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Abstract 
Let R be a commutative ring with identity and all R-modules are unitary. A ring R is called q-ring if every ideal of R is 

quasi-injective . In this work, we introduce the concept of Q-module as a generalization for the concept of q-ring. An R-

module M is said to be a Q-module if every R-submodule of M is quasi-injective. We characterize such modules and 

study their  properties . Relationships between Q-modules and other classes of modules are given. Q-modules are 

studied over artinian ring. Endomorphisms rings of Q-modules are examined. 
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1-Basic properties of  Q-modules. 
Jain, Mohamed and Singh in [9] called a ring R is q-ring 

if every right ideal of R is quasi-injective. In this section, 

we generalize the concept of q-ring to modules. Also we 

introduce some properties of  Q-modules and give some 

characterizations of Q-modules. J(R) will denote the 

Jacodson radical of R. For an R-module M, ann(M)={r  

R : rM=0}, and End(M) is the endomorphisms ring of M. 

   Before we give the definition of Q-module , we must 

recall the concept of quasi-injective module. An R-

module M is called quasi-injective if for each 

monomorphism f: N  M, where N is an R-submodule 

of M, and homomorphism g: N  M, there is a 

homomorphism h: M M such that h  f=g[6].   

Definition 1.1: An R-module M is called a Q-module if 

every R-submodule of M is quasi-injective. 

Examples and remarks 1.2: 
1-Zn is a Q-module over Z for each positive integer n 2. 

2-Everey semi-simple R-module is a Q-module. 

3-Z

p
  is a Q-module over Z . 

4-Q(the set of all rational numbers ) as a Z-module is not 

a Q-module, but it is a qusi-injective Z-module.  

5- Every submodule of Q-module is a Q-module. 

6-The inverse image of Q-module is not necessary a Q-

module. In fact, Z2  is a Q-module over Z and Z  is not a 

Q-module over Z. 

7- The direct sum of Q-modules need not be a Q-module 

as the following example shows: Z2    
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and Z4  are Q-modules over Z. Since Z2 Z4 is not quasi 

injective, Z2 Z4 is not a Q-  

module over Z. Furthermore, Z4  is a Q-module over Z, 

but Z4 Z4 is not a Q-module over Z. 

Before we give the following proposition we need the 

following lemma which appeared in [12,P.244,Ex. 27 A]. 

Lemma 1.3: An R-module M is quasi-injective if and 

only if M is a quasi- injective R/I-module for any ideal I

 ann(M). 

The proof of the following proposition follows from 

Lemma 1.3. 

Proposition 1.4: M is a Q-module over R if and only if  

M is a Q-module over R/I for any ideal I of R contained 

in ann(M). 

Recall that an R-submodule N of M is called fully 

invariant if f(N) N, for all f End(M) [21].The 

following lemma shows that the fully invariant 

submodule inherits the quasi-injectivity of the module. 

Lemma 1.5: Every fully invariant R-submodule of a 

quasi –injective R-module is quasi-injective. 

 An R-submodule N of M is called essential if N L 0 

for every non-zero R-submodule L of M[11]. 

Theorem 1.6: Let M be an R-module .The following 

statements are equivalent: 

1-M is a Q-module. 

2-M is quasi-injective and every essential R-submodule 

of M is fully invariant in M. 

3-Every essential R-submodule of M is quasi-injective . 

Proof: (1) (2).Suppose that M is a Q-module. Thus M 

is quasi-injective. Let N be an essential R-submodule of 

M . Hence E(N)=E(M)[18,Prop.2.22]. Because M is a Q-

module ,  N is quasi-injective . It follows that N is a fully 

invariant R-submodule of E(N)=E(M)[10, Th.6.74]. 

Hence N is a fully invariant R-submodule of M.  

(2)  (3).It follows from Lemma 1.5. 

(3)  (1). Since M is an essential R-submodule of M , 

so M is quasi-injective. Let N be a proper non-zero  R-

submodule of M. Thus N C is an essential R-

submodule of M, where C is the relative intersection 

complement of  N[11]. Therefore, N C is a quasi-

injective R-submodule of M. By [12, Prop.6.73], N is 

quasi-injective . ▪ 

A nonzero R-submodule N of  M is called quasi-

invertible if Hom(M/N,M)=0[ 13 ]. 

Theorem 1.7: Let M be an R-module such that 

J(End(M))=0. Then M is a Q-module if and if only if 

every quasi-invertible R-submodule of M is quasi-

injective. 

Proof: The only if part is trivial. Suppose that  every 

quasi-invertible R-submodule of  M is quasi-injective. It 

is clear that M is a quasi-invertible R-submodule of M, 

thus M is quasi-injective. Let N be a proper non-zero R-

submodule of M. Then N C is an essential R-

submodule of M , where C is the relative intersection 

complement of N[11]. By[13 ,Th.3.8,Ch.1], N C is 

quasi-invertible and by hypothesis, N C is quasi-
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injective. Whence N is quasi-injective[12,Prop.6.73]. 

Therefore M is a Q-module. ▪ 

Proposition 1.8: Let M be an R-module such that every 

non-zero R-submodule  of M contains a copy of  R. Then 

M is a Q-module if and only if every R-submodule of M 

is injective. 

Proof: Suppose that M is a Q-module and N is an R-

submodule of M . Then N is quasi-injective.Let I be an 

ideal of R and let f: I N be an R-homomorphism. 

Because N is quasi-injective , there exists h: N N 

such that h I =f, that is , h is an extension of f. Since R is 

contained in N ,by Baer’s criterion[ 12 ], N is injective. 

The converse is clear. ▪ 

Corollary 1.9: Let R be an integral domain and M is a 

torsion free R-module . Then M is a Q-module if and 

only if every R-submodule of M is injective. 

Recall that an R-module M is said to be divisible if 

M=rM for every r of R which is not a zero-divisor [12]. It 

is well-known that if R is a principal ideal domain and M 

is an R-module , then M is injective if and only if M is 

divisible[18, Th.2.8].  

Proposition 1.10: Let R be a principal ideal domain and 

M is a torsion free R-module. Then the following 

statements are equivalent: 

1-M is a Q-module. 

2-Every R-submodule is injective. 

3-Every  R-submodule is divisible. 

An R-module M is called uniform if every non-zero R-

submodule of M is essential[8]. In Ex. and Remark 

1.2(7), we have seen that a direct sum of Q-modules need 

not be a Q-module . In the following two propositions, 

we discuss conditions under them a direct sum of Q-

modules is a Q-module.  

 Proposition 1.11: Let M1 and M2 be uniform R-modules 

such that Hom(Mi,Mj)=0 for all distinct i, j , 1  i, j  2. 

Then M=M1M2 is a Q-module if and only if M1 and 

M2 are Q-modules and M  is quasi-injective. 

 

Proof: Suppose that M1 and M2 are Q-modules and M is 

quasi-injective . Let N be an R-submodule of M and let       

f:A N be a homomorphism, where A is an R-

submodule of N. f can be extended to an endomorphism 

g of M .Then N = 1 (N)  2 (N) , where i :M 

Mi  is the projection homomorphism for each i=1,2. 

Since Mi is a Q-module for each i=1,2, i (N) is a quasi-

injective R-submodule of  Mi. Because Mi is uniform for 

each i=1,2, thus i (N) is  an essential R-submodule of 

Mi. Hence i (N) is an essential quasi-injective R-

submodule of Mi and consequently i (N) is a fully 

invariant R-submodule of E( i (N))=E(Mi )[6,Corollary 

19.3]  [18, Prop. 2.22  ].It follows that i (N) is a fully 

invariant R-submodule of Mi. From the assumption, 

Hom( Mi ,Mj )=0 for all distinct i,j,1  i,j  2, we get 

End(M)=End(M1)  End(M2)[11, p.87] and hence 

g(N)=h( 1(N))  k( 2(N))   1(N)   2(N) N, 

where h End(M1) and kEnd(M2). From above 

argument, we have g(N) N and g A =f which proves 

that N is quasi-injective. Therefore M is a Q-module. The 

other direction follows from Ex.and Remark 1.2(5). ▪ 

Proposition 1.12: Let M1 and M2 be R-submodules such 

that Hom(Mi, Mj)=0 for all distinct i, j,1  i, j  2, and 

every direct summand of E(Mi) is fully invariant for each 

i=1,2. Then M= M1M2 is a Q-module if and only if 

M1 and M2 are Q-modules and M is quasi-injective. 

Proof: The only if part follows from Ex.and Remark 

1.2(5). To prove if part , let N be an R-submodule of M 

and f:A N be a homomorphism , where A is an R-

submodule of N. Then N= 1 (N)  2 (N) , where i

:M Mi  is the projection homomorphism for each 

i=1,2 . Since Mi is a Q-module for each i=1,2, thus i  

(N) is quasi-injective . It follows that  i  (N) is  a fully 

invariant  R-submodule of E( i  (N))[6,Corollary 19.3 ]. 

Because  E( i (N)) is a direct summand of E(Mi)[18, 

Prop.2.22] and by hypothesis, E( i (N)) is a fully 

invariant  R-submodule of E(Mi), therefore i (N) is a 

fully invariant R-submodule of E(Mi) which means that 

i (N) is a fully invariant R-submodule of Mi. Now, f 

can be extended to an endomorphism g of M. Since Hom 

(Mi,Mj) = 0 for all distinct i,j,1 i,j 2, so End (M)= End 

(M1)   End (M2) [11,p.87]. Thus g(N) = h ( 1(N)) 

k ( 2(N))   1(N)   2(N) N, where h End 

(M1) and kEnd (M2). Consequently, we have g(N) 

N and g A =f which implies that N is quasi-injective and 

hence  M is a Q-module. ▪  

2- Q-modules and quasi-injective modules. 
As we have mentioned in section one that every Q-

module is quasi-injective, the converse is not true in 

general (Ex. and Remak1.2(4)). In this section, we give 

sufficient conditions on a quasi-injective module to be a 

Q-module. 

 Recall that an R-module M is called duo if every R-

submodule of M is fully invariant [21]. 

Proposition 2.1: If M is a quasi-injective duo R-module , 

then M is a Q-module . 

Proof: It follows from Lemma 1.5. ▪ 

Corollary 2.2: If M is duo R-module , then M is a Q-

module if and only if M is qasi-injective . 

An R-submodule N of M is said to be satisfy Baer 

criterion if for each R-homomorphism f: NM, there 

exist r  R such that f(x)=rx for all x  N, and an R-

module M is said to be satisfy Baer criterion if every R-

submodule of M satisfies Baer criterion[1]. It is easily 

seen that every R-submodule satisfying Baer criterion is 

fully invariant. 

Corollary 2.3: Let M be a Baer criterion R-module. 

Then M is a Q-module if and only if M is quasi-injective. 

Recall that an R-submodule  N of  M is annihilator if 

N=ann M (I) for some ideal I of R[1]. 
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Corollary 2.4: Let M be an R-module in which all of its 

R-submodules are annihilator . Then M is a Q-module if 

and only if M is quasi-injective. 

Proof: The only if part is easy . Suppose that M is  quasi-

injective and N is an R-submodule of M, and hence 

N=annM(I) for some ideal I of  R. Let f  End(M).Thus 

0=f(IN)=If(N) which means that f(N)  annM(I)=N. It 

follows that N is a fully invariant  R-submodule of M. 

.By Corollary 2.2, M is a Q-module. ▪ 

It is easily seen that M is a duo R-module if and only if 

every cyclic R-submodule of M is fully invariant in M 

.Thus from Corollary 2.2 ,we have the following result . 

Corollary 2.5: Let M be an R-module such that every 

cyclic R-submodule of M is fully invariant in M. Then M 

is a Q-module if and only if  M is quasi-injective. 

The converse of  Prop.2.1 is not true . The following 

example indicate that. 

Example 2.6: M=Z3 Z3 is a Q-module over Z , but M 

is not duo. In fact , N={(x, x): x Z3} is not a fully 

invariant Z-submodule of M. 

The following proposition give another condition on a 

quasi-injective R-module to be a Q-module. 

Proposition 2.7: Let M be an R-module in which each 

R-submodule is of the form f(K) ,where K is a fully 

invariant R-submodule of M and f is an idempotent 

endomorphism of M. Then M is a Q-module if and only 

if M is quasi-injective. 

Proof: Suppose that M is quasi-injective . Let N be an R-

submodule of M. There exists a fully invariant R-

submodule K of M and an idempotent endomorphism f 

of M such that N=f(K). By Lemma 1.5,K is quasi-

injective, and M=f(M)   (I-f)(M), where I: MM is 

the identity  endomorphism of M. Since K is fully 

invariant, thus K=f(K) (I-f)(K). Because K is quasi-

injective, N=f(K) is quasi-injective [12,Prop.6.73]. 

Therefore M is a Q-module. The converse is direct. ▪ 

Under certain condition on the elements of quasi-

injective R-module, we get another characterization of Q-

module. 

Proposition 2.8: Let M be an R-module such that for all 

x and y in M, y Rx  implies ann(x)  ann(y). Then M 

is a Q-module if and only if M is quasi-injective. 

Proof: The only if part is direct. Suppose that M is not a 

Q-module , so by Corollary 2.5, there is a cyclic R-

submodule  Rx of M which is not fully invariant in M, 

that is there exists f End(M) such that f(Rx) Rx. 

This means that there exists y  Rx such that f(y) Rx 

.Let y=rx, where rR. Thus ann(x)  ann(y) 
ann(f(y)). This contradicts our hypothesis. Therefore 

every cyclic R-submodule of M must be fully invariant in 

M. By Corollary 2.5, M is a Q-module. ▪ 

Recall that an R-submodule N of M is said to be closed 

in M if and only if N has no proper essential extension in 

M [8]. It is known that if M is a quasi-injective R-module 

and N is a closed R-submodule of M , then N is quasi-

injective [8]. From this fact , we conclude the following 

result . 

Proposition 2.9: Let M be an R-module such that every 

R-submodule of M is closed . Then M is a Q-module if 

and only if M is quasi-injective. 

3-Q-modules and cohopfian (hopfian) modules. 

Recall that An R-module is called cohopfian(hopfian) if 

every injective (surjective) endomorphism is isomorphism 

[3]. 

Proposition 3.1: Let  M be a cohopfian  Q-module over 

R and let N be an R-submodule of M. Then E(N) and N 

are  cohopfian. 

Proof: Because M is a cohopfian  Q-module ,E(M) is 

cohopfian [3, Th.8]. Let N be an R-submodule of M.By 

[18,Prop.2.22], E(N) is a direct summand of E(M). But 

E(M) is cohopfian, so E(N) is cohopfian [3,Th.6]. Since 

N is quasi-injective and E(N) is cohopfian, so N is 

cohopfian. ▪ 

Corollary 3.2: Let M be an R-module. If M is a Q-

module and MP is cohopfian for each prime ideal P of R., 

then every R-submodule of M is cohopfian. 

Proof: By [14, Prop. 2.3], M is a cohopfian  Q-module 

and hence every R-submodule of M is cohopfian 

(Prop.3.1). ▪ 

Corollary 3.3: Let M be an R-module. If M is a Q-

module and MP is artinian for each prime ideal P, then 

every R-submodule of M is cohopfian. 

Proof: By [14,Prop.2.4], MP is cohopfian and by 

Corollary 3.2 every R-submodule  of M is cohopfian. ▪ 

Proposition 3.4: Let M be a Q-module over R and let N 

be an R-submodule of M . Then N is cohopfian if and 

only if E(N) is cohopfian. 

Proof: It follows from[3, Th.8]. ▪ 

An R-module M is said to be perfect if it satisfies the 

descending chain condition on cyclic R-submodule. 

Equivalently, an R-module M is perfect if M satisfies the 

descending chain condition on a finitely generated R-

submodule[6]. 

Proposition 3.5: Let M be a finitely generated perfect R-

module .   If M is a Q-module , then every R-submodule 

of M is cohopfian. 

Proof: Let f:M M be a monomorphism. Therefore M 

 f(M)  f
2

(M)  f
3

(M)  …is descending chain of 

finitely generated R-submodules of M. Because M is 

perfect , so )()( 1 MfMf nn   for some n Z. But f 

is monomorphism, hence M=f(M) which means that f is 

epimorphism. Whence M is cohopfian. By Prop. 3.1, 

every R-submodule of M is cohopfian. ▪ 

Proposition 3.6: Let M be a non zero R-module and let 

M be a Q-module . If N is a non-zero R-submodule of M, 

then N is not   cohophian  if and only if for any positive 

integer n, )( i

n

ii
n CNN


  , where nNN   and 

0iC  for all i=1,2,…,n. 

Proof: It follows from [3, Prop.1]. ▪ 

Corollary 3.7: Let M be an R-module .If M is a Q-

module and N is a hopfian  R-submodule of M , then N is  

cohopfian. 

Proof:  To prove that N is cohopfian , let   f: N  N be 

a monomorphism and f(N)  N. Consequently, f(N) is a 

proper R-submodule of N .Thus 
1f : f(N) N is  

isomorphism. Since M is a Q-module, so N is quasi-

injective .Whence there exists an extension 

homomorphism g: N  N such that g )(Nf =
1f . But 

1f  is an isomorphism, so N=I (f(N))  kerg = f (N) 

289 
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  kerg [11,Corollary 3.4.10].Because  g
)(Nf

=
1f  , g 

is onto and kerg 0.It follows that g is not one-to-one 

and hence N is not hopfian, a contradiction. Therefore N 

is cohopfian. ▪ 

It is known that every finitely generated module is 

hopfian . From this fact, we have the following result. 

Corollary 3.8: Every finitely generated R-submodule of 

Q-module is cohopfian. 

Recall that an R-module M has finite dimensional(Goldie 

dimension) provided that M contains no infinite 

independent families of non-zero R-submodule [8]. 

Corollary 3.9: Let M be an R-module and let N be an R-

submodule  of M. If M is a Q-module and N has finite 

dimensional then N is cohopfian. 

Proof: Suppose that N is not cohopfian, then by 

Prop.3.6,for any positive integer n, )( i

n

ii
n CNN


  

, where nNN   and 0iC  for all i=1,2,…,n. This 

implies that N contains infinite independent families of 

non-zero R-submodule , a contradiction.  Therefore N is 

cohopfian.  

Recall that an R-Module M is cancellation (or direct sum 

cancellation) whenever M   H M   K, implies  H

 K. Equivalently if M  H = B  K with M B 

implies H K for any R-modules K,H[3]. 

Proposition 3.10: Let M be an R-module . If M is a Q-

module and N is an R-submodule of M, then N is 

cancellation if and only if N is cohopfian.  

Proof: It follows from [3,Prop.5] . ▪ 

Recall that an R-module M  is directly finite provided 

that M is not isomorphic to any proper direct summand 

of itself[8]. 

Proposition 3.11: Let M be a non-zero R-module . If M 

is a Q-module and N is a non-zero R-submodule of M , 

then N is directly finite if and if N is cohopfian. 

Proof: Suppose that N is directly finite and N is not 

cohopfian, By Prop.3.6, for any positive integer n,

)( i

n

ii
n CNN


  , where nNN   and 0iC  for 

all i=1,2,…,n. This contradicts that N is directly finite. 

Hence N is cohopfian. 

Conversely; suppose that N is cohopfian and N is not 

directly finite , that is, N=N1 C with N  N1 ,C  0. 

Since N   N1 , there exists an isomorphism f: N  N1. 

Let j: N1  N1 C be the injection homomorphism. j is  

monomorphism, but it is  not epimorphism. Thus             

j  f :NN is monomorphism, but it is not 

epimorphism. Therefore N is not cohopfian. This 

contradicts our hypothesis. Consequently, N is directly 

finite. ▪ 

4- Q-modules over artinian rings. 
Recall that an R-module M is finendo if M is finitely 

generated over End(M) [6]. 

The following proposition gives a necessary condition 

for Modules over artinian ring to be Q-modules. 

Proposition 4.1: If R is an artinian ring , then every R-

submodule of Q-module  is finendo. 

Proof: It is follows from [6, Th.19.16A]. ▪ 

Proposition 4.2: If M is an R-module such that every R-

submodule of M is injective modulo annihilator, then M 

is a Q-module . 

Proof: Let N be an R-module of M , thus N is  an 

injective R/ann(M)-submodule of M . This implies that N 

is a quasi-injective R/ann(M)-submodule of M, and 

hence  N is quasi- injective R-submodule of M( Lemma 

1.3) . Therefore M is a Q-module . ▪ 

The converse of Prop. 4.2 is not true in general as the 

following example shows : Let M= p
p

Z  be a Z-module 

, where p is a prime number . M is a semi-simple Z-

module and hence a Q-module . But M is not injective 

over Z/ann(M)  Z. 

In the following proposition , we give a condition under 

which the converse of Prop. 4.2  is true. 

Proposition 4.3:Let R be an artinian ring and M is an R-

module . Then M is a Q-module if and only if every R-

submodule  of M is injective modulo annihilator. 

Proof: Suppose that M is a Q-module . Let N be an R-

submodule  of M . Since M is a Q-module over artinian 

ring , then N is a finendo quasi-injective R-submodule of 

M (Prop. 4.1). Therefore N is injective modulo 

annihilator [6,Th.19.14A].The converse follows from 

Prop. 4.2. ▪ 

An R-submodule N of M is said to  satisfy the double 

annihilator condition with respect to M if N=annM (annR 

(N)) [6].  

Theorem 4.4 : Let R be an artinian ring and let M be an 

R-module. Then the following statements are equivalent: 

1-M is a Q-module  

2-M is quasi-injective and every R-submodule of M 

satisfies the double annihilator condition. 

3-M is quasi-injective and duo. 

Proof: (1) (2). Suppose that M is a Q-module , so M 

is quasi- injective . Let N be an R-submodule of M .By 

Prop. 4.1, N is finendo. Since M is quasi-injective and N 

is finendo , then N satisfies double annihilator condition 

[6,Th.19.10A].  

(2)  (3). Let N be an R-submodule of M. Thus N 

satisfies the double annihilator condition. Let f  End 

(M). 0 =f (annR (N)N) = annR (N)f (N) and hence f (N)

 annM (annR (N))=N which proves that N is fully 

invariant. 

(3)  (1).By Corollary 2.2. ▪ 

Recall that an R-module M is bounded if and only if 

ann(M)=ann(x) for some x in M [6]. 

Proposition 4.5:Let R be an artinian ring and let M be a 

Q-module over R. Then an R-submodule N of M is 

bounded if and only if  N is cyclic. 

Proof: Suppose that N is bounded, that is ,ann (N) = ann 

(x) for some x in N. But M is a Q-module over artinian 

ring , so every R-submodule of M satisfies the double 

annihilator condition (Th. 4.4). Therefore, N= annM (annR 

(N)) = annM (annR (x))=Rx.. The converse is trivial. ▪ 

5- Q-modules and other modules. 
Recall that an R-module M is called multiplication if 

every R-submodule of M is of the form IM for some 

ideal I of R[2].The following proposition shows that the 

two concepts Q-module and quasi-injective module are 

equivalent in the class of multiplication modules. 
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Proposition 5.1: If  M is a multiplication R-module , 

then M is a Q-module if and only if M is quasi-injective. 

Proof: The only if part is clear . Suppose that M is quasi-

injective . Let N be an R-submodule of M. Because M is 

multiplication , N=IM for some ideal I of R. Let  f  

End(M) . Thus f(N)=f(IM)=If(M)  IM=N, therefore N 

is fully invariant in M .By virtue of  Prop.2.1  , M is a Q-

module . ▪ 

An R-module M is called distributive if  X (N+L)=(X

  N)+(X L) for all R-submodules X,N and L of 

M[5].And an R-module M is called Z-regular if for every 

element m  M ,there exists f  M
*
=Hom(M,R) such 

that m=f(m)m[22].   

The proof of the following  lemma follows from  

[2],[5,Prop.7] and [15, Prop. 2.1]. 

Lemma 5.2: Let M be an R-module. M is multiplication 

if M is one of the following cases: 

1-Cyclic. 

2-finitely generated , distributive and ann(M)=0. 

3-Z-regular and End(M) is commutative. 

Corollary 5.3: Let M be as in Lemma 5.2. Then M is a 

Q-module if and only if M is quasi-injective. 

Proposition 5.4: If M is a multiplication R-module and 

S=End(M), then M is a Q-module over R if and only if M 

is a Q-module over S. 

Proof: Suppose that M is a Q-module over R, and let N 

be an R-submodule of M .Since M is multiplication, so 

End(M) is commutative[14,Prop.1.1]. Because N is  fully 

invariant (see the proof of  Prop.5.1),  N is an S-

submodule of M . Thus  N is a quasi-injective R-

submodule of M if and only if N is a quasi-injective S-

submodule of M. Therefore M is a Q-module over S. 

Similarly ,we can prove the converse. ▪ 

Before we state the following proposition , we recall that 

an R-module  M is called CS-module if  every R-

submodule of M is essential in a direct summand of 

M[17]. And an R-module M is said to be continuous if M 

is CS-module and every R-submodule of M isomorphic 

to direct summand of M is itself summand[7]. 

Proposition 5.5: Let M be a uniform multiplication R-

module. Then M is a Q-module if and only if M is 

continuous and MM is CS-module . 

Proof : Suppose that M is a Q-module .Thus M is quasi-

injective ,so M is continuous and MM is a quasi-

injective [6]. Hence MM is CS-module [17].  

Conversely; suppose that M is continuous and MM is 

CS-module . Since M is a continuous uniform R-module 

and MM is a CS-module , so M is quasi-injective 

[7,Lemma 1.2.3]. Therefore M is a Q-module (prop.5.1). 

▪ 

Proposition 5.6: Let M be a uniform multiplication R-

module .If M is finite composition length, then M is a Q-

module if and only if  MM is CS-module . 

Proof: Suppose that M is a Q-module . Then MM is 

quasi-injective [6]. Therefore M  M is CS-module 

[17]. 

Conversely; assume that MM is CS-module . Thus M 

is quasi-injective [7, Prop.2.1.1]. By Prop.5.1, M is a Q-

module. ▪ 

Recall that a ring R is perfect if R has d.c.c. on principal 

ideals[6]. 

Proposition 5.7: Let R be a perfect ring and let M be a 

uniform cyclic R-module .Then M is a Q-module if and 

only if MM is CS-module. 

Proof: Suppose that MM is CS-module. Hence M is 

quasi-injective [7, Prop.2.2.2]. By Corollary 5.3 , M is a 

Q-module. The converse is direct . ▪ 

Recall that an R-module M is called simply embedded if 

M has a simple R-submodule which is  essential in M 

[20], and the R-module M is almost finitely generated if 

M is not finitely generated , but every proper R-

submodule of M is finitely generated [20]. 

Proposition 5.8: Let M be a multiplication almost 

finitely generated artinian R-module . Then M is a Q-

module if and only if M is simply embedded. 

Proof: It follows from [20,Prop.3.1]. ▪ 

Theorem 5.9:Let M be a multiplication R-module and 

let ann(M) be a prime ideal of R. Then M is a Q-module 

if and only if every quasi-invertible R-submodule of M is 

quasi-injective . 

Proof : The only if part is direct . Suppose that every 

quasi-invertible R-submodule  of M is quasi-injective. 

Let N be an R-submodule of M and let C be an 

intersection relative complement of N. By [11], N C is 

essential R-submodule of M. By [13 , Th.3.11,Ch.1], N

 C is quasi-invertible and by hypothesis, N C is 

quasi-injective. Consequently, N is quasi-injective [12, 

Prop.6.7.3] .Therefore M is a Q-module . ▪ 

Recall that an R-module M is called prime if 

ann(M)=ann(N) for every non-zero R-submodule N of M 

[4]. It is known that if M is prime then ann(M) is a prime 

ideal of R [4]. 

Corollary 5.10: Let M be a prime multiplication R-

module . Then M is a Q-module if and only if every 

quasi-invertible R-submodule of M is quasi- injective . 

In the following proposition , we give a characterization 

of Q-modules in the class of uniform modules . 

Proposition 5.11: Let M be a uniform R-module , then 

M is a Q-module if and only if M is quasi-injective and 

duo. 

Proof: It follows from Th.1.6. ▪ 

Corollary 5.12: Let M be an indecomposable R-module 

, then M is a Q-module if and only if M is quasi-injective 

and duo. 

Proof: Suppose that M is a Q-module. Since M is 

indecomposable and quasi-injective , so M is uniform 

[12,Ex.32,P.244]. Hence by prop.5.11, M is quasi-

injective and duo. The proof of the other direction 

follows from Prop. 2.1. ▪  

Recall that An R-module M is said to be almost finitely 

generated if M is not finitely generated and every proper 

R-submodule of M is finitely generated[20]. An R-

module M is called quasi-Dedekind if every non-zero R-

submodule of M is quasi-invertible[13] .And the R-

module M is called a chained module if the R-

submodules of M are ordered by inclusion. Because 

almost finitely generated, quasi-Dedekind and prime 

chained R-modules are indecomposable (see[20, Th.11], 

[13, Remark 1.3,Ch.2]and[13,Th.1.15]), we get the 

following corollary. 
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Corollary 5.13: Let M be an R-module. If M is one of 

the following cases: 

1-almost finitely generated . 

2- quasi-Dedekind . 

3- prime and chained. 

Then M is a Q-module if and only if M is quasi-injective 

and duo. 

Let M be an R-module . The singular R-submodule of M 

is the set Z(M)={m  M : ann(m) is an essential ideal of 

R}. M is called singular if Z(M)=M and M is called non-

singular if Z(M)=0 [8]. 

Theorem 5.14: Let M be a non-singular R-module . 

Then M is a Q-module if and only if End(N) 
End(E(N)) for any R-submodule N of M. 

Proof: Suppose that M is a Q-module .Let N be any R-

submdule of M. Thus N is quasi-injective . Therefore we 

have 
))(((

))((

))((

)(

NEEndJ

NEEnd

NEndJ

NEnd
 [8, Corollary 

2.17].Since N is non-singular , thus E(N) is non-singular. 

Again since N is non-singular ,J(End(N))=0. For if ;f   J 

(End(N))={f End(N): kerf is essential R-submodule of 

N }[8].Thus kerf is an essential R-submodule of N .By 

[13,Prop.3.13,Ch.1], kerf is a quasi-invertible  R-

submodule of N, and hence 0),
ker

( N
f

N
Hom  . 

Therefore ,f=0. Similarly , J(End(E(N))=0. This prove 

that End(N)  End(E(N)) for any R-submodule N of M . 

Conversely; because M is non-singular ,then N is non-

singular and hence E(N) is non-singular. Therefore J 

(End (E(N)) = 0 = J (End (N)). It follows that 

))(((

))((

))((

)(

NEEndJ

NEEnd

NEndJ

NEnd


. This prove that N is quasi-

injective[10]. ▪ 

Theorem 5.15: Let M be a non-singular R-module.The 

following statements are equivalent: 

1-M is a Q-module . 

2-End(N) End(E(N))) for any R-submodule  N of M. 

3-Every quasi-invertible R-submodule of M is quasi-

injective . 

4-Every essential R-submodule of M is quasi-injective . 

Proof: (1) (2). By Prop.5.14. 

(2)  (3). Every R-submodule N of M is quasi-injective 

(see proof of Prop.5.14). 

(3)  (4).It is clear that M is a quasi-invertible R-

submodule of M, and hence M is quasi-injective. Let N 

be a proper  essential  R-submodule of M. By [13 ,Prop. 

3.13], N is quasi-invertible and by hypothesis N is quasi-

injective . 

(4)  (1).By Th.1.6. ▪ 

6-Endomorphisms rings of Q-modules. 
We start this section by the following lemma which is a 

key for next results. 

Lemma 6.1: If M is a duo R-module, then End(M) is a 

commutative ring. 

Proof: Let f, g End(M) and x M .Since M is duo R-

module ,then Rx is a fully invariant R-submodule of M 

for all x M. Hence there exist two elements r1 ,r2  R 

such that f(x)=r1 x and g(x)=r2 x. Thus f   g(x) = f(g (x)) 

= f(r2 x)= r1 (r2 x) = (r1 r2)x = (r2 r1)x = r2 (r1 x) = r2 (f(x)) 

= g (f(x)) =g  f (x). ▪ 

Proposition 6.2:Let M be a uniform  R-module. If M is  

a Q-module, then M is quasi-injective and End(M) is a 

commutative local ring. 

Proof: Since M is a uniform  Q-module , so M is quasi-

injective and duo (Pro.5.11 ). Again since M is uniform 

and quasi-injective , End(M) is local[12,Ex.32,P.244]. 

But M is duo, thus End (M) is a commutative local ring 

(Lemma 6.1 ). ▪ 

Proposition 6.3: Let M be an indecomposable  R-

module . If M is  a Q-module, then M is quasi-injective 

and End(M) is a commutative local ring . 

Proof: By Corollary 5.12  , M is quasi-injective and duo. 

Since M is an indecomposable quasi-injective R-module 

, so End(M) is a local ring [12,Ex.32, P.244]. Because M 

is duo , End(M) is a commutative local ring (Lemma 

6.1). ▪ 

The converse of Prop.6.2 and Prop.63 is not true in 

general, for example, Q ( the set of all rational numbers ) 

as a Z-module is not a Q-module, but Q is quasi-injective 

and  End(Q)  Q is a field. 

In the following proposition , we give a condition under 

which the converse of Prop. 6.2 and Prop.6.3 is true . 

Proposition 6.4: Let M be a Z-regular R-module , then 

the following statements  are equivalent:  

1-M is a uniform Q-module. 

2-M is quasi-injective and End(M) is a commutative 

local ring . 

3-M is an indecomposable  Q-module. 

Proof: (1) (2). By Prop.6.2. 

(2) (1). By [12,Ex.32,P.244], M is uniform. Since End 

(M) is commutative and M is  Z-regular, then M is 

multiplication (Lemma5.2). Hence M is quasi-injective 

and multiplication and by corollary 5.3, M is a Q-

module.  

(2)  (3). Since M is quasi-injective and End(M) is a 

commutative local ring, so M is indecomposable 

[12,Ex.32, P.244]. Because M is Z-regular, every cyclic 

R-submodule of M is a direct summand [22. Th.1.6]. But 

M is indecomposable, so M is cyclic. Again by Lemma 

5.2 and its Corollary 5.3, M is a Q-module. 

(3)  (2). By Prop.6.3. ▪ 

Proposition 6.5: Let M be an R-module . If M is a quasi-

Dedekind  Q-module , then End(M) is a field . 

Proof: By Corollary 5.13 , M is duo and hence End(M) 

is commutative (Lemma 5.1). By [13,Prop.2.1],End(M) 

is an integral domain . Since M is quasi-Dedekind, so M 

is indecomposable [13,Remark 1.2]. Because M is quasi-

injective and indecomposable, End(M) is a local ring 

[12,Ex32, P.244].By [13,Corollary 3.5,Ch.2], J (End 

(M)) = 0. Therefore End (M) is a field. ▪ 

Proposition 6.6: Let M be a non-singular uniform R-

module . If M is a Q-module, then End(M) is a field . 

Proof: By Prop.6.2, End(M) is a commutative local ring. 

Since M is quasi-injective and non-singular,  J (End (M)) 

= 0 (see the proof of Th.5.14). It follows that End(M) is a 

field. ▪ 

It is  known that an indecomposable quasi-injective R-

module is uniform and a quasi-injective R-module with 

End(M) is a local ring is uniform [12,Ex.32,P.244]. Form 

these two fact ,we get the following corollary.  

Corollary 6.7: Let M be a non-singular R-module Then 

End(M) is a field in each of the following cases: 

1-If M is an indecomposable  Q-module. 

292 



Tikrit Journal of Pure Science Vol. 15 No.(1) 2010                                                                        ISSN: 1813 - 1662 
 

626 

 

2-If M is a Q-module such that End(M) is a local ring. 

Proposition 6.8: Let M be a Noetherian R-module. If M 

is a Q-module , then End(N) is a perfect ring for all R-

submodule N of M. 

Proof: It follows from [16,P.253]. ▪ 

Proposition 6.9: Let M be an R-module such that every 

R-submodule of M is Z-regular . Then M is a Q-module 

if and only if  End (N) is self injective ring for each R-

submodule N of M. 

Proof: It follows from [22,Th.2.5]. ▪ 
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 Q-مقاسات
 2هيبة كريم محمد علي،  1علي سبع مجباس

 ، تكريت ، العراق و الرياضيات، جامعة تكريت علوم الحاسبات كلية قسم الرياضيات ، 1
 تكريت ، تكريت ، العراق، كلية التربية ، جامعة قسم الرياضيات  2

( 2002/   6/  2، تاريخ القبول:    2002/ 1/   11) تاريخ الاستلام:   
 

 الملخص
اذا كان كل مثالي في  q-حلقة Rهي مقاسات أحادية. تسمى الحلقة  Rحلقة تبادلية ذات عنصر محايد و كل المقاسات على  Rلتكن 

R اغماري.قدمنا في بحثنا هذا مفهوم المقاس-هو شبه-Q بصفته أعماما إلى مفهوم حلقة-q  يقال عن مقاس على الحلقة .R  انه
أغماري. ميزنا تلك المقاسات ودرسنا خصيصاتها وعلاقتها بالأصناف الأخرى من -هو شبه M أذا كان كل مقاس جزئي من Q-مقاس

 .Q-على الحلقة الارتينية ودرسنا حلقات التشاكل لمقاسات Q-المقاسات. فضلا عن ذلك درسنا مقاسات
 

 

 

 

 

 

 

 
 


