

Build A Framework to Optimize M-Commerce Security
Dalia nabil Kmal , Sura mahmood Abdullah

Computer sciences department , University of technology

(Received 11 / 3 / 2009 , Accepted 25 / 5 / 2009)

Abstract:
Mobile commerce (m-commerce) is providing commercial services that are accessible by using mobile devices,

typically a mobile phone. The main advantages of such services are their high availability, independence of physical

location and time. Yet the move to create a wireless version of internet means a new set of problems. As with the

existing fixed internet, the biggest problem is security. Despite the fact that operators are announcing or rolling out

Wireless Applications Protocols (WAP), I-mode and java-based information, the platforms have gaping security holes.

This research aims to present some suggestions to improve m-commerce security and limit the m-commerce

drawbacks. These suggestions related to the following functional: End-to-End Transport Layer Security by Java 2

micro edition/ mobile information device profile (J2ME/MIDP). Using J2ME/MIDP to mobile communication

overcome the security challenges faced with WAP technology, but securing the XML messages transferred between the

mobile phone and the server would give high level of integrity for the data itself not for the physical connection.

Keywords : M-commerce, WAP, WTLS, MIDP, J2ME/MIDP.

1-Introduction:
There are several different ways of defining mobile

commerce. Some consider it to involve monetary value

where as the others term it to provide services. The more

general definition of m-commerce refers to the access to

the Internet via a mobile device, such as a cell phone or a

Personal Digital Assistance (PDA). M-commerce is

termed as using a mobile device for business transactions

on the Internet that involve the transfer of money.

Typical m-commerce transaction would look like the one

depicted in figure (1) where a mobile device is equipped

with a Wireless Application Protocol (WAP) that

connects to the Internet. The figure shows a cell phone

that accesses the nearest access point. The data from

WAP device is transferred to a WAP server, which then

transfers it to the Internet and finally reaches the

merchant [1, 2].

Figure (1): M-Commerce transaction

2- Security for Mobile Communications:
WAP Technology for Secure Mobile Communications

[3, 4]:

The Wireless Transport Layer Security (WTLS)

implements many features to insure secure data

transmissions thereby protecting users, network and

service operators as well as the functionality of the upper

layers of the WAP stack. The WTLS provides the

integrity, confidentially, authentication and detect and

reject data that is corrupt or otherwise unfit for

admittance into the application system. The WTLS

Record Protocol is a layered protocol that accepts raw

data from the upper layers to be transmitted and applies

the selected compression and encryption algorithms to

the data. Moreover, the Record Protocol takes care of the

data integrity and authentication. Received data is

decrypted, verified and decompressed and then handed to

the higher layers. The Record Protocol is divided into

four protocol clients. The application protocol is not

described here, since it is the interface for the upper

layers.

(a) The Change Cipher Spec Protocol - The Change

Cipher Spec is sent to peer either by the client or the

server. When the Change Cipher Spec message arrives,

the sender of the message sets the current write state to

the pending state and the receiver also sets the current

read state to the pending state. The Change Cipher Spec

message is sent during the handshake phase after the

security parameters have been agreed on.

(b) The Alert Protocol - The Record Protocol also

provides a content type of alert messages. There are three

types of alert messages: warning, critical, and fatal. Alert

messages are sent using the current secure state, i.e.

compressed and encrypted, or under null cipher spec, i.e.

without compression or encryption. Both fatal and

critical messages result in the termination of the secure

connection but the failed connection may be used to

establish a new secure connection if the message was

critical but not if it was fatal. Error handling in the

WTLS is based on the alert messages.

(C) The Handshake Protocol - All the security related

parameters are agreed on during the handshake. These

parameters include attributes such as used protocol

versions, used cryptographic algorithms, information on

the use of authentication and public key techniques to

generate a shared secret.

Java Technology for Secure Mobile Communications [5,

6]:

With Java 2 Platform, Micro Edition (J2ME) There are

two relevant JSRs (Java Specification Requests) in

relation to cryptography and secure m-commerce

according to the Java community process program:

Mobile Information Device Profile, MIDP and Security

and Trust Services API for J2ME. MIDP is a

specification of a security framework for Java

applications designed to run within the MIDP Java

environment. MIDP uses a Java Virtual Machine of

reduced complexity designed specifically for mobile

devices. MIDP specifies how a signed Java application

can be verified to belong to a domain defined by a root

certificate and an associated policy file. The policy file

specifies the capabilities of Java applications within that

domain.

3- The Proposed Framework:
J2ME provides several levels of security, such as class

loader, byte code verifier, and security manager. These

security levels protect client systems from unreliable

programs. The security advantages of J2ME over WAP

are end-to-end security, less use of network and content-

based encryption.

End-to-end security: J2ME supports end-to-end

encryption, authentication, and verification. In WAP, a

request from a wireless device is encrypted in WTLS and

this request needs to be decrypted as Transport Layer

Security (TLS) data. While this conversion takes place,

the data is unencrypted making it highly vulnerable.

J2ME does not need a gateway between the device and

the server. This allows J2ME to provide end-to-end

security. There is no conversion of data from WTLS to

TLS, thereby eliminating the chance of the data being

unencrypted at any point of time.

Less use of network: J2ME allows data to be processed

locally, unlike WAP that needs to connect to the network

for any kind of data processing. This feature in J2ME in

turn reduces the possibility of data loss or theft.

Content-based encryption: J2ME applications process

data before sending it across a network. A J2ME

application can set the security policy based on the

content.

The proposed suggestions:

The proposed suggestion aim to secure XML messaging

between a J2ME/MIDP wireless front end and a JSP

page back end. XML digital signature technology can

help to implement lightweight and flexible security

solutions for wireless Web services applications. XML

is becoming a major data exchange protocol in the world

of Web services. XML messages that drive Web services

often need to go through multiple intermediaries before

they reach destinations. So, it is important that we secure

the communication content from end to end. The best

way to do it is to ship an XML document and its security

information (such as signatures, digests, keys, and so on.)

altogether as a single document. Handling the XML

digital signature in MIDP applications IBM alpha Works

develops a Java package called XML Security Suite,

which supports the latest XML digital signature

specification.

As known, to handle XML digital signatures, the

wireless devices being used need to support the

following functions: Read and write data from/to an

XML document and Sign the message and verify the

signature. These functions require a cryptography API

that is not part of the current MIDP specification.

The bouncy castle crypto APIs is an open source,

lightweight cryptography package for the Java platform.

It supports a large number of cryptography algorithms

and provides an implementation for JCE. Because

Bouncy Castle is designed to be lightweight, it can run

from J2SE to J2ME (including MIDP) platforms. It is the

only complete cryptography package that runs on MIDP.

Together XML digital signature specification and the

usage of several different Bouncy Castle key generators,

encoding engines, digital signature singers, and a digest

engine. Section below will illustrate the signing

documents on the server side, encoding and transporting

documents in secure XML format, and verifying

documents on the client side.

EXAMPLE:
One of the most familiar example is the elliptic curve, an

elliptical curve DSA signature example In the

ECDSASigUtil class, you first define the elliptical curve

model you plan to use, as in code shown below:

private static BigInteger q = new

BigInteger("62771017353866807638357894232076664

16083908700390324961279");

private static BigInteger a = new

BigInteger("fffffffffffffffffffffffffffffffefffffffffffffffc",

16);

private static BigInteger b = new

BigInteger("64210519e59c80e70fa7e9ab72243049feb8

deecc146b9b1", 16);

private static BigInteger n = new

BigInteger("62771017353866807638357894231760590

13767194773182842284081");

private static byte [] G =

Hex.decode("03188da80eb03090f67cbf20eb43a18800f4

ff0afd82ff1012”)

The ECDSASigUtil.generateKeys() method generates

random key pairs. This step is normally done offline by a

central certificate authority.

// Get a secure random source.

SecureRandom sr = new SecureRandom();

 ECCurve.Fp curve = new ECCurve.Fp(q, a, b);

ECDomainParameters ECDomPara = new

ECDomainParameters(curve, curve.decodePoint(G), n

);

ECKeyGenerationParameters ECKeyGenPara =

 new ECKeyGenerationParameters(ECDomPara, sr);

ECKeyPairGenerator ECKeyPairGen = new

ECKeyPairGenerator();

ECKeyPairGen.init(ECKeyGenPara);

AsymmetricCipherKeyPair keyPair =

ECKeyPairGen.generateKeyPair();

privKey = (ECPrivateKeyParameters)

keyPair.getPrivate();

pubKey = (ECPublicKeyParameters)

keyPair.getPublic();

The public key is characterized by a parameter Q, and it

is retrieved by the pubKey . getQ() method. To avoid

confusion with the model parameter q, you use QQ in the

method and XML element names for capital Q. code

below show the methods in the ECDSAUtil class. These

methods retrieve the model and key parameters, which

are necessary to reconstruct the public key object.

// public key specific field

public static String getQQ() throws Exception { return

(new

String(Base64.encode(pubKey.getQ().getEncoded())));}

// Key parameter fields. Could also be retrieved from

pubKey.

public static String getQ() throws Exception { return

(new String(Base64.encode(q.toByteArray())));}

public static String getA() throws Exception { return

(new String(Base64.encode(a.toByteArray())));}

public static String getB() throws Exception { return

(new String(Base64.encode(b.toByteArray())));}

public static String getN() throws Exception { return

(new String(Base64.encode(n.toByteArray())));}

public static String getG() throws Exception { return

(new String(Base64.encode(G)));}

Using the generated private key, the utility class

ECDSASigUtil can get a two-part DSA signature, R and

S, from a digest:

static public String [] getSignature (String digest)

throws Exception { // Sign

 ECDSASigner signer = new ECDSASigner();

 signer.init(true, privKey);

 BigInteger [] sigArray = signer.generateSignature(

digest.getBytes());

 String [] result = new String [2];

 // Signature R

 result[0] = new

String(Base64.encode(sigArray[0].toByteArray()));

 // Signature S

 result[1] = new

String(Base64.encode(sigArray[1].toByteArray()));

 return result;

}

The server encodes the digest, signature, and key

parameters into ASCII text form and embeds the text in

XML digital signature format. As in the retrieval method

name, the public key parameter Q is noted as QQ to

differentiate it from the key parameter q, in the

corresponding XML element, as shown below:

<SignedMesg>

 <mesg>Hello World</mesg>

 <Signature>

 <SignedInfo>

 <SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-

sha1" />

<DigestValue>Ck1VqNd45QIvq3AZd8XYQLvEhtA=</

DigestValue>

 </SignedInfo>

 <SignatureValue>

 <R>NK/EIL2lrbFFCThnEuYlUWzh6IEfMsts</R>

<S>AMeJDecKWrQO6Eeehl3het+FlDDL4IedCA==</

S>

 </SignatureValue>

 <KeyInfo>

 <KeyValue>

 <ECKeyValue>

<QQ>AwCiF5uG+DII/x1XTq84fLm4eGN2fED1PYc=<

/QQ>

 <Q>AP////////////////////7//////////w==</Q>

 <A>AP////////////////////7//////////A==

ZCEFGeWcgOcPp+mrciQwSf643uzBRrmx

 <N>AP///////////////5ne+DYUa8mxtNIoMQ==</N>

<G>AxiNqA6wMJD2fL8g60OhiAD0/wr9gv8QEg==</

G>

 </ECKeyValue>

 </KeyValue>

 </KeyInfo>

 </Signature>

</SignedMesg>

The verification MIDP application parses the digest, key

parameters, and signature out of the XML document,

reconstructs the public key, and uses the method shown

below to validate the signature:

static public boolean verify (String digest,

 String sig_r, String sig_s,

 String key_q, String key_a,

 String key_b, String key_n,

 String key_G, String key_Q) {

 BigInteger q = new BigInteger(Base64.decode(key_q)

);

 BigInteger a = new BigInteger(Base64.decode(key_a)

);

 BigInteger b = new BigInteger(Base64.decode(key_b)

);

 BigInteger n = new BigInteger(Base64.decode(key_n)

);

 byte [] G = Base64.decode(key_G);

 byte [] Q = Base64.decode(key_Q);

 BigInteger r = new BigInteger(Base64.decode(sig_r));

 BigInteger s = new BigInteger(Base64.decode(sig_s));

 ECCurve.Fp curve = new ECCurve.Fp(q, a, b);

 ECDomainParameters ECDomPara = new

ECDomainParameters(

curve, curve.decodePoint(G), n);

 ECPublicKeyParameters pubKey = new

ECPublicKeyParameters(

 curve.decodePoint(Q), ECDomPara);

 // Verify

 ECDSASigner signer = new ECDSASigner();

 signer.init(false, pubKey);

 boolean result = signer.verifySignature(

digest.getBytes(), r, s);

 return result;

}

4. Experimental wok:
J2ME makes a new generation of wireless application,

such as multi-user internet games, mobile commerce, and

enterprise client/server applications. Possible on cell

phones an two way pagers, MIDP, connected limited

device configuration (CLDC) and K virtual machine

(KVM) form the foundation for developing wireless java

applications.

So, the architecture of j2me for the work presented in this

research would be as in figure (5) below:

Figure (5) system architecture .

The architecture can be categorized into five layers.

From the bottom up, they are as follows:

 MID hardware layer: refers to cell phones (for

example, motorola’s iDEN3000) or two-way

pagers (for example, RIM blackberry 950).

 Native system software layer: contain the native

operating system and libraries provided by the

device manufacture.

 KVM layer: provides the runtime environment

for java applications.

 CLDC layer: provides core java API for

wireless applications.

 MIDP layer: provides the GUI libraries,

persistent storage libraries, networking libraries,

and timer classes.

Since wireless devices have meet certain criteria to be

able to support J2ME. To run KVM efficiently with

CLDC libraries, devices must have at least:

 160 KB to 512KB of total memory budget

available for the java platform.

 A 16 bit or 32 bit processor with 25MHz speed.

 Low power consumption, often operating with

battery power.

 Connectivity to some kind of network, often

with a wireless, intermittent connection and

with limited (often 9600bps) bandwidth.

 128 KB of non-volatile memory available for

the java virtual machine and CLDC libraries.

 32KB of volatile memory available for the java

runtime and object memory.

The MIDP impose the following requirements on

hardware:

Display:

 screen-size: 96x54.

 Display depth: 1 bit.

 Pixel shape (aspect ratio):approximately 1:1

Input:

 One or more of the following user input

mechanisms: one handed keyboard, two handed

keyboard, or touch screen.

Memory:

 128 KB of non-volatile memory for MIDP

components.

 8 KB of non-volatile memory for application-

created persistent data.

 32 KB of volatile memory for java runtime (for

example the java heap).

Networking:

 two-way, wireless, possibility intermittent, with

limited bandwidth.

4- Conclusions:

1. Always there is no perfect secure system,

especially in m-commerce since the mobile

communication system and all its applications

still in the childhood level. But also the mobile

wireless hackers and crackers still in the same

level.

2. Using J2ME/MIDP to mobile communication

overcome the security challenges faced with

WAP technology, since there is no decryption

and encryption performed in the WAP proxy

server.

3. With java technology the data formatted and

transmitted with XML language, so the XML

messages transferred between the mobile phone

and the server over the WAP. By using the

XML digital signature with java technology this

provide high level of integrity for the data itself

not for the physical connection, in other world it

will provide end-to-end security.

MIDP device-specific

Application Application

 Device-

 Specific native

 Classes application

CLDC classes

KVM

Native system software

MID hardware

MIDP classes

References:
1. Phaneendra. D & M.Pradeep Kumar,

“WELCOME TO THE UNCONNECTED

WORLD (WAP & MOBILE

COMPUTING)”, 2003.

2. WAP Forum "WAP wireless

communication" , www.wapforum.com,

2005.

3. Jormalainen, S., “Security in the WTLS”,

2001 http://www.tml.hut.fi/Opinnot/Tik-

110.501/1999/ papers / wtls/wtls.html.

4. WAP Forum, “Wireless Transport Layer

Security Specification”, 2000,

http://www.wapforum.org/.

5. Jeff Nisewanger, Sean Mullan, and

Rosanna Lee, “Java™ 2 Platform,

Standard Edition (J2SE™) Security, and

New Features From Cryptography to XML

Security”, Sun Microsystems, Inc., 2004.

6. Dr. Silvano Maffeis, “Mobile Services for

Java-enable on 3G Wireless Networks”,

http://www.softwired-inc.com/, 2005.

 النقالة التجارة أمن لتحسين إطار بناء

 عبدالله محمود سرى باحث، كمال نبيل داليا
 قسم علوم الحاسبات، الجامعة التكنولوجية

 (9002/ 2/ 92، تاريخ القبول: 9002/ 3/ 11) تاريخ الاستلام:

 الملخص
و النقالااة التجااار اسااتقلالية الخاا مات لةاا الرئيسااية الفوائاا ماا . النقالااة الأ وات بأسااتعمال الوصااول سااةلة تكااو التاا و التجاريااة الخاا مات ماا بمجموعااة تااود
 و. الثابتااة الانترنياات ماا الحااال هااو كمااا. المشاااكل ماا ج ياا مجموعااة تعناا التاا و الانترنياات لاساالك نسااخة لخلاا التحاار ماا بااالر م. الوقاات، المواقاا
 . الكبرى المشاكل م يع الام
 -: التالية بالوظيفة تعلقت المقترحات ه ، النقالة التجار عوائ تح ي و لتحسي الاقتراحات بعض لتق يم البحث ه ا ية ف
 يضاام لكاا . الاماا تحاا يات علاا التغلاا يسااتطي الاا و النقااال الاتصااال فاا (J2ME/ MIDP) بأسااتخ ام. ال قيقااة Java قباال ماا المتلاصاا الارسااال طبقااة
 . البيانات لسلامة عال مستوى ليعط الخا م و النقال الةاتف بي حدولت الت XML رسائل

http://www.wapforum.com/
http://www.tml.hut.fi/Opinnot/Tik-110.501/
http://www.tml.hut.fi/Opinnot/Tik-110.501/
http://www.wapforum.org/
http://www.softwired-inc.com/

