On supra compactness in supratopologicol spaces

Taha H. Jassim

Dep. of mathematics, College of computer sciences & Math., University of Tikrit, Tikrit, Iraq (Received 6/8/2008, Accepted 29/10/2008)

Abstract:

In this paper we investigate and study some properties of compactness in supratopological space and show that if f is S^* -continuous function from (X, τ_X^*) to (Y, τ_Y^*) , and E is S-compact in X then f(E) is S-compact in (Y, τ_Y^*) , also

if X, Y are a two s -compact supratopological space then $X \times Y$ is S -compact.

Keywords: Supratopologicol space, supra continuous, supra relative space, supra compact, supra open cover, supra open sub cover.

1-Introduction:

Let X, Y be any topological spaces. sub class $\tau^* \subset p(X)$ is called supratopology on X if $X \in \tau^*$ and τ^* is closed under arbitrary union (X,τ^*) is called asupratopological space, The members of au^* are called supra open sets and it's Complement is an supra closed sets[1]. Let (X,τ) be a topological space and τ^* be a supratopology on X, we called τ^* asupratopology associated with τ if $\tau \subseteq \tau^*$. Let (X, τ_x^*) and (Y, τ_y^*) be supratopological spaces. Afunction $f: X \to Y$ is an S^* continuous function if the inverse image of each supra open set in Y is a supra open set in X [3].let E be as ubset of X, then the classes τ_E^* of all intersections of E with τ^* -supra open subsets of X belong to τ^* is a topology on E it is called relative supratopology, We say that a collection $\{u_{\alpha}^*\}_{\alpha \in \Lambda}$ of a supra open sub set of X be an supra open cover of E if and only if $E \subseteq \bigcup_{\alpha \in A} u_{\alpha}^*$ then (X, τ^*) is supra compact (S -compact for short) if and only if every supra open cover of E has finite supra sub let $X = \{a, b, c, e\}, \tau^*$ is For example cover. supratoplogical of with empty set and also $u_1^* = \{a\}, u_2^* = \{b, c, e\}$ hence $X \subseteq \bigcup_{i=1}^{2} u_i^*$ then (X, τ^*) is S -compact space. The product of supratopology is $\tau^*_{XXY} = \{ \bigcup_{i,j} u^*_i \times v^*_j, u^*_i \in \tau^*_X, v^*_j \in \tau^*_Y \}$ [2]. For xample let $X = \{a, b, e, f\}, Y = \{1, 2\}, \tau_X^* = \{X, \{a\}, \{b\}, \{a, b\}\},\$ $\tau_{Y}^{*} = \{Y, \{1\}, \{2\}\}$ then $\tau^*_{X \times Y} = \{X \times Y, X \times \{1\}, X \times \{2\}, \{a\} \times Y, \{a\} \times \{1\}, X \times \{2\}, \{a\} \times Y, \{a\} \times \{1\}, X \times \{2\}, \{a\} \times \{1\}, X \times \{1\}, X \times \{2\}, \{a\} \times Y, \{a\} \times \{1\}, X \times \{1\}, X \times \{2\}, \{a\} \times Y, \{a\} \times \{1\}, X \times \{$

 $\{a\} \times \{2\}, \{b\} \times Y, \{b\} \times \{1\}, \{b\} \times \{2\}, \{a, b\} \times Y,$

 ${a,b} \times {1}, {a,b} \times {2}$:= ${X \times Y, {(a,1), (b,1), (c,1), (d,1)}, {(a,2), (a,2), ($

 $(b,2), (c,2), (d,2) \}, \{(a,1), (a,2)\}, \{(a,1)\}, \{(a,2)\}, \{(b,1), (b,2)\}, \{(b,1)\}, \{(b,2)\}, \{(b,2)\},$

$$\{(a,2)\},\{(b,1),(b,2)\},\{(b,1)\},\{(b,2)\},\{(a,1),(a,2)\},\{(a,1),(b,2)\},\{(a,1),(b,2)\},\{(a,1),(b,2)\},\{(a,2),(a,2)\},\{(a,2),(a,2)\},\{(a,$$

(a,2),(b,1),(b,2), {(a,1),(b,1)}, {(a,2),(b,2)}

2- S - Compactness in supratopological spaces Theorem 2-1: Any supra closed sub set of S compact is S -compact

Proof.

Let (X,τ^*) be a *S*-compact space, let *E* be any supra closed sub set of *X* and $\{E_{\alpha} : \alpha \in I\}$ supra open cover of a set *E*, to show there exist finite Supra open cover of *E*, since *E* is supra closed set then E^c supra open set, $E^c \bigcup \{E_{\alpha} : \alpha \in I\}$ supra open cover in (X,τ^*) by hypothesis there exist supra open cover has finite supra open sub cover $\{E_{\alpha} : \alpha \in I\}$ containing sub cover such that if E^c not supra open cover any part *E* (because $E \bigcap E^c = \phi$) such that $E \subset \bigcup_{i=1}^n E_{\alpha i}$ is finite supra open sub cover on *E*,

then E is S -compact.

Remark 2-2: Every finite supratopologicol space is *S* -compact.

Let $X = \{x_1, x_2, ..., x_n\}$, let $x_1 \in u_1^*, x_2 \in u_2^*..., x_n \in u_n^*$ then $x \in u_1^* \bigcup u_2^* \bigcup ... \bigcup u_n^*$ then $x \subseteq \bigcup_{i=1}^n u_i^*$

Theorem 2-3: let (X,τ^*) be a supratopological space and let (E,τ_E^*) be a subspace of (X,τ^*) then (E,τ_E^*) is S compact iff every supra open cover of E is consist of supra open set contained in X has finite supra open cover of E.

Proof.

Suppose that *E* is *S* -compact, $\{E_{\alpha} : \alpha \in I\}$ supra open cover of *E* the family $\{E_{\alpha} \bigcap E : \alpha \in I\}$ supra open cover in (E, τ_{E}^{*}) .since *E* is *S* -compact there exist finite supra open sub cover $\{E_{\alpha_{i}} \bigcap E \dots E_{\alpha_{n}} \bigcap E\}$ cover of *E* then $\{E_{\alpha_{1}}, \dots, E_{i_{n}}\}$ supra open cover of *E*.

Necessity. To prove *E* is *s*-compact. Let $\{E_{\alpha}^{c}\} = E^{c}$ supra open cover on *E*, $\forall \alpha$ such that $E_{\alpha}^{c} = E_{\alpha} \bigcap E$, the family $\{E_{\alpha}\}$ supra open cover set on *E*, $E \subseteq X$ by hypothesis \exists finite supra open cover on *E* then $\{E_{\alpha_{1}}^{c}, \dots, E_{\alpha_{n}}^{c}\}$ finite supra open sub cover on *E*^c cover set on *E*.

Theorem 2-4: Let *E* be a sub set of a supratopologicol space (X, τ^*) then *E* is *S* -compact in (X, τ^*) if and only if *E* is *S* -compact in (E, τ_E^*) .

Proof.

Sufficiency. Suppose that $\{u_i^*\}$ be a τ_E^* -supra open cover of E, there exist $H_i \in \tau^*$ such that $u_i^* = E \bigcap H_i, u_i^* \subseteq H_i$ hence

$$E \subseteq \bigcup_{i} u_{i}^{*}, E \subset \bigcup_{i} H_{i}^{*} and \{H_{i}\}$$
 is a τ^{*} - supra open cover

of *E* .since *E* is *S* -compact on $\tau^* \operatorname{so} \{H_i^*\}$ contains a finite supra sub open cover we say $E \subseteq H_{i1} \bigcup H_{i2} \bigcup ... \bigcup H_{in}, H_{ik} \in \{H_i\}$ But

 $E = u_{i1}^* \bigcup \dots \bigcup u_{im}^*$ thus H_{im}^* contains a finite supra open sub cover then (E, τ_E^*) is *S* -compact space. Necessity.

let $\{H_i\}$ be a τ^* – supra open cover of E $u_i^* = E \bigcap H_i, E \subseteq \bigcup_i H_i$ thus $u_i^* = \bigcup_i (E \bigcap H_i) = \bigcup_i u_i^*$ but $u_i^* \in \tau_E^*$ so $\{H_i\}$ is a τ_E^* – supra open cover of

hypothesis ${}_{u_i^*} = E \bigcap (H_i \bigcup ... \bigcup H_{im}) \subseteq H_{i1} \bigcup ... \bigcup H_{im}$ then *E* is *S* - compact space.

Theorem 2-5: Let (X,τ^*) be a supratopological space, Let (E,τ_E^*) be a sub space of X, if $Y \subseteq E$, then Y is S -compact set in τ^* iff Y is S -compact set in τ_E^* . **Proof.**

Sufficiency. Suppose that y is S -compact set in τ_E^* to show y is S -compact set in τ^* , let $\{u_{\alpha}^*\}$ supra open cover set y on τ^* such that

$$y = y \bigcap E \subset \left(\bigcup_{\alpha} u_{\alpha}^{*}\right) \bigcap E = \bigcup_{\alpha} (u_{\alpha}^{*} \bigcap E) = \bigcup_{\alpha} u_{\alpha}^{**} \operatorname{Thus} \left\{ u_{\alpha}^{**} \right\}$$

supra open cover set y on τ^* , but y is S -compact set in τ_E^* , there exist finite supra open cover $y \subseteq \bigcup_{i=1}^n u_i^{**}, y \subseteq \bigcup_{i=1}^n (u_\alpha^* \cap E) \subseteq \bigcup_{i=1}^n u_\alpha^*$ is finite supra open cover then y is S - compact set in τ^* .

Conversely.

Let y is S -compact set in τ^* , $\{u_{\alpha}^{**}\}$ supra open cover set y on τ_E^* , $y \subseteq \bigcup u_{\alpha}^{**}$, by definition relatively $u_{\alpha}^{**} = u_{\alpha}^* \bigcap E, \forall \alpha$ such that

$$y \subseteq \bigcup_{\alpha} u_{\alpha}^* = \bigcup_{\alpha} (u_{\alpha}^* \cap E) = (\bigcup_{\alpha} u_{\alpha}) \cap E \subseteq \bigcup_{\alpha} u_{\alpha}$$
 since y is S -

compact set in τ^* , \exists finite supra open sub cover, $y \subseteq \bigcup_{i=1}^{n} u_{ci}$,

Thus
$$y = y \bigcap E \subseteq \left(\bigcup_{i=1}^{n} u_{\alpha i}^{*}\right) \bigcap E = \bigcup_{i=1}^{n} \left(u_{\alpha}^{*} \bigcap E\right) = \bigcup_{i=1}^{n} u_{\alpha i}^{*}$$
 is

finite supra open cover on y sets then y is S compact set in τ_E^*

Theorem 2-6: Asupratopologicol space (X, τ^*) is S compact if and only if For every class $\{F_i\}$ of supra closed sub sets of X, $\bigcap F_i = \phi$ impels $\{F_i\}$ contains a finite sub class $\{F_{i1}, F_{i2}, ..., F_{im}\}$ with $F_{i1}, F_{i2}, ..., F_{im} = \phi$ Proof.

Suppose $\bigcap F_i = \phi$, then by De Morgan's low. $X = \bigcup F_i^c$ So $\{F_i^c\}$

is an supra open cover of X ,Since each F_i is closed but X is S -compact hence there exist $F_{i1}^c, \dots, F_{im}^c \in \{F_i^c\}$ thus $\phi = X^c =$ $(F_{i1}^c \bigcup \dots \bigcup F_{im}^c)^c = F_{i1}^{cc} \bigcap \dots \bigcap F_{im}^{cc}$

$$=F_{i1}\bigcap\ldots\bigcap F_{i}$$

Necessity.

let be $\{G_I\}$ be an supra open cover of $X = \bigcup_i G_i$ by De Morgan's low $\phi = X^c = \left(\bigcup_i G_i\right)^c = \bigcap_i G_i^c$, since each G_i is open. $\{G_i^c\}$ Is class of supra closed sets and has a empty intersection Hence there exist $G_{i1}^c, \dots, G_{im}^c \in \{G_i^c\}$ such

that $G_{i_1}^c \bigcap \dots \bigcap G_{i_m}^c = \phi$ Thus $X = \phi^c = G_{i_1} \bigcup \dots \bigcup G_{i_m}$ then X is S -compact

3- *S*^{*} **- continuous of supratopologicol spaces** Theorem 3-1:

Let $f:(X,\tau_X^*) \to (Y,\tau_Y^*)$ be a S^* - continuous, and let E be a

S -Compact sub set of X then it's image f(E) is S -compact sub set of Y.

Proof.

Suppose $\{G_I\}$ is an supra open cover of f(E) hence $\{f^{-1}(G_i)\}$ is an supra open cover of E. Since S^* - continuous and each G_i is an supra open set, so $\{f^{-1}(G_i)\}$ is an supra open cover.

Theorem 3-2: each of (X, τ_x^*) and (Y, τ_y^*) be a S compact spaces, Let: $f: (X, \tau_x^*) \to (Y, \tau_y^*)$ be a S^* continuous then f(X) is S -compact.

Proof.

Suppose $(G_i)_{i \in I}$ be supra open cover to a set f(X) on Y, the family $\{(f^{-1}(A_i): A \in G)\}_{i \in I}$ is supra open cover on X, since is S^* - continuous and A is supra open set in Y then $f^{-1}(A)$ is supra open set in X. since X is

S -compact then the there exist finite sets $f^{-1}(A_1), \dots, f^{-1}(A_n)$ supra open cover to *X* the set A_1, \dots, A_n in $(G_i)_{i \in I}$ cover to f(X) then f(X) is *S* - compact.

Theorem 3-3: Let (X, τ_x^*) and (Y, τ_y^*) are a S -compact spaces then the

product of supratopology XxY is a S -compact space **Proof**.

Since (X, τ_x^*) is S -compact there exist finite supra open sub cover $\{\bigcup_i u_i^*\}$ cover of X then

 $\{u_{i1}, \dots, u_{in}\}$ supra open sub cover of X, and **References:**

1 .A.S. Mashhor, A.A. Allam , F.S. Mahmoud and F.H. Khedr ,on supratopological spaces , Indain J.pure Appl. Math 14(1983),502-510

Since (Y, τ_y^*) is S -compact there exist finite supra open sub cover $\{\bigcup_i v_i^*\}$ cover of Y then $\{v_{i1}, \dots, v_{in}\}$ supra open sub cover of Y. By definition The product of supratopolog is $\tau_{XXY}^* = \{\bigcup_{i,j} u_i^* \times v_j^*, u_i^* \in \tau_X^*, v_j^* \in \tau_Y^*\}$ Thus

$$\left\{\bigcup_{i,j} u_{i1}^* \times v_{i1}^*, \dots, \bigcup_{i,j} u_{in}^* \times v_{jm}^*, u_i^* \in \tau_x^*, v_j^* \in \tau_y^*\right\} \text{ hence } \exists \text{ finite}$$

supra open sub cover on X_{xY} then $(X \times Y, \tau^*_{x \times y})$ is S - compact.

2. J. Dugundji , topology , library of congress catalog card number :66-1094 printed in the United States of America

3. W.K. Min , H. S.chang , on M-continuity , Kangweon – Kyungki. Jour.6 , no 2(1998),32

حول السبرا- تراص في الفضاءات السبراتبولوجية(التبولوجية الفوقية)

طه حميد جاسم الدوري

قسم الرياضيات ، كلية علوم الحاسبات والرياضيات ، جامعة تكريت ، تكريت ، العراق (تاريخ الاستلام: ٦ / ٨ /٢٠٠٨ ، تاريخ القبول: ٢٩ / ١٠ / ٢٠٠٨)

الملخص

s في هذا البحث تحرينا ودرسنا بعض خواص التراص في الفضاءات السبرانبولوجية (التبولوجية الفوقية)ووجدنا انه إذا كانت f دالةمستمرةمن النمط S^* - من (X, τ_X^*) وكذلك ووجدنا من (X, τ_X^*) إلى (Y, τ_Y^*) وكانت E من النمط S في (Y, τ_X^*) وكذلك ووجدنا انه إذا كانت $X \times X$ هو فضاء من النمط S - من النمط S - من النمط S - من النمط S من النمط S من النمط S من النمط X, τ_X^* من النمط X, Y هو فضاء مرصوص من النمط S - من النه