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ABSTRACT  

Anomaly detection in computer vision is crucial, and manual identification of irregularities in 

videos is resource-intensive. Autonomous systems are essential for efficiently analysing and 

detecting anomalies in diverse video datasets. Video surveillance relies heavily on anomaly 

detection for monitoring equipment states through time-series data. Presently, deep learning 

methods, particularly those based on Generative Adversarial Networks (GAN), have gained 

prominence in time-series anomaly detection. This paper proposes a novel solution: the double-

flow convolutional Long Short-Term Memory (DF-ConvLSTM) - based Variational 

Autoencoder- Generative Adversarial Network (VAE-GAN) method. By co-training the 

encoder, generator, and discriminator, this approach leverages the encoder's mapping skills and 

the discriminator's discrimination capabilities simultaneously. The proposed strategy is 

compared with LSTM-VAE, LSTM-VAE-Attention, and VAE. The proposed method is 

evaluated using metrics for recall, accuracy, precision, and F1 score. With classification 

accuracies of 91% on the University of Central Florida (UCF) crime dataset, the experimental 

results outperformed alternative techniques. Furthermore, the analysis of the ROC curve 

revealed that the suggested method performed better than the others, as evidenced by its higher 

ROC (Receiver Operating Characteristic) values. Experimental results demonstrate the 

proposed method's ability to rapidly and accurately detect anomalies in surveillance videos, 

ensuring efficient and reliable anomaly detection. Experimental results show the method's 

rapid, accurate anomaly detection in surveillance videos, ensuring efficiency and reliability. 

However, challenges include high computational costs, affecting the practicality of 

implementation for real-time anomaly detection. 
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1. INTRODUCTION 

The proliferation of surveillance systems in public spaces has escalated, necessitating real-time 

analysis of video surveillance streams. A surge in research efforts has focused on enhancing 

detection algorithm performance, addressing challenges arising from factors like data volume, 

dynamic environments, and diverse anomaly types. Video anomaly detection involves 

identifying frames within a video sequence that deviate significantly from the expected norm, 

facilitating the pinpointing of unusual occurrences such as fires, altercations, . . .etc.  

Researchers like (Pang et al. ,2020) and (Mahmood et al. ,2021) have explored this area, 

showcasing its significant practical utility. Beyond security applications, anomaly detection in 

video surveillance proves valuable in industrial settings, enabling the detection of equipment 

malfunctions or defects. However, it takes a lot of time and labour for humans to manually 

identify anomalies in surveillance footage. This is because manual analysis is an impractical 

solution due to the volume of data generated by critical systems in security applications. The 

need for automated systems to identify anomalies in videos has grown significantly in the last 

few years. Automated systems are more productive and economical when it comes to 

identifying irregularities in surveillance footage because they drastically cut down on human 

labour and time. Finding and following anomalies in the captured footage is one of the 

surveillance field's expanding research challenges. To mitigate this problem and save a great 

deal of time and human labour, researchers have suggested automated systems for identifying 

anomalies in videos. Even with the progress that has been made, there is always space for 

improvement in terms of precision, dependability, and expandability when creating an ideal 

video surveillance system. With the development of new models and improvements in hardware 

performance in recent years, smart learning techniques have gained popularity in the field of 

video anomaly detection.  

However, there are a number of limitations to using these strategies. The creation of big data, 

which demands a significant amount of processing power, is one of the main obstacles. This 

study has addressed the difficulties involved in intelligent anomaly detection while 

concentrating on creating new, more effective, and efficient anomaly detection techniques. In 

general, the continued development of video surveillance depends on ability to comprehend the 

drawbacks of existing unsupervised anomaly detection techniques and investigate novel 

approaches by (Pereira and Silveira ,2018). Soft computing techniques, including machine 

learning and deep learning classifiers, are pivotal for early prediction of anomalous activities in 

videos (lin et al. ,2020) and (xu et al ,2018).  The recent proliferation of deep learning techniques 

has brought about automation with higher accuracy compared to traditional machine learning 
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classifiers, marking a notable advancement in video anomaly detection. This paper's main goal 

is to investigate this gap for Anomaly detection using deep learning methods. Using University 

of Central Florida (UCF) crime dataset, the suggested method makes use of explanatory power 

to comprehend AI decisions. 

This paper's main contributions can be summed up as follows:  

 The study presents DF-ConvLSTM -based VAE-GAN, a ground-breaking method for 

anomaly detection in video surveillance. 

 To demonstrate the effectiveness of the model, compare the performance of the suggested 

framework with the current approaches using the UCF-Crime dataset.  

 The model's performance was assessed using a variety of metrics, including area under the 

ROC curve, recall, accuracy, precision, and F1-score.  

 The experiment's outcomes showed that the suggested model performed better than the 

others.  

The structure of the paper is as follows: A review of recent developments in the field is given 

in Section 2, followed by an explanation of the proposed technique in Section 3, testing and 

comparison of the suggested method with alternatives in Section 4, and a conclusion detailing 

future research possibilities in Section 5. 

2. RELATED WORKS 

One important advancement that improves security and efficiency in cloud computing is 

anomaly detection through the use of video monitoring. This device continuously analyses 

camera feeds to spot odd or suspicious activity by utilizing cloud resources. Graphical 

representations of these anomaly categories are shown in Fig.1. 

Fig.1. Types of anomalies. 

According to a recent study by (Baur et al. ,2018) developed VAE-GAN, a method for anomaly 

detection that incorporates GANs for adversarial training. During testing, VAE-GAN utilizes 

pixel-level L1-distance to evaluate abnormality. (Sultani et al. ,2018) introduced a method 



128                 Sivalingan H 

employing deep multi-instance ranking, training on ambiguously labelled videos with video-

level labels to enhance anomaly detection by learning from both normal and anomalous events. 

(Schlegl et al. ,2019) used a similar methodology, concentrating on anomaly identification in 

optical coherence tomography images and replacing variational autoencoders with 

convolutional ones. Deep generative models can include reconstruction probability or 

likelihood scores as extra anomaly indicators in their detection processes, in addition to the 

standard pixel distance.  

(Meena et al. ,2019) highlighted the difficulties in anomaly detection, especially when 

employing video surveillance in traffic situations. Their suggested technique made use of 

spatiotemporal elements to identify a number of anomalies, such as cars driving on pedestrian 

walkways and on the wrong side of the road. This joint-based method integrated ConvLSTM 

with k-means clustering and combined reconstruction and clustering loss. Through the 

utilization of convolutional neural networks (CNN) with long short-term memory (LSTM) and 

previous frame data, the model effectively recognized and detected abnormalities in the traffic 

scene. The real-time implementation outperformed existing approaches in anomaly 

identification inside traffic scenes, achieving an exceptional accuracy rate of 93.02%. Testing 

and training phases were carried out to discern between normal and abnormal events. 

A unique hybrid autoencoder for anomaly detection in video data was suggested by (Zhou et 

al. ,2020). They discovered a drawback of conventional LSTM autoencoders: because of fixed 

dimension representations, they had trouble handling global context anomalies. They developed 

a hybrid autoencoder that extracted both temporal and spatial information in order to get around 

this restriction. In addition, they added shortcut connections to improve the decoder's 

functionality. Reconstruction error was the basis for anomaly identification, and this method 

performed better when managing global context anomalies. (Shi et al. ,2022), cloud computing 

is recognized as a major development in distributed computing that offers exciting business 

opportunities. Effective resource management and use are made possible by this centralization. 

Virtual machines (VMs) are the means via which all resources inside the IaaS architecture can 

be accessed. Dynamic resource allocation approaches are essential for maximizing resource 

utilization, cost savings, and computing efficiency. This is especially true when using cutting-

edge multi-objective optimization methodologies that guarantee stable resource distribution 

among several virtual machines.  

These traditional methods for surveillance video anomaly detection are often ineffective and 

time-consuming. This paper introduces a novel anomaly detection system for video surveillance 

leveraging DF-ConvLSTM-based VAE-GAN. Experimental results showcase its effectiveness 
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through impressive F1 Score, accuracy, recall, and precision metrics. Addressing existing 

research gaps, the system offers enhanced accuracy, real-time performance, and robustness 

across diverse surveillance videos. These findings represent a significant advancement in 

anomaly detection technology, emphasizing the critical role of reliable detection systems in 

achieving early outcomes. 

3. MATERIALS AND METHODS 

By utilizing the discriminator's discriminating skills and the encoder's mapping prowess, this 

novel anomaly detection technique trains the discriminator, generator, and encoder all at once. 

It allows the model to discover abnormalities quickly by cutting down on the amount of time 

required for anomaly detection. Furthermore, the combined optimization of these modules 

improves the model's ability to identify anomalies with a significant degree of accuracy.   

The suggested method's process is shown in Fig. 2, where videos taken with a security camera 

are sent to the cloud platform as input data at predetermined intervals. After being transformed 

into a timeseries format, this raw visual data is pre-processed and feature extracted. After that, 

the input is passed into a deep learning system, which uses a learning technique to model the 

behaviour of surveillance targets and evaluate abnormality based on anomaly scores. Five tasks 

have to be performed for prediction: i) Data collection ii) Pre-processing the data; iii) Feature 

selection; iv) Data partition and v) Detection methodology.  

Fig.2. Flow diagram of proposed work 
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3.1. Data Collection 

The University of Central Florida (UCF) dataset, introduced by Sultani, (Chen, and Shah 

,2018), is a comprehensive resource for tackling anomaly detection challenges shown in  

Table 1. This dataset encompasses 128 hours of video data, featuring 1,900 real-world street 

and indoor surveillance cameras. These cameras, utilizing various RGB technologies, capture 

diverse locations, providing a multi-scene perspective crucial for robust anomaly detection 

models. The dataset comprises 13 anomaly classes, covering a spectrum of activities. With 

1,610 training videos (800 normal, 810 abnormal) and 290 test videos (150 normal, 140 

deviant), the dataset is meticulously annotated with video-level and frame-level labels, 

respectively. Notably, the balanced representation of normal and abnormal samples in both 

training and testing sets enhances the dataset's utility for developing and evaluating anomaly 

detection algorithms. 

Table 1. UCF-Crime dataset 

Type of Anomaly No of videos Training 

set 

Test set 

Abuse 50 48 2 

Arrest 50 45 5 

Arson 50 41 9 

Assault 50 47 3 

Burglary 100 87 13 

Explosion 50 29 21 

Fighting 50 45 5 

Road Accidents 150 127 23 

Robbery 150 145 5 

Shooting 50 27 23 

Shoplifting 50 29 21 

Stealing 100 95 5 

Vandalism 50 45 5 

Normal Events 950 810 140 

3.2. Preprocessing 

Data cleaning in anomaly detection involves identifying and rectifying errors or inconsistencies 

in data to enhance the accuracy of anomaly detection models. This process includes handling 

missing values, removing duplicates, and correcting erroneous data entries. One key aspect is 

outlier detection and removal, which can be performed using statistical methods like Z-score. 

The Z-score measures how many standard deviations a data point is away from the mean of the 

dataset. For instance, using the Z-score method, anomalies can be identified if the absolute Z-

score value of a data point exceeds a threshold (usually 3): 



Kufa Journal of Engineering, Vol. 15, No. 4, October 2024               131 

 
 

Z − score =  
(𝑋−𝜇)

𝜎
       (1) 

Where X is the data point, 𝜇 is the mean, and 𝜎 is the standard deviation of the dataset. Points 

with Z-scores outside the range of [-3, 3] are considered outliers.  

Data normalization is crucial to ensure that features from different scales contribute equally to 

the detection process. Min-Max normalization, also known as feature scaling, it transforms 

features to a fixed range, typically [0, 1]. This process prevents features with larger numeric 

ranges from dominating those with smaller ranges, which is essential for many anomaly 

detection algorithms that rely on distance metrics or statistical thresholds. The formula for Min-

Max normalization is: 

𝑋′ =  
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
       (2) 

where X is the original value, Xmin and Xmax are the minimum and maximum values of the 

feature, and X′ is the normalized value. In anomaly detection, normalized data ensures that 

anomalies can be detected more effectively by eliminating the bias introduced by varying scales 

of features. This enhances the performance of algorithms as they rely on the relative distances 

between data points. Normalization makes it easier to identify outliers that deviate significantly 

from the normalized range. 

3.3. Feature selection 

Feature selection in anomaly detection using Double-Flow ConvLSTM involves identifying the 

most relevant features that contribute to detecting anomalies in spatiotemporal data. This model 

is particularly effective for handling structured data, such as videos or time series and it has two 

parallel ConvLSTM flows: one for the spatial domain and another for the temporal domain. 

This ensures that the ConvLSTM model focuses on the most critical aspects of the data, leading 

to more reliable and timely anomaly identification. The feature selection process can be 

formulated as: 

𝑋𝑡 = 𝐹(𝑊𝑓 ∗ 𝑋𝑡−1 + 𝑊𝑖 ∗ 𝐼𝑡 + 𝑏)  (3) 

Where Xt is the selected feature set at time t, F is the activation function, Wf and Wi are weight 

matrices for the forget and input gates, ∗ denotes convolution, Xt-1 is the feature set at the 

previous time step, It is the input at time t, b is the bias term. 

3.4. Data Partition 

Dataset is partitioned into training and testing dataset. First, the dataset is split into two parts: a 

larger portion for training and a smaller one for testing. The training dataset should primarily 
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contain normal data to allow the model to learn typical patterns without bias from anomalies. 

This helps the DF-ConvLSTM-VAE model, integrated with GAN, to effectively encode normal 

behaviour and generate realistic data. During testing, the model evaluates both normal and 

anomalous data. Anomalies are detected based on deviations from the learned normal patterns. 

Proper data partitioning ensures the model is trained on representative normal data, enhancing 

its ability to accurately detect anomalies during testing. 

3.5. Detection using DF-ConvLSTM-Based VAE-GAN  

The DF-ConvLSTM-based VAE-GAN method leverages both the encoder’s mapping abilities 

and the discriminator’s capabilities to achieve high-quality image synthesis and reconstruction. 

In this hybrid framework, the encoder, part of the Variational Autoencoder (VAE) structure, is 

responsible for mapping input data to a latent space. The ConvLSTM layers enhance this 

mapping by capturing temporal dependencies and spatial features, which is particularly 

beneficial for sequential data or dynamic textures in videos. The encoder transforms the input 

image into a compressed latent representation, capturing the essential features while reducing 

dimensionality. This latent code is then fed into the decoder, which attempts to reconstruct the 

original video, ensuring that the key characteristics of the input are preserved. Simultaneously, 

GAN component plays a crucial role. The generator, which is integrated with the VAE’s 

decoder, produces images from the latent code. The discriminator, a vital element of the GAN, 

evaluates these generated images against real images, providing feedback to improve the 

generator's outputs. The discriminator’s capabilities in distinguishing real from fake video drive 

the generator to produce more realistic and high-fidelity images over time. The two networks 

work in parallel form for efficient process in anomaly detection. 

Fig. 3. Architecture of proposed method 
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The proposed model's structure, which consists of the left and right flows, is shown in Fig. 3. 

Figure 3's left and right flows are indicated by blue and black arrows, respectively. The three 

components of the left flow model are the encoder (Conv), sample, and decoder (Deconv). The 

encoder comprises Conv and ConvLSTM modules. ConvLSTM captures temporal video 

patterns from spatial features, while Conv utilizes convolutional layers to extract spatial 

features from each frame. Sampling process is made up of two sample processes: N (µ, σ2) is 

used to sample data z of right flow, N (µ', σ'2) is used to sample data z' of the left flow. Lastly, 

the Deconv module serves as the decoder.  

𝐿𝑀𝑆𝐸(�̃�, 𝑥) = ||�̃� − 𝑥||2       (4) 

𝐿𝐾𝐿𝐷(µ, σ)  =  KL(N(µ, 𝜎2)||𝑁(0, 𝐼))     (5) 

Where 𝐿𝑀𝑆𝐸  is the reconstruction error (MSE, the mean squared error) between the inputs x 

and their reconstructions �̃�. µ, σ denotes mean and standard deviation. Kullback - Leibler 

divergence of left flow is represented by third term L'KLD and the right flow by the second term 

LKLD. Equation (6) represents the suggested model's objective function. 

L = LMSE (�̃�, x) + LKLD (µ, σ) + L'KLD(µ', σ' )         (6) 

Fig. 4. VAE – GAN  

The GAN component enhances the VAE by introducing a generator and a discriminator shown 

in Fig. 4. The generator synthesizes data samples from the learned latent space, aiming to trick 

the discriminator, which distinguishes between real (normal) and generated (potentially 

anomalous) data. Training and deploying the DF-ConvLSTM-based VAE-GAN model incurs 

significant computational costs and resource demands. Training involves intensive GPU 

(Graphics Processing Units) usage due to complex convolutional and LSTM layers, requiring 

substantial memory and processing power. Deployment requires ongoing GPU resources for 

real-time inference, potentially limited by hardware capabilities and operational costs, 
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necessitating efficient resource management and optimization strategies to balance 

performance and affordability in production environments. 

3.6. Proposed Method Algorithm 

3.7. Anomaly Detection  

Reconstruction error produced by VAE - GAN, discriminator's results are combined to form 

the anomaly score, which is derived from reconstruction error probability (REP) in this video 

anomaly detection model. The encoder uses test video clip's frame xt as input to estimate 

parameters of the latent gaussian variables µ, σ, and uses this information as the output. Then, 

using the reparameterization trick, z is sampled for L times in accordance with latent 

distribution N (µ, σ2), i.e. z(l) = 𝜇 + 𝜎 ∙∈(𝑙) , where ∈ ~ 𝑁(0, 𝐼) and l = 1, . . ., L. Generative 

network outputs the reconstructed frame �̃�𝑡
(𝑙)

 after receiving z (l) as input data. Probability of 

reconstruction error for an intensity value (I) of a pixel at location (u, v) in frame xt of video 

sequence using Equation (7).  

REP(u,v,t) = 
1

𝐿
 ∑ ||𝐼(𝑢,𝑣,𝑡)

(𝑙)
− 𝐼(𝑢,𝑣,𝑡)|| 2     𝐿

𝑙=1                                  (7) 

where intensity in reconstructed frame �̃�𝑡
(𝑙)

 is indicated by the symbol 𝐼(𝑢,𝑣,𝑡)
(𝑙)

. REP of frame xt 

is calculated from each frame by adding up all of the probability of pixel-wise errors: 

REP (t)=  ∑ 𝑅𝐸𝑃(𝑢,𝑣,𝑡)(𝑢,𝑣) . A video sequence's regularity scores, or s(t), are determined by 

Equation (8): 
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𝑠(𝑡) = 1 −  
𝑅𝐸𝑃(𝑡)− 𝑚𝑖𝑛𝑡𝑅𝐸𝑃(𝑡)

 𝑚𝑎𝑥𝑅𝐸𝑃(𝑡)
     (8) 

Additionally, to determine the number of abnormal events in a video, analyse the noisy local 

minima in the regularity score time series to detect these anomalies. Anomalies are most likely 

to be present in video frames if there are distinct local minima. In this stage, two local minima 

are considered to be a component of the same abnormal event if their separation is smaller than 

50 frames. For every point, the anomaly detector calculates an average anomaly score. 

Furthermore, anomalies exist in a subset of the test data, which facilitates the choice of an ideal 

threshold. This threshold allows it to find anomalies in the full test set by effectively identifying 

those in this subset and allowing it to generalize. 

4. EXPERIMENTAL RESULTS 

To assess the efficacy of the proposed DF-ConvLSTM -based VAE-GAN anomaly detection 

model, three baseline methods—VAE (Xu et al. ,2018), LSTM-VAE (Lin et al. ,2020), and 

LSTM-VAE-Attention (Pereira et al. ,2018)—were employed. Evaluation metrics include 

accuracy, precision, recall, and F1-score. The assessment utilizes the UCF-Crime dataset, 

providing a robust benchmark for comparing the model's performance against established 

methods in anomaly detection.  In task classification accuracy, "true positive" (TP) denotes 

correctly identified anomalous events, "true negative" (TN) represents accurately identified 

normal events, "false positive" (FP) signifies incorrectly identified anomalous events, and "false 

negative" (FN) indicates wrongly identified normal events. These metrics are crucial for 

evaluating classification performance. Fig. 5 illustrates the accuracy of the proposed method 

alongside existing systems like VAE, LSTM-VAE, and LSTM-VAE-Attention, providing a 

comparative analysis of their performance in anomaly detection.  

Accuracy =
TP+TN

TP+TN+FP+FN
                    (9) 

 

Fig.5. Comparison of accuracy with other models 
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Recall quantifies the percentage of successfully anticipated positive instances to all actual 

positive instances, whereas precision shows the ratio of correctly predicted positive cases to all 

projected positive cases. The F1 score offers a fair performance metric since it is a weighted 

harmonic mean of recall and precision. The thorough study based on these assessment measures 

in anomaly detection is shown in Fig. 6. The following is the calculating formula: 

Fig.6.  Comparison of evaluation metrics with other models  

Precision =
TP

TP+FP
     (10) 

Recall =  
TP

TP+FN
     (11) 

F1 score =  
2 × Precision × Recall

Precision + Recall
   (12) 

When evaluating various threshold settings, the Receiver Operating Characteristic (ROC) curve 

serves as a valuable tool. The ROC curve incorporates the false positive rate (FPR) and the true 

positive rate (TPR). The FPR measures the ratio of false-positive outcomes to the total negative 

samples in the test, while the TPR evaluates the classifier's ability to correctly identify positive 

instances among all positive samples in the test.  

 

Fig. 7. ROC Curve for proposed and baseline method 
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Fig. 7 displays the ROC curve, illustrating model performance, where the proposed method 

outperforms other models. It adeptly balances actual positive and false positive rates, making it 

suitable for anomaly detection in surveillance systems. The Area Under the Curve (AUC), a 

classification metric, is computed using ground truth and frame-level anomaly scores, providing 

insight into the model's effectiveness in distinguishing anomalies from normal instances. 

 

Fig.8. AUC results of different models 

Fig. 8 highlights that proposed method achieves the highest AUC value of 97.2% among the 

models, showcasing superior performance. A larger AUC signifies the model's enhanced ability 

to distinguish between anomalies and normal instances. Fig. 9 shows the relationship between 

the computational time t and M corresponding to its methods (in graph red colour denote 

proposed system). 

 

Fig. 9. The graph of computational time with method 

This sophisticated method is utilized in various real-world applications due to its capabilities in 

handling sequential data and generating high-quality videos and images. It is particularly 

effective in video prediction and generation, where it can predict future frames in a video 

sequence. This method is also used in weather forecasting, helping to predict future weather 

conditions based on historical data. This method also utilized in enhancing medical imaging 
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techniques. For instance, it improves the quality of MRI scans and CT images by generating 

high-resolution images from low-resolution inputs. The ConvLSTM component helps in 

understanding the temporal dependencies in sequential medical data, providing better 

diagnostic tools. Additionally, it finds applications in anomaly detection in surveillance 

systems, where it can identify unusual activities by learning normal patterns and detecting 

deviations. The method's versatility makes it valuable in diverse fields requiring advanced data 

modelling and prediction. 

5. CONCLUSION AND FUTURE WORK 

Traditional methods for surveillance video anomaly detection are often ineffective and time-

consuming. In this research, a novel approach is introduced using DF-Conv LSTM-based VAE-

GAN for precise and efficient detection. The primary objective is to monitor equipment 

operation through the analysis of collected data. The reconstruction process involves two 

phases: model training, where normal data patterns are learned, and anomaly detection, which 

calculates scores for each time series for precise identification. The proposed model 

simultaneously trains the encoder, generator, and discriminator, enabling swift and accurate 

anomaly detection without additional optimization. Experimental results demonstrate its 

superiority over other models, including LSTM-VAE-Attention, LSTM-VAE, and VAE, across 

various metrics, the current approach achieves.0.92 F-Measure, 96% Accuracy, 0.89% Recall, 

and 0.91% Precision. The proposed method achieves a noteworthy accuracy of 96%, surpassing 

other models by margins of 7%, 6%, and 4%. This research marks a substantial 9.8% 

improvement in overall classification accuracy, positioning it as a promising solution for real-

world anomaly detection.  

The experiments validate the proposed model's validity and competitiveness on several publicly 

available benchmark data sets when compared to other conventional methods. Because the 

suggested model's simple Gaussian model is unable to capture the complex structure of actual 

data. Recognizing this limitation, attempt to build a new model of the probability graph in the 

future to achieve this task by making the representation z obey a more sophisticated model. To 

refine the anomaly scoring module for scalability, integrate it seamlessly with existing systems 

by optimizing algorithms, ensuring compatibility, and leveraging robust APIs for efficient data 

processing and feedback mechanisms. Additionally, an adaptive threshold adjustment 

technique is proposed to enhance flexibility and applicability, reflecting the commitment to 

advancing the model's capabilities for broader practical use. 
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