P-Modules and Related Concepts

Haibat K. Mohammad Ali, Marrwa Abdalla Salih Abdalla

Department of Mathematics, Education College, Tikrit University, Tikrit ,Iraq (Received 1/9/2008, Accepted 15/12/2008)

Abstract

In this work, we introduce the concept of P-Module as a generalization of the concept Q-Module. Many characterizations and properties of P-Modules are obtained. We investigate conditions for P-Modules to be Q-Modules. Modules which are related to P-Modules are studied. Some classes of modules which are P-Modules are given. Furthermore, characterizations of P-Modules in some classes of modules are obtained.

Introduction

Throughout this paper, R will denote an associative ring with identity, and all R-modules are unitary (left) Rmodules. An R-module M is called a O-Module, if every submodule of M is a quasi-injective [12]. An R-module M is called a quasi-injective, if for each submodule N of M and each R-homomorphism from N into M can be extended to an R-homomorphism from M into M [9]. An R-module M is called a pseudo-injective, if for each submodule N of M and each R-monomorphism from Ninto M can be extended to an R-homomorphism from M into M. For an R-module M, E(M) stand for the injective envelope of M. A submodule of an R-module M is called a fully invariant if $f(N) \subseteq N$, for each $f \in End(M)$ [18]. An R-module M is called uniform, if every submodule of M is essential in M, where we said that a submodule N of M is essential in M if $N \cap K \neq (0)$ for each submodule K of M. which is equivalent to say that $0 \neq m \in M$, there exists $0 \neq r \in R$ such that $0 \neq mr \in N$, [6].

§1 Basic properties of P-Modules

In this section, we introduce the definition of P-Module and give examples characterizations and some basic properties of this concept.

Definition 1.1

An R-module M is called a P-Module, if every submodule of M is a pseudo-injective.

Examples and Remarks 1.2

1. Every submodule of P-Module is a P-Module.

- 2. A direct summand of P-Module is a P-Module.
- 3. Z_n as a Z-module is a P-Module for every n
- 4. Every simple R-module is a P-Module.

5. $Z_p \infty$ as a Z-module is a P-Module.

6.Z as a Z-module is not a P-Module, and Q as a Z-module is a quasi-injective, but not a P-module

7. The inverse image of a P-Module is not necessary P-

Module. For example the Z-module Z_2 is a P-Module

and if we let $f: Z \to Z_2$ defined by $f(x) = \begin{cases} o, & \text{if } x \text{ is even} \\ 1, & \text{if } x \text{ is odd} \end{cases}$

It is clear that f is Z-homomorphism and $f^{-1}(Z_2) = Z$ is not a P-Module.

8. The direct sum of two P-Modules is not necessary a P-Module. For example the Z-modules Z_2 and Z_4 are P-Modules, but $Z_2 \oplus Z_4$ is not a P-Module, (since $Z_2 \oplus Z_4$ itself is not a pseudo-injective Z-module.)

9. If M is a P-Module, then $M \oplus M$ is not necessary P-

Module. For example, since \mathbb{Z}_4 as a Z-module is a P-Module, but $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ is not a P-Module.

Before we give the main result of this section we introduce the following lemma.

Lemma 1.3

Any fully invariant submodule of a pseudo-injective module is a pseudo-injective.

Proof

Let K be a fully invariant submodule of pseudo- injective module M, let L be any submodule of K, and $f: L \to K$ be any R-monomorphism. Since M is a pseudo injective, then there exists an R-homomorphism $g: M \to M$ such that g extend f But K is a fully invariant submodule of M, then $g(K) \subseteq K$. Let $g|K = h: K \to K$. Then for all $x \in K, h(x) = g(x) = f(x)$. That is h is extends f. Hence

K is a pseudo injective.

Theorem 1.4

Let M be an R-module. Then the following statements are equivalent.

1. M is a P-Module.

2. M is a pseudo-injective and every essential submodule of M is a fully invariant under monomorphisms of $End_R(M)$.

3. Every essential submodule of M is a pseudo-injective. **Proof**

(1) \Rightarrow (2) Let N be an essential submodule of M, then N is a pseudo-injective . Let $f: M \to M$ be an Rmonomorphism and $K = \{x \in N : f(x) \in N\}$, that is $K = f^{-1}(N)$. Since N is a pseudo-injective, then there exists $g: N \to N$ which extends f. Since M is a pseudoinjective, then there exists an R-homomorphism extend g. We claim $h: M \to M$ which that (h-f)(N) = (0). Suppose that $(h-f)(N) \neq (0)$, then $(h - f)(N) \cap N \neq (0)$, for N is an essential submodule of M, which implies that (h - f)(n) = lfor some n, 1 in N. Thus (h - f)(n) = l implies that (g-f)(n) = l, then $f(n) = g(n) - l \in N$. This shows that $n \in K$. so(h - f)(n) = (0) which is contradicts the assumption, hence (h - f)(N) = (0)implies that h(N)=f(N). But $f(N)=h(N)=g(N) \subseteq N$. then $f(N) \subseteq N$.

(2) \Rightarrow (3) Let N be an essential submodule of M. Then by hypothesis N is a fully invariant under monomorphism of $End_R(M)$. Hence by Lemma 1.3 N is a pseudo-injective.

(3) \Rightarrow (1) Let N be a submodule of M, then $N \oplus C$ is a pseudo-injective ,where C is a relative complement of N in M, which implies that N is a pseudo-injective [8]. Hence M is a P Module

Hence M is a P-Module.

Now, we look at the injective hull of P-Module. It turns out that under certain condition it's also P-Module.

Proposition 1.5

Let \tilde{M} be a P-Module such that every submodule of E(M) is isomorphic to subquotient of M. Then M is a P-Module if and only if E(M) is a P-Module.

Proof
$$\Rightarrow$$
 Let N be a submodule of E(M). Then N is

isomorphic to a subquotient of M. Hence by [10] N is a submodule of M. therefore N is a pseudo-injective.

⇐ trivial. 🔳

§2 Relationships between P-Modules and pseudo-injective modules

It's clear that every P-Module is a pseudo-injective, but the converse is not true (see Example and Remarks 1.2 (6).). In the following propositions, we give conditions under which pseudo-injective modules become P-Modules.

Recall that an R-module M is duo module if every submodule of M is a fully invariant [18].

Proposition 2.1

Let M be duo module. Then M is a P-Module if and only if M is a pseudo-injective.

Proof:

Let N be a submodule of M, then N is a fully invariant submodule of M. Hence by lemma 1.3 N is a pseudo-

injective. Therefore M is a P-Module.■

Recall that an R-module M satisfies Baer's Criterion, if every submodule of M satisfies Baer's criterion, where we say that a submodule N of M satisfies Baer's Criterion, if for each R-homomorphism $f: N \to M$

R

such

there exists r in

that $f(n) = rn, \forall n \in N$ [1].

Proposition 2.2

Let M be an R-module which satisfies Bears criterion. Then M is a P-Module if and only if M is a pseudoinjective.

Proof

Let N be a submodule of M, then N satisfies Baer's criterion. Hence N is a fully invariant submodule of M (since for each $f \in End(M)$, and fore each $n \in N, f(n) = rn \in N$ for some $r \in R$). Hence by lemma 1.3 N is a pseudo-injective. Therefore M is a P-Module.

Recall that a submodule N of an R-module M is annihilator, if $N = ann_M(I)$ for some ideal I of R

[14]..

Proposition2.3

Let M be an R-module in which all its submodules are annihilator. Then M is a P-Module if and only if M is a pseudo-injective.

Proof

Let N be a submodule of M, then N is an annihilator submodule. That is $N = ann_M(I)$ for some ideal I of R. We claim that N is a fully invariant submodule of M. Let $f \in End(M)$, then

0 = f(IN) = If(N). Hence $f(N) \subseteq ann_M(I) = N$. Thus N is a fully invariant submodule of M. Therefore by Lemma 1.3 N is a pseudo-injective. Hence M is a P-

Module. .

Proposition2.4

Let M be an R-module such that every cyclic submodule of M is fully invariant. Then M is a P-Module if and only M is a pseudo-injective.

Proof

Let N be a submodule of M. Since every cyclic submodule of M is a fully invariant in M, then for each $f \in End(M)$ and for each x in N, $f((x)) \subseteq (x) \subseteq N$. Thus $f(x) \in N$. Hence N is a fully invariant submodule of M. Thus by Lemma 1.3 N is

a pseudo injective. Hence M is a P-Module.

Recall that a submodule N of an R-module M is closed, if N has no proper essential extension. [6]

Proposition2.5

Let M be an R-module, such that every submodule of M is closed. Then M is a P-Module if and only if M is a pseudo injective.

Proof

Let N be submodule of M, then N is a closed submodule of M. Since M is a pseudo injective, then by [4, Cor.1.3] N is a direct summand of M, and by [8, Lemma 1] N is a

pseudo injective. Hence M is a P-Module. ■

Since a direct summand of any module is closed [6] we get the following.

Corollary 2.6

Let M be an R-module, such that every submodule of M is a direct summand. Then M is a P-Module if and only if M is a pseudo injective.

Recall that a submodule N of an R-module is quasi-stable if for every submodule K of M with $K \subseteq N$ and every R-

homomorphism $g: K \to M$ such that $Img \subseteq N$, then $h(N) \subseteq N$ for each R-homomorphism $h: N \to M$ such

that
$$g = h \circ i_{\kappa}$$
.[1].

Since a quasi-stable submodule inherit a pseudo injectivity[1], we get the following.

Proposition2.7

Let M be an R-module such that all submodules of M are quasi-stable. Then M is a P-Module if and only if M is a pseudo injective.

§3: Relationships between P-Modules and Q-Modules

In this section we study the relation between P-Modules and Q-Modules.

Since every quasi-injective module is a pseudo injective, but the converse is not true [9], then every Q-Module is a P-Module but the converse is not true. Thus under certain conditions P-Module become Q-Modules.

Proposition3.1

Let M be an R-module over a principle ideal domain. Then M is a Q-Module if and only if M is a P-Module.

Proof

Let N be a submodule of M. Since M is an R-module over a principle ideal domain, then N is a submodule over a principle ideal domain. But M is a P-Module, and then N is a pseudo injective. Thus by [15, Th.3.3] N is a

quasi-injective. Hence M is a Q-Module.

Recall that an R-module M is torsion free if $T(M) = \{m \in M : mr = 0, for some r \in R\} = (0).$

It is given in [15, Cor. 3.9] that any torsion free module which is a pseudo injective is a quasi-injective, we get the following proposition.

Proposition 3.2

Let M be torsion free R-module. Then M is a Q-Module if and only if M is a P-Module.

Proposition 3.3

Let M be a torsion module over quasi-Dedekind ring. Then M is a Q-Module if and only if M is a P-Module.

Proof

Let N be a submodule of M, then N is a pseudo injective module over quasi-Dedekind ring. Since M is torsion module, then N is a torsion submodule. Thus by [16, Th.

2] N is a quasi-injective. Hence M is a Q-Module.

A ring R is called a generalized uniserial ring, if every primitive idempotent element $e \in R, eR$ (*Re*) have unique

composition series as right (left) R-module.

The following proposition shows that over a generalized uniserial ring, P-Modules and Q-Modules are equivalent.

Proposition 3.4

Let M be an R-module over a generalized uniserial ring R. Then M is a Q-Module if and only if a P-Module.

Proof

Let N be submodule of M, then N is a pseudo injective submodule over a generalized uniserial ring R. Hence by [8, Th.4] N is a quasi-injective. Therefore M is a Q-

Module.

Proposition3.5

Let M be a uniform non-singular module. Then M is a Q-Module if and only if M is a P-Module.

Proof

Let N be a submodule of M. Since M is a uniform, then N is a uniform, also, since M is a non-singular, then by [6] N is a non-singular. Let L be a submodule of N and $f: L \rightarrow N$ be an R-homomorphism, then since N is non-singular, uniform, so Kerf = (0) or Kerf = L. If Kerf = L, then f can be trivially extended to a homomorphism from N into N. If Kerf = (0), then f is monomorphism and from pseudo-injectivity of N, f can be extended to an R-homomorphism from N into N. hence N is a quasi-injective and then M is a Q-Module.

It is well-known a pseudo injective torsion module over a multiplication ring or hereditary ring is a quasi-injective [16, Cor.1].

We end this section by the following result.

Proposition 3.6

Let M be a torsion module over a multiplication ring or hereditary ring R. Then M is a Q-Module if and only if M is a P-Module.

§4 Modules imply P-Modules

In this section we establish modules which imply p-Modules. Recall that an R-module M is a semi-simple, if every submodule of M is a direct summand [6].

The following proposition shows that semi-simple modules imply P-Modules

Proposition 4.1

If M is a semi-simple R-module, then M is a P-Module. **Proof**

Let N be a submodule of M, then N is a semi-simple, also let L be a submodule of N and $f: L \to N$ be an Rmonomorphism. Since N is a semi-simple, then L is a direct summand of N. that is $N = L \bigoplus K$ for some submodule K of N. Now, we can extend f to an Rhomomorphism $g: N \to N$ by setting

$$g(n) = \begin{cases} f(n), & \text{if } n \in L \\ 0, & \text{if } n \in K \end{cases}$$

This gives that N is a pseudo-injective. Hence M is a P-Module. ■

The converse of Prop. 4.1 is not true in general. In fact the Z-module_{Z_0} is a P-Module, but not semi-simple.

The following proposition gives a condition under which P-Modules are Q-Modules.

Proposition 4.2

If M is a P-Module such that every submodule of M is a closed, then M is a semi-simple.

Proof

Let N be a submodule of M. Then by hypothesis N is closed. Since M is a P-Module, then M is a pseudo-injective. Therefore by [4, Cor. 13] N is a direct summand of M. Hence M is a semi-simple.

From proposition 2.5, proposition 4.1 and proposition 4.2, we get the following result.

Proposition 4.3

Let M be an R-module such that every submodule of M is a closed. Then the following statements are equivalent. 1. M is a semi-simple module.

2. M is a P-Module.

3. M is a pseudo-injective module.

Recall that an R-module M is anti-hopfain if every proper submodule of M is a non-hopf kernel. Where, a submodule N of M is called a non-hopf kernel if there exists an isomorphism between M/N and M [7].

It is well-known that anti-hopfain module, is a quasiinjective (pseudo-injective) [2]. Also every submodule of anti-hopfain module is anti-hopfain [2] we get the following results.

Proposition 4.4

If M is an anti-hopfain R-module, then M is a P-Module. **Corollary 4.5**

If M is an anti-hopfain R-module, then $_{M/N}$ is a P-Module for any submodule N of M.

The following proposition shows that the homomorphic image of anti-hopfain module is a p-Module.

Proposition 4.6

If M is an anti-hopfain R-module, then f(M) is a P-Module for each R-homomorphism $f: M \to M'$ Where M' is any R-module.

Proof

Suppose that M is an anti-hopfain module and $f: M \to M'$ be an R-homomorphism. Thus $M/kerf \cong f(M)$. Since M is an anti-hopfain, then by Corollary 4.5 M/kerf is P-Module. Hence f(M) is P-

Module.

§5 P-Modules and Multiplication modules

An R-module M is called multiplication module, if every submodule of M is of the form IM for some ideal I of R [3].

In this section we study the relation of multiplication modules with P-Modules.

We preface our section by the following theorem which gives the relationship between P-Modules over R and P-Modules over $End_R(M)$.

Theorem 5.1

If M is a multiplication module, then M is a P-Module over R if and only if M is a P-Module over S where $S = End_R(M)$.

Proof

 (\Rightarrow) Let N be S-submodule of M. Since M is a multiplication, then N is an R-submodule of M, then N is a pseudo-injective submodule of M. Hence M is a P-Module over S.

(\Leftarrow) Let N be R-submodule of M. Since M is a multiplication, then by [13, Prop. 1.1] N is an S-submodule of M. Then N is a pseudo-injective submodule of M. Hence M is a P-Module over R.

In the following theorem we give a characterization of P-Module in class of multiplication modules.

A submodule N of an R-module M is called a quasi-invertible if

Hom $\left(\frac{M}{N}, M\right) = (0)$ [11].

Theorem 5.2

Let M be a multiplication module with $ann_R(M)$ is a prime ideal of R. Then M is a P-Module if and only if every quasi-invertible submodule of M is a pseudo-injective.

Proof

(⇒) Trivial..

 (\Leftarrow) Let N be a submodule of M. Then $N \oplus K$ is an essential submodule of M, where K is an intersection relative complement of N in M. We claim that $N \oplus K$ is quasi-invertible submodule of M. Let а $f \in Hom(M/N \oplus K, M), f \neq 0$. Thus, there exists an element $m + (N \oplus K) \in M/N \oplus K$ such that $f(m + (N \oplus K)) = y \neq 0, y \in M$. Since $N \oplus K$ is an essential submodule of M, then there exists a non zero element R r in such that $rm \neq (0) \in N \oplus K$. Hence $0 = rf(m + N \oplus K) = ry$

and hence $r \in ann_{\mathbb{R}}(y)$. Since M is multiplication module then by[5, Prop.1] Ry = IM for some ideal I of R. Thus 0 = rIM and hence $rI \subseteq ann_R(M)$. Since $ann_R(M)$ is a prime ideal of R, then either $I \subseteq ann_R(M)$ If or $r \in ann_{\mathbb{R}}(M).$ and hence $I \subseteq ann_R(M)$, then IM = Ry = (0)y = 0, and this is a contradiction. If $r \in ann_{\mathbb{P}}(M)$, then rm = 0, for all m in M, this is a contradiction a gain. Thus $f \in Hom(M/N \oplus K, M)$ must zero. be Hence $Hom(M/N \oplus K, M) = (0)$, which implies that $N \oplus K$ is a quasi-invertible submodule of M. Then by hypothesis $N \oplus K$ is a pseudo-injective submodule of M. Hence by [8, lemma1] N is a pseudo-injective submodule of M. Therefore M is a P-Module.

As an immediate consequence of Th.5.2 we have the following result.

An R-module M is prime if, $ann_R(M) = ann_R(N)$ for every R-submodule N of M.

Corollary 5.3

Let M be a prime multiplication module. Then M is a P-Module if and only if every a quasi-invertible submodule of M is a pseudo-injective.

Proposition 5.4

If M is a pseudo-injective multiplication module, then M is a P-Module.

Proof

Let N be a submodule of M. Since M is a multiplication module then N = IM for some ideal I of R. Let $f \in End(M)$ then

$$f(N) = f(IM) = If(M) \subseteq IM = N$$
. Hence N is a fully invariant submodule of M. Since M is a pseudo-

injective, therefore by lemma 1.3 N is a pseudo-injective. Thus M is a P-Module. ■

The following corollary is an immediate consequence of Prop. 5.4.

Corollary 5.5

If M is a cyclic pseudo-injective R-module, then M is a P-module.

§6 Characterizations of P-Modules in some types of modules.

Definition 6.1

An R-module M is called a pseudo-duo module, if every submodule of M is a fully invariant under monomorphisms of $End_R(M)$.

Proposition 6.2

Let M be a uniform module, then M is a P-Module if and only if M is a pseudo-injective and pseudo due module. **Proof**

(⇒) Since M is a P-Module, then M is a pseudoinjective. Let N be a submodule of M. Since M is a uniform module, then N is essential submodule of M. Hence by Theorem 1.4 N is a fully invariant under monomorphisms of $End_R(M)$. Therefore, M is a pseudo-duo module. (\Leftarrow) Let N be a submodule of M. Since M is a uniform module, then N is an essential submodule of M. And since M is pseudo-duo module, then N is fully invariant under a monomorphism $End_R(M)$. Now, every essential submodule is fully invariant under monomorphism of $End_R(M)$. Hence by Theorem 1.4 M is

a P-Module.

Recall that an R-module M is a monoform, if every nonzero homomorphism $f \in Hom(N, M)$ (where N is any submodule is a monomorphism [17].

It is well-known that a monoform module is a uniform we get the following immediate consequence of prop. 6.2.

Corollary 6.3

Let M be a monoform module. Then M is a P-Module if and only if M is a pseudo-injective and pseudo-duo.

Recall that an R-module M is a rational extension of an R-submodule N of M, provided that $Hom_R\left(\frac{K}{N}, M\right) = (0)$, whenever $N \subseteq K \subseteq M$. [6]

Proposition 6.4

Let M be a rational extension of every submodule of M. Then M is a P-Module if and only if M is a pseudoinjective and pseudo-duo module.

<u>Proof</u>

(⇒) Since M is a P-Module, then M is a pseudoinjective module. Let N be a submodule of M. Since M is a rational extension of N, then clearly is an essential submodule of M, then by Theorem 1.4 N is a fully invariant under monomorphisms of $End_R(M)$. Hence M is a pseudo-duo module.

(\Leftarrow) Let N be a submodule. Since M is a rational extension of N, then N is an essential submodule of M. And since M is a pseudo-duo module, then N is a fully invariant under a monomorphisms of $End_R(M)$.

Hence by Theorem 1.4 M is a P-Module.

Recall that a submodule N of an RF-module M is a quasi-invertible if $Hom_R\left(\frac{M}{N}, M\right) = (0)[11]$. And the

submodule N of an R-module M is dense in M if, for every $y \in M$ and $x \in M$, $xy^{-1}N \neq (0)[6]$.

The following theorem gives many characterization of P-Module in class of a non-singular modules.

Theorem 6.5

Let M be a non-singular R-module. Then the following statements are equivalent.

1. M is a P-Module.

2. Every a quasi-invertible submodule of M is a pseudo-injective.

3. Every dense submodule of M is a pseudo-injective.

Proof

(1) \Rightarrow (2) Trivial.

References

(2) \Rightarrow (3) Let N be a dense submodule of M. Since M is a non-singular, then by [10] N is an essential submodule of M. We claim that N a quasi-invertible

[1]. Abbas, M.S. "On fully stable modules" Ph.D., thesis, Univ. of Baghdad, (1990) submodule of M. Let $g \in Hom_R\left(\frac{M}{N}, M\right), g \neq 0$, thus there exists $x \in M$ such that

$$g(x + N) = m \neq 0$$
, where $m \in M$. Let

$$r \in R \text{ and } r \notin ann(m).$$
 Hence

 $rm \neq 0$ and $rx \notin N$. Since N is an essential submodule of M, then there exists a non-zero element $s \in R$ such that srx is a non-zero element of N. thus 0 = g(srx + N) = srg(x + N) = srm, this implies that $sr \in ann(m)$. Therefore ann(m) is an essential ideal of R. Since M is non-singular, then m = 0and hence g = 0. Therefore $Hom_R(M / N, M) = (0)$ which implies that N is a quasi-invertible submodule of M. Hence by hypothesis N is a pseudo-injective.

(3) \Rightarrow (1) Let N be a submodule of M, then $N \oplus K$ is an essential submodule of M (where K is the relative intersection complement.) Since M is non-singular, then by [10] $N \oplus K$ is dense submodule of M. Thus by hypothesis $N \oplus K$ is a pseudo-injective submodule of M. Hence by [8] N is a pseudo-injective submodule of M. Therefore M is a P-Module.

Before we give the last result of this suction, we introduce the following lemma

Lemma 6.6 [15, Th. 4.3]

For any pseudo-injective module M if, $S = End_R(M)$, then

$J(S) = \{ \alpha \in S : Ker\alpha \text{ is essential in } M \}$

Theorem 6.7

Let M be an R-module such that $J(End_R(M)) = (0)$ then M is a P-Module if and only if M is a pseudo-

injective and every quasi-invertible submodule of M is a pseudo-injective.

Proof

(⇒) Trivial.

 (\Leftarrow) Let N be a submodule of M, then $N \oplus K$ is essential submodule of M (where K is the relative intersection complement of N). We claim that $N \oplus K$ is a quasi-invertible submodule of М Let $g \in Hom_R(M / N \oplus K, M)$ and $g \neq 0$. Define $f = g \circ \pi$ where $\pi: M \to M/N \oplus Ka$ natural homomorphism is. Hence $f \in End_R(M)$ and $f \neq 0$ and $N \oplus K \subseteq kerf$. Since $_{N \oplus K}$ is an essential submodule of M, then Kerf is essential submodule of Since Μ is a pseudo-injective, then M. $f \in J(End_R(M))$ and f = 0, this implies that g = 0, Therefore a contradiction. this is $Hom_R(M / N \oplus K, M) = (0)$, and hence $N \oplus K$ is a quasi-invertible submodule of M. Thus by hypothesis $N \oplus K$ is a pseudo-injective submodule of M. Hence by [8] N is a pseudo-injective. Thus M is a P-Module.

- [2]. Al-Awadi, H. K. "Anti-hopfain modules and restricted Anti-hopfain modules" M. Sc. thesis .Univ. of Baghdad (2000).
- [3]. Barnard, A. "Multiplication modules" J. of Algebra 71, (1981) 174-178.
- [4]. Bharadwaj, P. C. and Tiwary, A. K. "Pseudo-Injective Modules' Bull. Math. Dela Soc., Sci. Math. Dela. R.S. de Roumane. 26, (74) No. 1, (1982) 21-25.
- [5]. El-Bast, Z.A. and Smith, P. F. "Multiplication modules" Comm. In algebra, 16 (4), (1988), 755-795.
- [6]. Goodearl, K. R. "Ring theory" Marcel Dekker, New York (1976).
- [7]. Hirano, Y. and Mogami, I. "Module whose proper submodules are non-hopf kernals" Comm. In algebra, 15 (8), (1987), 1545-1567.
- [8]. Jain, s. K. and Singh, S. "Quasi-injective and pseudo-injective modules" Canad. Math. Bull. 18(3), (1975), 359-366.
- [9]. Johnson, R. E. and Wong. E. T. "Quasi-injective modules and irreducible rings" J. London Math. Soc., 39, (1961), 260-268.

- [10]. Lam, T. Y. "Lecture on Modules and Rings" Springer Verlage New York (1998).
- [11]. Mijbass, A.S. "Quasi-Dedekind modules" Ph.D thesis, Univ. of Baghdad (1997).
- [12]. Mohamadali, H. K. " Q-modules" Ph.D. thesis, Tikrit Univ. (2005).
- [13]. Naoum, A. G. and Al-Aubady, W. K. "A note on multiplication modules and their rings of endomorphisms" Kyungpook, Math. J., 35 (1995), 223-228.
- [14]. Saharp, D. W. and Vamous, P. " Injective modules" Cambridge Univ. Press (1972).
- [15]. Singh, S. and Jain, S. K. "On pseudo-injective modules and Self-pseudo-Injective Rings" J. of Math. Sci., 2 ,(1967). 23-31
- [16]. Singh, S. and Wason., K. "Pseudo-injective modules over commutative rings" J. of Indian math. Soc. 34, (1970)61-65
- [17]. Storrer, H. H. " On Goldmen's primary decomposition" Lecture note in Math; 246 Springer Verlage, New York (1972).
- [18]. Weakly, W. D. "Modules whose distinct submodule are not isomorphic" Comm. In algebra, 15, (1987), 1569-1587.

ألمقاسات من النمط P ومفاهيم اخرى

هيبة كريم محمد على ، مروة عبدالله صالح عبدالله

قسم الرياضيات ، كلية التربية ، جامعة تكريت ، تكريت ، العراق (تاريخ الاستلام: ۱ /۹ /۲۰۰۸ ، تاريخ القبول: ۱۰ / ۱۲ / ۲۰۰۹)

الملخص

قدمنا في هذا البحث مفهوم جديد سمي المقاسات من النمط-P كتعميم للمقاسات من النمط-Q. العديد من التشخيصات والصفات لهذا المفهوم وجدت. المقاسات التي لها علاقة مع المقاسات من النمط-P درست. فضلاً عن ذلك تشخيصات اخرى للمقاسات من النمط-P في بعض اصناف المقاسات وجدت.