A Numerical Solution for Sine-Gordon Type System
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Abstract

A numerical solution for Sine-Gordon type system was done by the use of two finite difference schemes, the first is the
explicit scheme and the second is the Crank-Nicholson scheme. A comparison between the two schemes showed that,

the explicit scheme is easier and has faster convergence than the Crank-Nicholson scheme which is more accurate . The
MATLAB system was used for the numerical computations.

1. Introduction
One of the most gratifying features of the solution of
partial differential equations by difference methods is
that many of the methods and proofs based on linear
equations with constant coefficients can over directly to
non-linear equations. Thus many of the simplest explicit
and implicit two-level methods can be used for non-
linear equations. A satisfactory explicit difference
replacement of equation is. This difference approximation
is very simple to use, but suffers from the disadvantage
that the ratio of the time step to the square of the space
increment is strictly limited. The stability limitation can
be removed by using an implicit difference method of
Crank—Nicholson type [7]. Ercolani et al [3] developed a
homoclinic geometric structure of the integrable Sine-
Gordon equation under periodic boundary conditions.
Ablowtiz et al [1] investigated the numerical behavior of
a double discrete, completely integrable discretization of
the Sine-Gordon equation. Ablowtiz et al [2] used the
nonlinear spectrum as a basis for comparing the
effectiveness of symplectic and nonsymplectic integrators
in capturing infinite dimensional phase space dynamics.
Speight and Ward [10] described a spatially-discrete
Sine-Gordon system with some novel features.Wei [11]
used the discrete singular convolution (DSC) algorithm
to solve Sine-Gordon equation. Nakagiri and Ha [8]
studied the uniqueness and existence of the solutions of
the coupled Sine-Gordon equations by the use of the
variational method. They solved the quadratic optimal
control problems for the control systems described by
coupled Sine-Gordon equations. Lu and Schmid [5]
presented a class of schemes based on symplectic
integrators for the computation of solutions of Sine-
Gordon type systems. Khusnutdinova and Pelinovsky [4]
considered a system of coupled Klein-Gordon equations;
they found both linear and nonlinear solutions involving
the exchange in the energy between the different
components of the system.
In this paper, the Sine-Gordon type system was solved by
using two finite difference schemes.
2. The Mathematical Model
One of the well-known nonlinear wave equations is
Klein-Gordon equation
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which consider one of the most important nonlinear wave
equations.

When f(u): AU, where O is constant then equation
(1), becomes the linear Klein-Gordon equation
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Which is the simplest model of the equations which
describe the normally dispersive linear waves. When
0 =0, then equation (2), reduced to the classical wave
equation.

When f(u) = osinu, then equation (1), becomes the
Sine-Gordon equation
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Equation (1) was introduced by Klein and Gordon in
1920s as a model of the nonlinear wave equation.
Equation (3) can be generalized to a system of two
coupled Sine-Gordon equations
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u(x,0)= Acos x, u,(x,0)=0, w(x,0)=0, w,(x,0)=0

u(0,t)=1 u(z,t)=-1 w(0,t)=0, W(z,t)=0,0<x<x, 0<t<a
Where A is constant.
3. Derivation of the Explicit Scheme Formula for

the Sine — Gordon System
Assume that the rectangle [ 7 1:

R={x1):0<x<z,0<t<a} is subdivided into
(n—1)m—1) rectangles with sides Ax=h, At =k . Start
at the bottom rows, where t=t, =0, and the initial
conditionis[4]:

u(x,,t,)=u(x;,0)= f,(x,)= Acos(x,) , i=2,3,..,n-1
®)
w(x; ,t,)=w(x,0)= f,(x)=0, i=2,3,..,n-1

To complete the grid points in the second rows, we use

U (%;,0)= U (%;,0)= 8% sin(u(x; ,0)-w(x; ,0))

w, (x,,0)=c?w, (x;,0)+sin(u(x, ,0)—w(x, ,0))



By using Taylor’s formula of order 2, we have Applying formula (6) at X = X; , together with

u. (x,0)k? , U(Xwo): fy ’ut(Xi10)=gl(Xi)=gli )
u(x,k)=u(x,0)+u,(x,0)k + o 2O)k +O(k ) W(Xi 10): f, Wt(xi ’0): g2(xi): g,
(6) we get
W(X,k):W(X,0)+Wt(X,O)k+Wn(X2'O)k+O(k3)
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U(Xi vk)= f; +kgy +%(fli+1 —2f; + fli—l)_ Ko

sin(f, — f,,)+0(h?Jo(k?)+ ofk?)
(7)
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W(Xi ’k): fy +k0y +T(f2i+l -2f, + f2i-1)+k25in(f1i - fZi)+O(h2b(k2)+O(k3)
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Where I = ﬁ , formula (7) can be simplified to obtain the difference formula for the second rows [6]:
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Ui,z = (1_ rz)fli +kgli +%(f1i—l + f1i+1)_k755in(f1i - fzi)
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Wi,2 = (1_C2r2)f2i +kgzi +%(f2il + f2i+1)+k?3in(fli - fzi)

fori=2,3,....,n-1

A method for computing the approximating to u(x,t) at
grid points in successive rows will be developed,

Where the grid points are:

Xip =X +h , x,=x-h, t,=t;+k , t;;, =t; -k

1o+
ulx.,t. ), i=2,..,n=-1; , j=3,4,..m
H' J) } . Neglecting the terms O(kz) and O(hz), and use

ij and W ; for u(xi ,tj) and
W(Xi ,tj) in (9), which are in terms substituted in (4),
The difference formulas used for we get

u, (x,t),u, (X,t),w, (x,t) and W, (x,t) are:

{W(Xi,tj), i=2,...,n—1} , 1=3,4,..,m approximations U

0 (x,t)= u(x,t+k)—2u(x,t)+ u(x,t—k)+o(k2)

kZ
0. (x t):U(X+h,t)—ZU(X,t)+U(X—h,t)+o(h2)
o A h2
9)
wn(x,t):W(X’t+k)_zwli)z(’t)JrW(X‘t_k)+0(k2)
W“(Xlt):W(x+h,t)—2w(x,t)+w(x—h,t)+o(h2)
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Ui o —2U5 5 + Ui o Uiy =205 Uiy =-5%sin(u,  -w; ;)
kz hz i,] 1]
(10)
W, oy —2W,  +W, W, i —2W. . +W _, .
j+ g TWia o Wi VI I ( _ )
= I . =sinlu; ; =W, ;

After some mathematical manipulation , we obtain

Ui jo :(2—2r Z)Jiyj +r2(tuj +ui+1'j)—uiyjfl—k2§zsin(uiyj —Wiyj)
1)
W —(2—2c2r2)\/vi'j jtczrz(wifl'j +Wi+lyj)—Wi’H +k23in(ui’j —Wiyj)
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Formula (11) represents the explicit finite difference u
formula for the Sine — Gordon system in (4). Formula

(11) is employed to create (j +1) th rows across the
grid, assuming that approximations in the jth and

W,

Uij . u i1,

4. Derivation of the Crank—Nicholson Formula
for the Sine — Gordon System

The diffusion terms U,, and W,, in this method are
(J —1)th rows are known. Notice that this formula  represented by central differences, with their values at

i1, i1,j W, and W, ;.

explicitly gives the values U; ., , W, ,, in terms of the current and previous time steps averaged [ 7] :
! _{u(x—h,t+k)—2u(x,t+k)+u(x+h,t+k)¢ u(x—h,t—k)-2u(x,t —k)+u(x+h,t—k) }
" 2h? | 2h?

u(x,t+k)—2u(x,t)+u(x,t—k)
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W _{W(x—h,t+k)—2w(x,t+k)+w(x+h,t+k)+W(x—h,t—k)—ZW(x,t—k)+W(x+h,t—k) }
e 2h? 2h?
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By using the approximations U; ; and W, for u(xi ,tj) and W(Xi ,tj) in (12), which are in turn substituted into

i
system (4), we have

Ui g =205 5+ Uy Ui i = 205 g Ui Ui g = 205 5 Uiy iy —_5? sin(u Y )
K2 2h? 2h? S
=
Wi, jn —2Wi,j Wi 2 Wi, ju —2Wi,j+1 T Wi, ju 2 Wis, ja _2Wi,j—1 T Wi ja i
> —C > —C > =SIn ui,j_Wi,j
k 2h 2h
2 (2 2 2) 2 _ 2 (2 2|’2) r2
MUy e+l Uy oy MUy =0, — et Ui jo Uiy 5
+4u, —2k25zsin(ui’j —wi,j)
13)
2,2 2.2 2,2 2,2 2.2 2.2
—cr wi71'j+1+(2+20 r )Wi,j+1_C r°Wi, j,, =C°r WHYH—(2+20 r )Wi,,-,l O Wiy,

+4W, ; +2k23i”(ui,j ‘Wm)
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for i=2,3,...,n-1

Formula (13) represents the Crank—Nicholson formula
for system (4).

The terms on the right hand side of (13) are all known.
Hence, the equations in (13) form a tridiagonal linear

U 1 =U jn = b1 y Uy ja=Up

Equations in (13) are especially pleasing to view in their
tridiagonal matrix forms A X, =B;,, A X, =B,,

where A, and A, are the coefficient matrices, X, and

[2+2r2 —r?

—r? 2+2r?

2 2 2
r upfl’H—(2+2r )quH +IU

2 2 2
| 2b, 1"+ un—2,j—1_(2+2r )un—l,j

2+2c%r? —r?
-r’ 2 +2c°r? —r?
AX, = —r? 2+2cr?

= bz v Wy =W

[ 2b,r? —(2+2r2)uzyj_1 +r%Uy , +4u,  —2k?5? sin(uzyj —WZVJ-)

rzuzyjf1 —(2+2r2)ugyjfl + rzqul +4u, | —2k2525in(u3'j —wsyj)
+au, - 2k25%sin(u,  —w, ;)
-1 P, p,J p.J

L, +4u

algebraic systems A X, =Bjand A, X, =B, .The
boundary conditions are used in the first and last
equations only i.e.

=W

=c, and Wh,ja =Wh jua =Cz vij.
X, are the unknown vectors and B, , B, are the known

vectors as shown below:

u2,j+1
u3,j+l
2
-r Uy jn |= B, =
2+2r? —r? VIR
2 2
-r 242r° |1,y 0

(14)

202 ax
1~ 2k sm(un_l,,-—Wn_l,j)

W2,1+1
W3,j+l
2
-r Wy |= B, =
2+2c%r? - W,
r’ 2420717 || W,y
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cr Wp_l,j_l—(2+20 r )\Np‘j_l +Cc°reu

When the Crank—Nicholson Scheme is implemented with
a computer, the linear systems A X, =B, and

A, X, =B, can be solved by either direct means or by
iteration. In this paper, the Gaussian elimination method
(direct method) has been used to solve the algebraic
systems A X, =B,and A, X, =B,[9].
. Algorithm of Explicit Scheme
.Inputa, b,n,m,c, 0.
. Evaluate h=a/(n-1), k=b/(m-1), r=k/h.
. Save dimensions to u and v as matrices.
. Evaluate the boundary conditions of u and v:

u(0,t)=1, u(z,t)=-1, w(0,t)=0, w(z,t)=0,0<x< 7, 0<t<a.
5. For i=2 to n-1, evaluate the initial conditions:
u(x,0)= Acosx, u,(x,0)=0, w(x,0)=0, w,(x,0)=0.
6. End
7. For j=3:m, for i=2:n-1evaluate the formula (11).
8. End

N EFE O

2c,c’r? —(2+2C2r2)\N2'j_1 +eiriw,  + 4w, +2k%sin(u,  —w, )

c’riw, —(2+ 202r2)w3,j_l +Criw, ;, +4w, | +2k* sin(u&j —W3’j)

p+1, j-1

_2c2c2r2 +IPW, —(2 + Zczrz)wnflyjf1 +4u,,  +2k? sin(unflyj —W,; )_

(15)

2 -
+4up'j + 2k sm(um —WM)

6. Algorithm of Crank-Nicholson Scheme
1. Inputa,b,n,m,c, o .

2. Evaluate h=a/(n-1), k=b/(m-1), r=k/h.

3. Save dimensions to u and v as matrices.

4. Evaluate the boundary conditions of u and v:

u(0,t)=1 u(z,t)=-1 w(0,t)=0, W(z,t)=0,0<x<7z, 0<t<a.
5. For i=2 to n-1, evaluate the initial conditions:

u(x,0)= Acos x, u,(x,0)=0, w(x,0)=0, w,(x,0)=0
6. End.

7. Input the principle diagonals and off diagonals of the

coefficient matrices A and A, as row vectors.

8. For j=3:m, for i=2:n-1evaluate the vectors B, and B,
and solve the

tridiagonal systems A X, =B, and A, X, =B,.
9. End.

Table (1) shows a comparison between explicit scheme and Crank-Nicholson scheme of u and w when h=0.3142,
k=0.05, r=0.1592, c=1, o =1, a=1, and A=1, for sine-Gordon system in equation (4).

Explicit Scheme of u Crank-Nicholson Scheme of Explicit Scheme of w Crank-Nicholson Scheme of
when h=0.3142, k=0.05, u when h=0.3142, k=0.05, when h=0.3142, k=0.0, w when h=0.3142, k=0.05
r=0.1592 r=0.1592 r=0.15925 r=0.1592
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Note: The results in table (1) had been obtained from the algorithms of the explicit and Crank-Nicholson schemes
which had been mentioned above after converting them to two programs in MATLAB.

Figure (1) shows a solution curves of Crank-Nicholson scheme of u when h=0.3142, k=0.1, r=0.3183, ¢c=1, 0 =1,
a=1, and A=1, for sine-Gordon system in equation (4).

0.4

Figure (2) shows a solution curves of Crank-Nicholson scheme of w when h=0.3142, k=0.1, r=0.3183, ¢c=1, 0 =1,
a=1, and A=1, for sine-Gordon system in equation (4).
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more accurate.
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