1.2

1. Every submodule of P-Module is a P-Module.

2. A direct summand of P-Module is a P-Module.

3.Z,, asaZ-module is a P-Module for every n

4. Every simple R-module is a P-Module.

5. Zp:::: as a Z-module is a P-Module.

6.Z as a Z-module is not a P-Module, and Q as a Z-

module is a quasi-injective, but not a P-module

7.The inverse image of a P-Module is not necessary P-

Module. For example the Z-module Z, is a P-Module

and if we let f:Z —=Z, defined by
0, I X15 even

o) = {1, i]]: x is odd

It is clear that f is Z-homomorphism and f~(Z,) = Z

is not a P-Module.
8. The direct sum of two P-Modules is not necessary a P-

Module. For example the Z-modules £ and £, are P-
Modules, but z gz, is not a P-Module, (since Z,®Zz,
itself is not a pseudo-injective Z-module.)

9.1f M is a P-Module, then (@M is not necessary P-

Module. For example, sinceZ; as a Z-module is a P-
Module, but z, @z, is not a P-Module.

Before we give the main result of this section we
introduce the following lemma.

Lemma 1.3

Any fully invariant submodule of a pseudo-injective
module is a pseudo-injective.

Proof

Let K be a fully invariant submodule of pseudo- injective
module M, let L be any submodule of K, and .1 — k

be any R-monomorphism. Since M is a pseudo injective,
then there exists an R-homomorphism g.pr — »  such

that g extend f But K is a fully invariant submodule of M,
then g(K) CK. Let g|k = h: K — K. Then for all

x €K, h(x) = g(x) = f(x). Thatis h is extends f. Hence

K is a pseudo injective. ll

Theorem 1.4

Let M be an R-module. Then the following statements
are equivalent.

1.M is a P-Module.

2.M is a pseudo-injective and every essential submodule
of M is a fully invariant under monomorphisms of
Endg(M).

3. Every essential submodule of M is a pseudo-injective.
Proof

(1) = (2) Let N be an essential submodule of M, then

N is a pseudo-injective . Letf.pm — M be an R-
monomorphism and K = {x € N: f(x) € N} , that is
K = f~*(N). Since N is a pseudo-injective, then there
exists g: ;v — n Which extends f. Since M is a pseudo-

injective, then there exists an R-homomorphism
h:M — M which extend g. We claim that

(h — f)(N) = (0). Suppose that (h— fI(N) = (0),
then(h — F)(N)nN = (0), for N is an essential

submodule of M, which implies that (h — f)(n) = I
for some n, lin N. Thus (A — f:}[n:} = [ implies that
(g—f)n) =1, then f(n) =g(n) —1€ N. This
shows that 7. € K. so(h — f)(n) = (0) which is
contradicts the assumption, hence (n — F)(N) = (0)
implies that h(N)=f(N). But f(N)=h(N)=g(N)ZN. then
f(N)CN.



(2) = (3) Let N be an essential submodule of M. Then

by hypothesis N is a fully invariant under
monomorphism of Endy(M). Hence by Lemma 1.3 N
is a pseudo-injective.

(3) = (1) Let N be a submodule of M, then N@®C is a

pseudo-injective ,where C is a relative complement of N
in M, which implies that N is a pseudo-injective [8].

Hence M is a P-Module. ®

Now, we look at the injective hull of P-Module. It turns
out that under certain condition it’s also P-Module.
Proposition 1.5

Let M be a P-Module such that every submodule of E(M)
is isomorphic to subquotient of M. Then M is a P-
Module if and only if E(M) is a P-Module.

Proof = Let N be a submodule of E(M). Then N is

isomorphic to a subquotient of M. Hence by [10] N is a
submodule of M. therefore N is a pseudo-injective.

— trivial. &
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It’s clear that every P-Module is a pseudo-injective, but
the converse is not true (see Example and Remarks 1.2
(6).). In the following propositions, we give conditions
under which pseudo-injective modules become P-
Modules.

Recall that an R-module M is duo module if every
submodule of M is a fully invariant [18].

Proposition 2.1

Let M be duo module. Then M is a P-Module if and only
if M is a pseudo-injective.

Proof:

Let N be a submodule of M, then N is a fully invariant
submodule of M. Hence by lemma 1.3 N is a pseudo-

injective. Therefore M is a P-Module.®

Recall that an R-module M satisfies Baer’s Criterion, if
every submodule of M satisfies Baer’s criterion, where
we say that a submodule N of M satisfies Baer’s
Criterion, if for each R-homomorphism f:N — M

there exists r in R such
that f(n) = rn,¥n € N[1].1

Proposition 2.2

Let M be an R-module which satisfies Bears criterion.
Then M is a P-Module if and only if M is a pseudo-
injective.

Proof

Let N be a submodule of M, then N satisfies Baer’s
criterion. Hence N is a fully invariant submodule of M
(since for each feEnd(m), and fore each

neE N,f[’n,) =7rn € N for some r € R). Hence by

lemma 1.3 N is a pseudo-injective. Therefore M is a P-
Module.
Recall that a submodule N of an R-module M is

annihilator, if N = ann,, (I) for some ideal I of R
[14]. 1
Proposition2.3

P-Modules and

Let M be an R-module in which all its submodules are
annihilator. Then M is a P-Module if and only if M is a
pseudo-injective.

Proof

Let N be a submodule of M, then N is an annihilator
submodule. That is N = ann,, (1) for some ideal I of R.

We claim that N is a fully invariant submodule of M. Let
f € End (M), then
0 = f(IN) = If(N).Hence f(N) C ann,(I)=N.

Thus N is a fully invariant submodule of M. Therefore by
Lemma 1.3 N is a pseudo-injective. Hence M is a P-

Module. .1

Proposition2.4

Let M be an R-module such that every cyclic submodule
of M is fully invariant. Then M is a P-Module if and only
M is a pseudo-injective.

Proof

Let N be a submodule of M. Since every cyclic
submodule of M is a fully invariant in M, then for each
f € End(M) and for each X in N,

f((x)) € (x) € N.Thus f(x) € N. Hence N is a
fully invariant submodule of M. Thus by Lemma 1.3 N is
a pseudo injective. Hence M is a P-Module.

Recall that a submodule N of an R-module M is closed,
if N has no proper essential extension. [6]
Proposition2.5

Let M be an R-module, such that every submodule of M
is closed. Then M is a P-Module if and only if M is a
pseudo injective.

Proof

Let N be submodule of M, then N is a closed submodule
of M. Since M is a pseudo injective, then by [4, Cor.1.3]
N is a direct summand of M, and by [8, Lemma 1] N is a

pseudo injective. Hence M is a P-Module. l

Since a direct summand of any module is closed [6] we
get the following.

Corollary 2.6

Let M be an R-module, such that every submodule of M
is a direct summand. Then M is a P-Module if and only if
M is a pseudo injective.

Recall that a submodule N of an R-module is quasi-stable
if for every submodule K of M with KEN and every R-
homomorphism g: K — M
h(N) € N for each R-homomorphism h: x — a such
that g = h = ig.[1].

Since a quasi-stable submodule
injectivity[1], we get the following.
Proposition2.7

Let M be an R-module such that all submodules of M are
quasi-stable. Then M is a P-Module if and only if M is a
pseudo injective.

83: Relationships between P-Modules and Q-
Modules

In this section we study the relation between P-Modules
and Q-Modules.

Since every quasi-injective module is a pseudo injective,
but the converse is not true [9], then every Q-Module is a

such that rmg c N, then

inherit a pseudo



P-Module but the converse is not true. Thus under certain
conditions P-Module become Q-Modules.
Proposition3.1

Let M be an R-module over a principle ideal domain.
Then M is a Q-Module if and only if M is a P-Module.
Proof

Let N be a submodule of M. Since M is an R-module
over a principle ideal domain, then N is a submodule
over a principle ideal domain. But M is a P-Module, and
then N is a pseudo injective. Thus by [15, Th.3.3] N is a

quasi-injective. Hence M is a Q-Module. B

Recall that an R-module M is torsion free if
T(M) ={m e M:mr = 0, for somer € R} = (0).
It is given in [15, Cor. 3.9] that any torsion free module
which is a pseudo injective is a quasi-injective, we get
the following proposition.

Proposition 3.2

Let M be torsion free R-module. Then M is a Q-Module
if and only if M is a P-Module.

Proposition 3.3

Let M be a torsion module over quasi-Dedekind ring.
Then M is a Q-Module if and only if M is a P-Module.
Proof

Let N be a submodule of M, then N is a pseudo injective
module over quasi-Dedekind ring. Since M is torsion
module, then N is a torsion submodule. Thus by [16, Th.

2] N is a quasi-injective. Hence M is a Q-Module. ®

A ring R is called a generalized uniserial ring, if every
primitive idempotent element ¢ £ g, er (Re)have unique

composition series as right (left) R-module.

The following proposition shows that over a generalized
uniserial ring, P-Modules and Q-Modules are equivalent.
Proposition 3.4

Let M be an R-module over a generalized uniserial ring
R. Then M is a Q-Module if and only if a P-Module.
Proof

Let N be submodule of M, then N is a pseudo injective
submodule over a generalized uniserial ring R. Hence by
[8, Th.4] N is a quasi-injective. Therefore M is a Q-

Module.

Proposition3.5

Let M be a uniform non-singular module. Then M is a
Q-Module if and only if M is a P-Module.

Proof

Let N be a submodule of M. Since M is a uniform, then
N is a uniform, also , since M is a non-singular, then by
[6] N is a non-singular. Let L be a submodule of N and
f:L — N be an R-homomorphism, then since N is non-

singular, uniform, so Kerf = (0)or Kerf = L. If
Kerf =L , then f can be trivially extended to a
homomorphism from N into N. If Kerf = (0), then fis

monomorphism and from pseudo-injectivity of N, f can
be extended to an R-homomorphism from N into N.
hence N is a quasi-injective and then M is a Q-

Module. ®
It is well-known a pseudo injective torsion module over a
multiplication ring or hereditary ring is a quasi-injective
[16, Cor.1].

We end this section by the following result.

Proposition 3.6

Let M be a torsion module over a multiplication ring or
hereditary ring R. Then M is a Q-Module if and only if
M is a P-Module.

84 Modules imply P-Modules

In this section we establish modules which imply p-
Modules. Recall that an R-module M is a semi-simple, if
every submodule of M is a direct summand [6].

The following proposition shows that semi-simple
modules imply P-Modules

Proposition 4.1

If M is a semi-simple R-module, then M is a P-Module.
Proof

Let N be a submodule of M, then N is a semi-simple,
also let L be a submodule of N and f:L — N be an R-

monomorphism. Since N is a semi-simple, then L is a
direct summand of N. that is N = LK for some

submodule K of N. Now, we can extend f to an R-
homomorphism g: N — Nby setting

_(f), ifnel
9[“)_{0, if nek

This gives that N is a pseudo-injective. Hence M is a P-
Module. H

The converse of Prop. 4.1 is not true in general. In fact
the Z-modulez, is a P-Module, but not semi-simple.

The following proposition gives a condition under which
P-Modules are Q-Modules.

Proposition 4.2

If M is a P-Module such that every submodule of M is a
closed, then M is a semi-simple.

Proof

Let N be a submodule of M. Then by hypothesis N is
closed. Since M is a P-Module, then M is a pseudo-
injective. Therefore by [4, Cor. 13] N is a direct

summand of M. Hence M is a semi-simple. l

From proposition 2.5, proposition 4.1 and proposition
4.2, we get the following result.

Proposition 4.3

Let M be an R-module such that every submodule of M
is a closed. Then the following statements are equivalent.
1. M is a semi-simple module.

2.M is a P-Module.

3.M is a pseudo-injective module.

Recall that an R-module M is anti-hopfain if every
proper submodule of M is a non-hopf kernel. Where, a
submodule N of M is called a non-hopf kernel if there
exists an isomorphism between M /N and M [7].

It is well-known that anti-hopfain module, is a quasi-
injective (pseudo-injective) [2]. Also every submodule of
anti-hopfain module is anti-hopfain [2] we get the
following results.

Proposition 4.4

If M is an anti-hopfain R-module, then M is a P-Module.
Corollary 4.5

If M is an anti-hopfain R-module, then p;/y is a P-

Module for any submodule N of M.
The following proposition shows that the homomaorphic
image of anti-hopfain module is a p-Module.



Proposition 4.6
If M is an anti-hopfain R-module, then f(M) is a P-
Module for each R-homomorphism f:p — M’ Where

M"is any R-module.

Proof
Suppose that M is an anti-hopfain module and
f:M->M be an R-homomorphism.

Thus M /kerf = f(M). Since M is an anti-hopfain, then
by Corollary 4.5 pm /kerf is P-Module. Hence f(M) is P-

Module.

85 P-Modules and Multiplication modules
An R-module M is called multiplication module, if every
submodule of M is of the form IM for some ideal | of R

[3].

In this section we study the relation of multiplication
modules with P-Modules.

We preface our section by the following theorem which
gives the relationship between P-Modules over R and P-
Modules over End (M)

Theorem 5.1

If M is a multiplication module, then M is a P-Module
over R if and only if M is a P-Module over S
wheres = Endg(M).

Proof

(=) Let N be S-submodule of M. Since M is a
multiplication, then N is an R-submodule of M, then N is
a pseudo-injective submodule of M. Hence M is a P-
Module over S.

(<) Let N be R-submodule of M. Since M is a

multiplication, then by [13, Prop. 1.1] N is an S-
submodule of M. Then N is a pseudo-injective

submodule of M. Hence M is a P-Module over R. B

In the following theorem we give a characterization of P-
Module in class of multiplication modules.

A submodule N of an R-module M is called a quasi-
invertible if

M — 11].

Hom (2, M) = (0) [11]
Theorem 5.2
Let M be a multiplication module with anng(M) is a

prime ideal of R. Then M is a P-Module if and only if
every quasi-invertible submodule of M is a pseudo-
injective.

Proof

[:—) Trivial..

[¢} Let N be a submodule of M. Then @ x is an
essential submodule of M, where K is an intersection
relative complement of N in M. We claim that ;¥ @ K is
a  quasi-invertible  submodule of M. Let
f € Hom(M/N @ K,M), f # 0. Thus, there exists
an element m + (N @ K)€ M/N @ K such that
flm+(W@®K))=y=0,vye M. Since N@K is an
essential submodule of M, then there exists a non zero
element r in R such
that »m = (0) e N@® K. Hence 0= rf(m + N® K) =ry

and hence r € anng(y) .Since M is multiplication
module then by[5, Prop.1] Ry = IM for some ideal |
of R. Thus 0 = #IM and hence v1 ¢ ann,(p). Since

anng(M) 1s a prime ideal of R, then either
I C anng(M) or T € anng(M). If
I € anng(M),then IM = Ry = (0) and hence

y = 0, and this is a contradiction. If r € annz(M), then
rm = 0, forall min M, this is a contradiction a gain.

Thus  f e Hom(M/N @ K, M) must  be  zero.
Hence Hom(M/N @ K, M) = (0), which implies that
N @ K is a quasi-invertible submodule of M. Then by
hypothesis y @ g is a pseudo-injective submodule of M.
Hence by [8, lemmal] N is a pseudo-injective submodule
of M. Therefore M is a P-Module.

As an immediate consequence of Th.5.2 we have the
following result.

An R-module M is prime if, annz(M) = anng(N)
for every R-submodule N of M.

Corollary 5.3

Let M be a prime multiplication module. Then M is a P-
Module if and only if every a quasi-invertible submodule
of M is a pseudo-injective.

Proposition 5.4

If M is a pseudo-injective multiplication module, then M
is a P-Module.

Proof

Let N be a submodule of M. Since M is a multiplication
module then pn =y for some ideal 1 of R. Let

f EEndg(M), then
FIN) = FUM) = If(M) € IM = N. Hence N is a
fully invariant submodule of M. Since M is a pseudo-
injective, therefore by lemma 1.3 N is a pseudo-injective.
Thus M is a P-Module. B

The following corollary is an immediate consequence of
Prop. 5.4.

Corollary 5.5

If M is a cyclic pseudo-injective R-module, then M is a
P-module.

86 Characterizations of P-Modules in some types
of modules.

Definition 6.1

An R-module M is called a pseudo-duo module, if every
submodule of M is a fully invariant under
monomorphisms of End, (M).

Proposition 6.2

Let M be a uniform module, then M is a P-Module if and
only if M is a pseudo-injective and pseudo due module.
Proof

(=) Since M is a P-Module, then M is a pseudo-

injective. Let N be a submodule of M. Since M is a
uniform module, then N is essential submodule of M.
Hence by Theorem 1.4 N is a fully invariant under
monomorphisms of End,(M). Therefore, M is a

pseudo-duo module.



[¢) Let N be a submodule of M. Since M is a uniform

module, then N is an essential submodule of M. And
since M is pseudo-duo module, then N is fully invariant
under a monomorphism EndH[M:}. Now, every

essential  submodule is fully invariant under
monomorphism of Endg(M)- Hence by Theorem 1.4 M is

a P-Module.m

Recall that an R-module M is a monoform, if every non-
zero homomorphism f € Hom (N, M)(Where N is any

submodule is a monomorphism [17].

It is well-known that a monoform module is a uniform
we get the following immediate consequence of prop.
6.2.

Corollary 6.3

Let M be a monoform module. Then M is a P-Module if
and only if M is a pseudo-injective and pseudo-duo.
Recall that an R-module M is a rational extension of an
R-submodule N of M, provided

that Hom,, [%,M) = (0), whenever N c K ¢ M- [6]

Proposition 6.4

Let M be a rational extension of every submodule of M.
Then M is a P-Module if and only if M is a pseudo-
injective and pseudo-duo module.

Proof

(=) Since M is a P-Module, then M is a pseudo-

injective module. Let N be a submodule of M. Since M is
a rational extension of N, then clearly is an essential
submodule of M, then by Theorem 1.4 N is a fully
invariant under monomorphisms of Endg(M). Hence

M is a pseudo-duo module.
[{=} Let N be a submodule. Since M is a rational

extension of N, then N is an essential submodule of M.
And since M is a pseudo-duo module, then N is a fully

invariant under a monomorphisms of EndH[M}.

Hence by Theorem 1.4 M is a P-Module.
Recall that a submodule N of an RF-module M is a
. . - M

quasi-invertible if Homg (;,M) = (0)[11]. And the
submodule N of an R-module M is dense in M if, for
every y € M and x € M,xy N = (0)[6].
The following theorem gives many characterization of P-
Module in class of a non-singular modules.
Theorem 6.5

Let M be a non-singular R-module. Then the
following statements are equivalent.
1.Mis a P-Module.
2. Every a quasi-invertible submodule of M is a pseudo-
injective.
3. Every dense submodule of M is a pseudo-injective.
Proof
(1) = (2) Trivial.
(2) = (3) Let N be a dense submodule of M. Since M

is a non-singular, then by [10] N is an essential

submodule of M. We claim that N a quasi-invertible
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