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Abstract

Let R be a commutative ring with identity and all R-modules are unitary. A ring R is called g-ring if every ideal of R is
quasi-injective . In this work, we introduce the concept of Q-module as a generalization for the concept of g-ring. An R-
module M is said to be a Q-module if every R-submodule of M is quasi-injective. We characterize such modules and
study their properties . Relationships between Q-modules and other classes of modules are given. Q-modules are
studied over artinian ring. Endomorphisms rings of Q-modules are examined.
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1-Basic properties of Q-modules.
Jain, Mohamed and Singh in [9] called a ring R is g-ring
if every right ideal of R is quasi-injective. In this section,
we generalize the concept of g-ring to modules. Also we
introduce some properties of Q-modules and give some
characterizations of Q-modules. J(R) will denote the
Jacodson radical of R. For an R-module M, ann(M)={r e
R : rM=0}, and End(M) is the endomorphisms ring of M.
Before we give the definition of Q-module , we must
recall the concept of quasi-injective module. An R-
module M is called quasi-injective if for each
monomorphism f: N — M, where N is an R-submodule
of M, and homomorphism g: N— M, there is a

homomorphism h; M — M such that h o f=g[6].

Definition 1.1: An R-module M is called a Q-module if
every R-submodule of M is quasi-injective.

Examples and remarks 1.2:

1-Z, is a Q-module over Z for each positive integer n> 2.
2-Everey semi-simple R-module is a Q-module.

3-Z ., isaQ-module over Z .

p
4-Q(the set of all rational numbers ) as a Z-module is not
a Q-module, but it is a qusi-injective Z-module.
5- Every submodule of Q-module is a Q-module.
6-The inverse image of Q-module is not necessary a Q-
module. In fact, Z, is a Q-module over Z and Z is not a
Q-module over Z.
7- The direct sum of Q-modules need not be a Q-module
as the following example shows: Z,
This paper is based on Ph.D . thesis written by the second
author under supervision of the first author and it was
submitted to the college of Education ,university of Tikrit
in May 2005.
and Z, are Q-modules over Z. Since Z, @ Z, is not quasi
injective, Z, @ Z, is not a Q-
module over Z. Furthermore, Z, is a Q-module over Z,
but Z, @ Z, is not a Q-module over Z.
Before we give the following proposition we need the
following lemma which appeared in [12,P.244,Ex. 27 A].
Lemma 1.3: An R-module M is quasi-injective if and
only if M is a quasi- injective R/I-module for any ideal |
c ann(M).
The proof of the following proposition follows from
Lemma 1.3.

¥

Proposition 1.4: M is a Q-module over R if and only if
M is a Q-module over R/l for any ideal | of R contained
in ann(M).

Recall that an R-submodule N of M is called fully
invariant if f(N) <N, for all f €End(M) [21].The
following lemma shows that the fully invariant
submodule inherits the quasi-injectivity of the module.
Lemma 1.5: Every fully invariant R-submodule of a
quasi —injective R-module is quasi-injective.

An R-submodule N of M is called essential if N[ L# 0
for every non-zero R-submodule L of M[11].

Theorem 1.6: Let M be an R-module .The following
statements are equivalent:

1-M is a Q-module.

2-M is quasi-injective and every essential R-submodule
of M is fully invariant in M.

3-Every essential R-submodule of M is quasi-injective .
Proof: (1) = (2).Suppose that M is a Q-module. Thus M
is quasi-injective. Let N be an essential R-submodule of
M . Hence E(N)=E(M)[18,Prop.2.22]. Because M is a Q-
module , N is quasi-injective . It follows that N is a fully
invariant R-submodule of E(N)=E(M)[10, Th.6.74].
Hence N is a fully invariant R-submodule of M.

(2) = (3).It follows from Lemma 1.5.

(3) = (1). Since M is an essential R-submodule of M ,
so M is quasi-injective. Let N be a proper non-zero R-

submodule of M. Thus N@C is an essential R-
submodule of M, where C is the relative intersection

complement of N[11]. Therefore, N@® C is a quasi-
injective R-submodule of M. By [12, Prop.6.73], N is
quasi-injective . =

A nonzero R-submodule N of
invertible if Hom(M/N,M)=0[ 13 ].
Theorem 1.7: Let M be an R-module such that
J(End(M))=0. Then M is a Q-module if and if only if
every quasi-invertible R-submodule of M is quasi-
injective.

Proof: The only if part is trivial. Suppose that every
quasi-invertible R-submodule of M is quasi-injective. It
is clear that M is a quasi-invertible R-submodule of M,
thus M is quasi-injective. Let N be a proper non-zero R-

submodule of M. Then N@C is an essential R-
submodule of M , where C is the relative intersection

complement of N[11]. By[13 ,Th.3.8,Ch.1], N@C is
quasi-invertible and by hypothesis, N@ C is quasi-

M is called quasi-
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injective. Whence N is quasi-injective[12,Prop.6.73].
Therefore M is a Q-module. =

Proposition 1.8: Let M be an R-module such that every
non-zero R-submodule of M contains a copy of R. Then
M is a Q-module if and only if every R-submodule of M
is injective.

Proof: Suppose that M is a Q-module and N is an R-
submodule of M . Then N is quasi-injective.Let | be an
ideal of R and let f: I —N be an R-homomorphism.
Because N is quasi-injective , there exists h: N —N

such that h|, =f, that is, h is an extension of f. Since R is

contained in N ,by Baer’s criterion[ 12 ], N is injective.
The converse is clear. =

Corollary 1.9: Let R be an integral domain and M is a
torsion free R-module . Then M is a Q-module if and
only if every R-submodule of M is injective.

Recall that an R-module M is said to be divisible if
M=rM for every r of R which is not a zero-divisor [12]. It
is well-known that if R is a principal ideal domain and M
is an R-module , then M is injective if and only if M is

divisible[18, Th.2.8].

Proposition 1.10: Let R be a principal ideal domain and
M is a torsion free R-module. Then the following
statements are equivalent:

1-M is a Q-module.

2-Every R-submodule is injective.

3-Every R-submodule is divisible.

An R-module M is called uniform if every non-zero R-
submodule of M is essential[8]. In Ex. and Remark
1.2(7), we have seen that a direct sum of Q-modules need
not be a Q-module . In the following two propositions,
we discuss conditions under them a direct sum of Q-
modules is a Q-module.

Proposition 1.11: Let M; and M, be uniform R-modules
such that Hom(M;,M;)=0 for all distincti, j , 1< i, j< 2.
Then M=M; @ M, is a Q-module if and only if M, and
M, are Q-modules and M is quasi-injective.

Proof: Suppose that M; and M, are Q-modules and M is
quasi-injective . Let N be an R-submodule of M and let
f:A —N be a homomorphism, where A is an R-
submodule of N. f can be extended to an endomorphism

g of M .Then N =7, (N) @ 7,(N) , where 7;:M —>
M; is the projection homomorphism for each i=1,2.
Since M; is a Q-module for each i=1,2, 7; (N) is a quasi-
injective R-submodule of M;. Because M; is uniform for
each i=1,2, thus 7z; (N) is an essential R-submodule of

M;. Hence 7; (N) is an essential quasi-injective R-
submodule of M; and consequently 7; (N) is a fully
invariant R-submodule of E( 7z; (N))=E(M; )[6,Corollary

19.3] [18, Prop. 2.22 ].It follows that 7; (N) is a fully
invariant R-submodule of M;. From the assumption,
Hom( M; ,M; )=0 for all distinct i,j,1< i,j <2, we get
End(M)=End(M,) @ End(M,)[11, p.87] and hence
g(N)=h(71(N)) @ k(7 2(N)) = 71(N) @ 7,(N) CN,
where h e€End(M;) and keEnd(M,). From above

Yy
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argument, we have g(N) <N and g|A =f which proves

that N is quasi-injective. Therefore M is a Q-module. The
other direction follows from Ex.and Remark 1.2(5). =
Proposition 1.12: Let M; and M, be R-submodules such
that Hom(M;, M;)=0 for all distinct i, j,1 <i, j <2, and
every direct summand of E(M;) is fully invariant for each
i=1,2. Then M= M; @ M, is a Q-module if and only if
M; and M, are Q-modules and M is quasi-injective.
Proof: The only if part follows from Ex.and Remark
1.2(5). To prove if part , let N be an R-submodule of M
and A —N be a homomorphism , where A is an R-

submodule of N. Then N=7, (N) © 7, (N) , where 7,
M =M
i=1,2 . Since M; is a Q-module for each i=1,2, thus 7;

is the projection homomorphism for each

(N) is quasi-injective . It follows that 7; (N) is a fully
invariant R-submodule of E(7z; (N))[6,Corollary 19.3 ].
Because E(7; (N)) is a direct summand of E(M;)[18,
Prop.2.22] and by hypothesis, E(7; (N)) is a fully

invariant R-submodule of E(M;), therefore 7z; (N) is a
fully invariant R-submodule of E(M;) which means that
7z; (N) is a fully invariant R-submodule of M;. Now, f

can be extended to an endomorphism g of M. Since Hom
(M;,M;) = 0 for all distinct i,j,1 <i,j<2, so End (M)= End
(M;) @ End (M) [11,p.87]. Thus g(N) = h (7 1(N)) ©
kK (maN)< 7mi(N) @ m,(N) <N, where h eEnd
(My) and ke End (M,). Consequently, we have g(N) <

N and g|A =f which implies that N is quasi-injective and

hence M is a Q-module. =

2- Q-modules and quasi-injective modules.

As we have mentioned in section one that every Q-
module is quasi-injective, the converse is not true in
general (Ex. and Remak1.2(4)). In this section, we give
sufficient conditions on a quasi-injective module to be a
Q-module.

Recall that an R-module M is called duo if every R-
submodule of M is fully invariant [21].

Proposition 2.1: If M is a quasi-injective duo R-module ,
then M is a Q-module .

Proof: It follows from Lemma 1.5. =

Corollary 2.2: If M is duo R-module , then M is a Q-
module if and only if M is gasi-injective .

An R-submodule N of M is said to be satisfy Baer
criterion if for each R-homomorphism f: N—> M, there
exist re R such that f(x)=rx for all xe N, and an R-
module M is said to be satisfy Baer criterion if every R-
submodule of M satisfies Baer criterion[1]. It is easily
seen that every R-submodule satisfying Baer criterion is
fully invariant.

Corollary 2.3: Let M be a Baer criterion R-module.
Then M is a Q-module if and only if M is quasi-injective.
Recall that an R-submodule N of M is annihilator if

N=ann ,, (I) for some ideal I of R[1].
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Corollary 2.4: Let M be an R-module in which all of its
R-submodules are annihilator . Then M is a Q-module if
and only if M is quasi-injective.

Proof: The only if part is easy . Suppose that M is quasi-
injective and N is an R-submodule of M, and hence
N=anny(l) for some ideal | of R. Let fe End(M).Thus
O0=f(IN)=If(N) which means that f(N) Canny(l)=N. It
follows that N is a fully invariant R-submodule of M.
.By Corollary 2.2, M is a Q-module. =

It is easily seen that M is a duo R-module if and only if
every cyclic R-submodule of M is fully invariant in M
.Thus from Corollary 2.2 ,we have the following result .
Corollary 2.5: Let M be an R-module such that every
cyclic R-submodule of M is fully invariant in M. Then M
is a Q-module if and only if M is quasi-injective.

The converse of Prop.2.1 is not true . The following
example indicate that.

Example 2.6: M=Z;@® Z3 is a Q-module over Z , but M
is not duo. In fact , N={(x, X): X €Zz} is not a fully
invariant Z-submodule of M.

The following proposition give another condition on a
quasi-injective R-module to be a Q-module.

Proposition 2.7: Let M be an R-module in which each
R-submodule is of the form f(K) ,where K is a fully
invariant R-submodule of M and f is an idempotent
endomorphism of M. Then M is a Q-module if and only
if M is quasi-injective.

Proof: Suppose that M is quasi-injective . Let N be an R-
submodule of M. There exists a fully invariant R-
submodule K of M and an idempotent endomorphism f
of M such that N=f(K). By Lemma 1.5,K is quasi-
injective, and M=f(M) @ (I-f)(M), where I: M—M is
the identity endomorphism of M. Since K is fully
invariant, thus K=Ff(K) ® (I-f)(K). Because K is quasi-
injective, N=f(K) is quasi-injective [12,Prop.6.73].
Therefore M is a Q-module. The converse is direct. =
Under certain condition on the elements of quasi-
injective R-module, we get another characterization of Q-
module.

Proposition 2.8: Let M be an R-module such that for all
xandyin M,y ¢Rx implies ann(x) & ann(y). Then M
is a Q-module if and only if M is quasi-injective.

Proof: The only if part is direct. Suppose that M is not a
Q-module , so by Corollary 2.5, there is a cyclic R-
submodule Rx of M which is not fully invariant in M,
that is there exists f € End(M) such that f(Rx) & RXx.
This means that there exists y € Rx such that f(y) € Rx
.Let y=rx, where reR. Thus ann(xX) Ccann(y) <
ann(f(y)). This contradicts our hypothesis. Therefore
every cyclic R-submodule of M must be fully invariant in
M. By Corollary 2.5, M is a Q-module. =

Recall that an R-submodule N of M is said to be closed
in M if and only if N has no proper essential extension in
M [8]. It is known that if M is a quasi-injective R-module
and N is a closed R-submodule of M , then N is quasi-
injective [8]. From this fact , we conclude the following
result .

Proposition 2.9: Let M be an R-module such that every
R-submodule of M is closed . Then M is a Q-module if
and only if M is quasi-injective.

3-Q-modules and cohopfian (hopfian) modules.

YA
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Recall that An R-module is called cohopfian(hopfian) if
every injective (surjective) endomorphism is isomorphism
[3].

Proposition 3.1: Let M be a cohopfian Q-module over
R and let N be an R-submodule of M. Then E(N) and N
are cohopfian.

Proof: Because M is a cohopfian Q-module ,E(M) i
cohopfian [3, Th.8]. Let N be an R-submodule of M.By
[18,Prop.2.22], E(N) is a direct summand of E(M). But
E(M) is cohopfian, so E(N) is cohopfian [3,Th.6]. Since
N is quasi-injective and E(N) is cohopfian, so N is
cohopfian. =

Corollary 3.2: Let M be an R-module. If M is a Q-
module and M5 is cohopfian for each prime ideal P of R.,
then every R-submodule of M is cohopfian.

Proof: By [14, Prop. 2.3], M is a cohopfian Q-module
and hence every R-submodule of M is cohopfian
(Prop.3.1). =

Corollary 3.3: Let M be an R-module. If M is a Q-
module and Mp is artinian for each prime ideal P, then
every R-submodule of M is cohopfian.

Proof: By [14,Prop.2.4], Mp is cohopfian and by
Corollary 3.2 every R-submodule of M is cohopfian. =
Proposition 3.4: Let M be a Q-module over R and let N
be an R-submodule of M . Then N is cohopfian if and
only if E(N) is cohopfian.

Proof: It follows from[3, Th.8]. =

An R-module M is said to be perfect if it satisfies the
descending chain condition on cyclic R-submodule.
Equivalently, an R-module M is perfect if M satisfies the
descending chain condition on a finitely generated R-
submodule[6].

Proposition 3.5: Let M be a finitely generated perfect R-
module . If M is a Q-module , then every R-submodule
of M is cohopfian.

Proof: Let M — M be a monomorphism. Therefore M

of(M)D f2 M)> il (M) D ...is descending chain of
finitely generated R-submodules of M. Because M is
perfect, so f"(M) = f "*(M) for some n €Z. But f

is monomorphism, hence M=f(M) which means that f is
epimorphism. Whence M is cohopfian. By Prop. 3.1,
every R-submodule of M is cohopfian. =

Proposition 3.6: Let M be a non zero R-module and let
M be a Q-module . If N is a non-zero R-submodule of M,
then N is not cohophian if and only if for any positive

integer n, N =N, ®(®C;) , whereN =N, and

Ci # 0 forall i=1,2,...,n.

Proof: It follows from [3, Prop.1]. =

Corollary 3.7: Let M be an R-module .If M is a Q-
module and N is a hopfian R-submodule of M, then N is
cohopfian.

Proof: To prove that N is cohopfian, let f: N —>N be
a monomorphism and f(N) # N. Consequently, f(N) is a

proper R-submodule of N .Thus f f(N) —N is

isomorphism. Since M is a Q-module, so N is quasi-
injective  .Whence there exists an extension

homomorphism g: N—> N such that g fN) = f . But

f ' is an isomorphism, so N=I (f(N)) @ kerg = f (N)

YA4
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@ kerg [11,Corollary 3.4.10].Because g FNY = fr, g

is onto and kerg # 0.1t follows that g is not one-to-one
and hence N is not hopfian, a contradiction. Therefore N
is cohopfian. =

It is known that every finitely generated module is
hopfian . From this fact, we have the following result.
Corollary 3.8: Every finitely generated R-submodule of
Q-module is cohopfian.

Recall that an R-module M has finite dimensional(Goldie
dimension) provided that M contains no infinite
independent families of non-zero R-submodule [8].
Corollary 3.9: Let M be an R-module and let N be an R-
submodule of M. If M is a Q-module and N has finite
dimensional then N is cohopfian.

Proof: Suppose that N is not cohopfian, then by

n
Prop.3.6,for any positive integer n, N =N @ (©C,)
=1

, where N = Nn and Ci # 0 for all i=1,2,....n. This

implies that N contains infinite independent families of
non-zero R-submodule , a contradiction. Therefore N is
cohopfian.

Recall that an R-Module M is cancellation (or direct sum
cancellation) whenever M @ H=M @ K, implies H
=~ K. Equivalently if M® H = B® K with M=B
implies H= K for any R-modules K,H[3].

Proposition 3.10: Let M be an R-module . If M is a Q-
module and N is an R-submodule of M, then N is
cancellation if and only if N is cohopfian.

Proof: It follows from [3,Prop.5] . =

Recall that an R-module M is directly finite provided
that M is not isomorphic to any proper direct summand
of itself[8].

Proposition 3.11: Let M be a non-zero R-module . If M
is a Q-module and N is a non-zero R-submodule of M ,
then N is directly finite if and if N is cohopfian.

Proof: Suppose that N is directly finite and N is not
cohopfian, By Prop.3.6, for any positive integer n,

N=N, ®(@®C,), where N=N_ and C; =0 for

all i=1,2,...,n. This contradicts that N is directly finite.
Hence N is cohopfian.

Conversely; suppose that N is cohopfian and N is not
directly finite , that is, N=N,; ® C with N= N; ,C #0.
Since N= N, there exists an isomorphism f: N — Nj.
Let j: N; —> N; @ C be the injection homomorphism. j is
monomorphism, but it is not epimorphism. Thus
jof :N—>N is monomorphism, but it is not
epimorphism. Therefore N is not cohopfian. This
contradicts our hypothesis. Consequently, N is directly
finite. =

4- Q-modules over artinian rings.

Recall that an R-module M is finendo if M is finitely
generated over End(M) [6].

The following proposition gives a necessary condition
for Modules over artinian ring to be Q-modules.
Proposition 4.1: If R is an artinian ring , then every R-
submodule of Q-module is finendo.

Proof: It is follows from [6, Th.19.16A]. =

AR
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Proposition 4.2: If M is an R-module such that every R-
submodule of M is injective modulo annihilator, then M
is a Q-module .

Proof: Let N be an R-module of M , thus N is an
injective R/ann(M)-submodule of M . This implies that N
is a quasi-injective R/ann(M)-submodule of M, and

hence N is quasi- injective R-submodule of M( Lemmi yq ,

1.3) . Therefore M is a Q-module . =

The converse of Prop. 4.2 is not true in general as the

following example shows : Let M=@® Z , be a Z-module
P

, Where p is a prime number . M is a semi-simple Z-

module and hence a Q-module . But M is not injective

over Z/ann(M) = Z.

In the following proposition , we give a condition under

which the converse of Prop. 4.2 is true.

Proposition 4.3:Let R be an artinian ring and M is an R-

module . Then M is a Q-module if and only if every R-

submodule of M is injective modulo annihilator.

Proof: Suppose that M is a Q-module . Let N be an R-

submodule of M . Since M is a Q-module over artinian

ring , then N is a finendo quasi-injective R-submodule of

M (Prop. 4.1). Therefore N is injective modulo

annihilator [6,Th.19.14A].The converse follows from

Prop.4.2. =

An R-submodule N of M is said to satisfy the double

annihilator condition with respect to M if N=anny, (anng

(N)) [6].

Theorem 4.4 : Let R be an artinian ring and let M be an

R-module. Then the following statements are equivalent:

1-M is a Q-module

2-M is quasi-injective and every R-submodule of M

satisfies the double annihilator condition.

3-M is quasi-injective and duo.

Proof: (1) = (2). Suppose that M is a Q-module , so M

is quasi- injective . Let N be an R-submodule of M .By

Prop. 4.1, N is finendo. Since M is quasi-injective and N

is finendo , then N satisfies double annihilator condition

[6,Th.19.10A].

(2) = (3). Let N be an R-submodule of M. Thus N

satisfies the double annihilator condition. Let fe End

(M). 0 =f (anng (N)N) = anng (N)f (N) and hence f (N)

anny (anng (N))=N which proves that N is fully

invariant.

(3) = (1).By Corollary 2.2. =

Recall that an R-module M is bounded if and only if
ann(M)=ann(x) for some x in M [6].

Proposition 4.5:Let R be an artinian ring and let M be a
Q-module over R. Then an R-submodule N of M is
bounded if and only if N is cyclic.

Proof: Suppose that N is bounded, that is ,ann (N) = ann
(x) for some x in N. But M is a Q-module over artinian
ring , so every R-submodule of M satisfies the double
annihilator condition (Th. 4.4). Therefore, N= anny (anng
(N)) = anny, (anng (x))=Rx.. The converse is trivial. =

5- Q-modules and other modules.

Recall that an R-module M is called multiplication if
every R-submodule of M is of the form IM for some
ideal 1 of R[2].The following proposition shows that the
two concepts Q-module and quasi-injective module are
equivalent in the class of multiplication modules.
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Proposition 5.1: If M is a multiplication R-module ,
then M is a Q-module if and only if M is quasi-injective.

Proof: The only if part is clear . Suppose that M is quasi-
injective . Let N be an R-submodule of M. Because M is
multiplication , N=IM for some ideal | of R. Let fe
End(M) . Thus f(N)=f(IM)=1f(M) = IM=N, therefore N
is fully invariant in M .By virtue of Prop.2.1 ,Misa Q-
module . =

An R-module M is called distributive if X[ (N+L)=(X

(N N)+(X(\L) for all R-submodules X,N and L of
M[5].And an R-module M is called Z-regular if for every
element me M there exists fe M =Hom(M,R) such
that m=f(m)m[22].

The proof of the following
[2],[5,Prop.7] and [15, Prop. 2.1].
Lemma 5.2: Let M be an R-module. M is multiplication
if M is one of the following cases:

1-Cyclic.

2-finitely generated , distributive and ann(M)=0.
3-Z-regular and End(M) is commutative.

Corollary 5.3: Let M be as in Lemma 5.2. Then M is a
Q-module if and only if M is quasi-injective.

Proposition 5.4: If M is a multiplication R-module and
S=End(M), then M is a Q-module over R if and only if M
is a Q-module over S.

Proof: Suppose that M is a Q-module over R, and let N
be an R-submodule of M .Since M is multiplication, so
End(M) is commutative[14,Prop.1.1]. Because N is fully
invariant (see the proof of Prop.5.1), N is an S-
submodule of M . Thus N is a quasi-injective R-
submodule of M if and only if N is a quasi-injective S-
submodule of M. Therefore M is a Q-module over S.
Similarly ,we can prove the converse. *

Before we state the following proposition , we recall that
an R-module M is called CS-module if every R-
submodule of M is essential in a direct summand of
M[17]. And an R-module M is said to be continuous if M
is CS-module and every R-submodule of M isomorphic
to direct summand of M is itself summand[7].
Proposition 5.5: Let M be a uniform multiplication R-
module. Then M is a Q-module if and only if M is

continuous and M @ M is CS-module .
Proof : Suppose that M is a Q-module .Thus M is quasi-

injective ,s0 M is continuous and M@ M is a quasi-
injective [6]. Hence M @ M is CS-module [17].

Conversely; suppose that M is continuous and M @ M is
CS-module . Since M is a continuous uniform R-module
and M@® M is a CS-module , so M is quasi-injective
[7,Lemma 1.2.3]. Therefore M is a Q-module (prop.5.1).

lemma follows from

Proposition 5.6: Let M be a uniform multiplication R-
module .If M is finite composition length, then M is a Q-
module if and only if M@ M is CS-module .

Proof: Suppose that M is a Q-module . Then M@ M is
quasi-injective [6]. Therefore M@ M is CS-module
[17].

Conversely; assume that M @ M is CS-module . Thus M
is quasi-injective [7, Prop.2.1.1]. By Prop.5.1, M is a Q-
module. =
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Recall that a ring R is perfect if R has d.c.c. on principal
ideals[6].

Proposition 5.7: Let R be a perfect ring and let M be a
uniform cyclic R-module .Then M is a Q-module if and

only if M@ M is CS-module.

Proof: Suppose that M@ M is CS-module. Hence M is
quasi-injective [7, Prop.2.2.2]. By Corollary 5.3 , M is a
Q-module. The converse is direct . =

Recall that an R-module M is called simply embedded i.
M has a simple R-submodule which is essential in M
[20], and the R-module M is almost finitely generated if
M is not finitely generated , but every proper R-
submodule of M is finitely generated [20].

Proposition 5.8: Let M be a multiplication almost
finitely generated artinian R-module . Then M is a Q-
module if and only if M is simply embedded.

Proof: It follows from [20,Prop.3.1]. =

Theorem 5.9:Let M be a multiplication R-module and
let ann(M) be a prime ideal of R. Then M is a Q-module
if and only if every quasi-invertible R-submodule of M is
quasi-injective .

Proof : The only if part is direct . Suppose that every
quasi-invertible R-submodule of M is quasi-injective.
Let N be an R-submodule of M and let C be an

intersection relative complement of N. By [11], N@® C is
essential R-submodule of M. By [13 , Th.3.11,Ch.1], N

@ C is quasi-invertible and by hypothesis, N@® C is
quasi-injective. Consequently, N is quasi-injective [12,
Prop.6.7.3] .Therefore M is a Q-module . =

Recall that an R-module M is called prime if
ann(M)=ann(N) for every non-zero R-submodule N of M
[4]. It is known that if M is prime then ann(M) is a prime
ideal of R [4].

Corollary 5.10: Let M be a prime multiplication R-
module . Then M is a Q-module if and only if every
quasi-invertible R-submodule of M is quasi- injective .

In the following proposition , we give a characterization
of Q-modules in the class of uniform modules .
Proposition 5.11: Let M be a uniform R-module , then
M is a Q-module if and only if M is quasi-injective and
duo.

Proof: It follows from Th.1.6. =

Corollary 5.12: Let M be an indecomposable R-module
, then M is a Q-module if and only if M is quasi-injective
and duo.

Proof: Suppose that M is a Q-module. Since M is
indecomposable and quasi-injective , so M is uniform
[12,Ex.32,P.244]. Hence by prop.5.11, M is quasi-
injective and duo. The proof of the other direction
follows from Prop. 2.1. =

Recall that An R-module M is said to be almost finitely
generated if M is not finitely generated and every proper
R-submodule of M is finitely generated[20]. An R-
module M is called quasi-Dedekind if every non-zero R-
submodule of M is quasi-invertible[13] .And the R-
module M is called a chained module if the R-
submodules of M are ordered by inclusion. Because
almost finitely generated, quasi-Dedekind and prime
chained R-modules are indecomposable (see[20, Th.11],
[13, Remark 1.3,Ch.2]Jand[13,Th.1.15]), we get the
following corollary.
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Corollary 5.13: Let M be an R-module. If M is one of

the following cases:

1-almost finitely generated .

2- quasi-Dedekind .

3- prime and chained.

Then M is a Q-module if and only if M is quasi-injective

and duo.

Let M be an R-module . The singular R-submodule of M

is the set Z(M)={me M : ann(m) is an essential ideal of

R}. M is called singular if Z(M)=M and M is called non-

singular if Z(M)=0 [8].

Theorem 5.14: Let M be a non-singular R-module .

Then M is a Q-module if and only if End(N) =

End(E(N)) for any R-submodule N of M.

Proof: Suppose that M is a Q-module .Let N be any R-

submdule of M. Thus N is quasi-injective . Therefore we
End(N) End(E(N)) 8,

J(End(N))  J(End(E(N))

2.17].Since N is non-singular , thus E(N) is non-singular.

Again since N is non-singular ,J(End(N))=0. For if ;f € J

(End(N))={f € End(N): kerf is essential R-submodule of

N }8].Thus kerf is an essential R-submodule of N .By

[13,Prop.3.13,Ch.1], kerf is a quasi-invertible R-

submodule of N, and hence Hom(L’ N) =0

ker f

have

Corollary

Therefore ,f=0. Similarly , J(End(E(N))=0. This prove

that End(N) = End(E(N)) for any R-submodule N of M .

Conversely; because M is non-singular ,then N is non-

singular and hence E(N) is non-singular. Therefore J

(End (E(N)) = O J (End (N)). It follows that
End(N) _ End(E(N)) . This prove that N is quasi-

J(End(N)) ~ J(End(E(N))

injective[10]. =

Theorem 5.15: Let M be a non-singular R-module.The

following statements are equivalent:

1-M is a Q-module .

2-End(N) = End(E(N))) for any R-submodule N of M.

3-Every quasi-invertible R-submodule of M is quasi-

injective .

4-Every essential R-submodule of M is quasi-injective .

Proof: (1) = (2). By Prop.5.14.

(2) = (3). Every R-submodule N of M is quasi-injective

(see proof of Prop.5.14).

(3) = (4).It is clear that M is a quasi-invertible R-

submodule of M, and hence M is quasi-injective. Let N

be a proper essential R-submodule of M. By [13 ,Prop.

3.13], N is quasi-invertible and by hypothesis N is quasi-

injective .

(4) =(1).By Th.1.6. =

6-Endomorphisms rings of Q-modules.

We start this section by the following lemma which is a

key for next results.

Lemma 6.1: If M is a duo R-module, then End(M) is a

commutative ring.

Proof: Let f, g € End(M) and x € M .Since M is duo R-

module ,then Rx is a fully invariant R-submodule of M

for all x € M. Hence there exist two elements r; ,r,€ R

such that f(x)=ry x and g(x)=r, x. Thus fo g(x) = f(g (X))

= f(r2 X)= 11 (r2 X) = (1 12)x = (r2 r)x = r2 (11 X) = 1 (f(x))

=g (f(x)) =gof(x). =
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Proposition 6.2:Let M be a uniform R-module. If M is
a Q-module, then M is quasi-injective and End(M) is a
commutative local ring.

Proof: Since M is a uniform Q-module , so M is quasi-
injective and duo (Pro.5.11 ). Again since M is uniform
and quasi-injective , End(M) is local[12,Ex.32,P.244].
But M is duo, thus End (M) is a commutative local ring
(Lemma 6.1 ). =

Proposition 6.3: Let M be an indecomposable R-

module . If M is a Q-module, then M is quasi-injectivi YqY

and End(M) is a commutative local ring .

Proof: By Corollary 5.12 , M is quasi-injective and duo.
Since M is an indecomposable quasi-injective R-module
, S0 End(M) is a local ring [12,Ex.32, P.244]. Because M
is duo , End(M) is a commutative local ring (Lemma
6.1). =

The converse of Prop.6.2 and Prop.63 is not true in
general, for example, Q ( the set of all rational numbers )
as a Z-module is not a Q-module, but Q is quasi-injective
and End(Q)= Qs a field.

In the following proposition , we give a condition under
which the converse of Prop. 6.2 and Prop.6.3 is true .
Proposition 6.4: Let M be a Z-regular R-module , then
the following statements are equivalent:

1-M is a uniform Q-module.

2-M is quasi-injective and End(M) is a commutative
local ring .

3-M is an indecomposable Q-module.

Proof: (1) = (2). By Prop.6.2.

(2)=(1). By [12,Ex.32,P.244], M is uniform. Since End
(M) is commutative and M is Z-regular, then M is
multiplication (Lemmab.2). Hence M is quasi-injective
and multiplication and by corollary 5.3, M is a Q-
module.

(2) = (3). Since M is quasi-injective and End(M) is a
commutative local ring, so M is indecomposable
[12,Ex.32, P.244]. Because M is Z-regular, every cyclic
R-submodule of M is a direct summand [22. Th.1.6]. But
M is indecomposable, so M is cyclic. Again by Lemma
5.2 and its Corollary 5.3, M is a Q-module.

(3) = (2). By Prop.6.3. =

Proposition 6.5: Let M be an R-module . If M is a quasi-
Dedekind Q-module , then End(M) is a field .

Proof: By Corollary 5.13 , M is duo and hence End(M)
is commutative (Lemma 5.1). By [13,Prop.2.1],End(M)
is an integral domain . Since M is quasi-Dedekind, so M
is indecomposable [13,Remark 1.2]. Because M is quasi-
injective and indecomposable, End(M) is a local ring
[12,Ex32, P.244].By [13,Corollary 3.5,Ch.2], J (End
(M)) = 0. Therefore End (M) is a field. =

Proposition 6.6: Let M be a non-singular uniform R-
module . If M is a Q-module, then End(M) is a field .
Proof: By Prop.6.2, End(M) is a commutative local ring.
Since M is quasi-injective and non-singular, J (End (M))
= 0 (see the proof of Th.5.14). It follows that End(M) is a
field. =

It is known that an indecomposable quasi-injective R-
module is uniform and a quasi-injective R-module with
End(M) is a local ring is uniform [12,Ex.32,P.244]. Form
these two fact ,we get the following corollary.

Corollary 6.7: Let M be a non-singular R-module Then
End(M) is a field in each of the following cases:

1-1f M is an indecomposable Q-module.
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2-1f M is a Q-module such that End(M) is a local ring.
Proposition 6.8: Let M be a Noetherian R-module. If M
is a Q-module , then End(N) is a perfect ring for all R-
submodule N of M.

Proof: It follows from [16,P.253]. =
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Proposition 6.9: Let M be an R-module such that every
R-submodule of M is Z-regular . Then M is a Q-module
if and only if End (N) is self injective ring for each R-
submodule N of M.

Proof: It follows from [22,Th.2.5]. =
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