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Abstract

The operational matrices of the Haar wavelets method is applied for finding numerical solution of non-linear Murray
equation, we compared this numerical result with the exact solution for non-linear Murray equation. the accuracy of the
obtained solutions is quite high even if the number of calculation points is small, by increasing the number of
collocation points the error of the solution rapidly decreases as shown by solving an example.

1.Introduction:

Haar wavelets have become an increasingly popular tool
in the computational sciences. They have had numerous
applications in a wide rang of areas such as signal
analysis, data compression and many others[6].

Using the operational matrix of an orthogonal function to
perform integration for solving, identifying and
optimizing a linear dynamic system has several
advantages: (1) the method is computer oriented, thus
solving higher order differential equation becomes a
matter of dimension increasing; (2) the solution is a
multi-resolution type and (3) the answer is convergent,
even the size of increment is very large [6,7].

The main characteristic of the operational method is to
convert a differential equation into an algebraic one, and
the core is the operational matrix for integration. We start
with the integral property of the basic orthonormal

matrix, ¢(t) by write the following approximation:

}H ----- :{ #(t)dt)* =Qdt)

where  §0)=[5,0) G0) ... B, which the

elements @ (t)@,(t)...¢,,(t) are the discrete
representation of the basis functions which are

orthogonal on the interval [0,1) and Q¢ is the operational

matrix for integration of (I)(t) [6,7].

Cherniha R. M. (1997) [1] used the constructive method
for obtaining exact solution of nonlinear Murray equation
arising in mathematical biology. The method is based on
the consideration of a fixed nonlinear partial differential
equation together with additional generating condition in
the form of a linear high-order ODE, he was obtained
new exact solutions with help of this method, which are
generalizations of the murray equations.

Wu and Chen (2003) [6] studied the numerical solution
for partial differential equations of first order via
operational matrices , they used the Haar wavelets in the
solution with constant initial and boundary conditions.
Wu and Chen (2004) [7] studied the numerical solution
for fractional calculus and the fractional differential
equation by using the operational matrices of orthogonal
functions. The fractional derivatives of the four typical
functions and two classical fractional differential
equations solved by the new method and they are
compared the results with the exact solutions, they are
found the solutions by this method is simple and
computer oriented.

ay

Lepik and Tamme (2007) [2] derived the solution of
nonlinear Fredholm integral equations via the Haar
wavelet method, they are find that the main benefits of
the Haar wavelet method are sparse representation, fast
transformation, and possibility of implementation of fast
algorithms especially if matrix representation is used.
Lepik Uio (2007) [3] studied the application of the Haar
wavelet transform to solve integral and differential
equations, he demonstrated that the Haar wavelet method
is a powerful tool for solving different types of integral
equations and partial differential equations. The method
with far less degrees of freedom and with smaller CPU
time provides better solutions then classical ones.

Qasem A. F. (2008) [5] found the numerical solution for
linear reaction diffusion system by using the Haar
wavelets method, he transformed the linear partial
differential system into a linear algebraic equations that
can be solved by Gauss-Jordan method.

In this paper, we study the numerical solution for
nonlinear Murray equation by the operational matrices of
Haar wavelet method and we compare the results of this
method with the exact solution.

2.Mathematical model:

We consider the nonlinear reaction-diffusion equations
with convection term of the form [1]:

au o%u

M _ a8 gy ,0<x<1,0<t<l..2
o~ AW+ BUS +CW) )

where U(X,t) is an unknown function, A(u), B(u) and

C(u) are arbitrary smooth functions. Equation (2)
generalized a great number of the well-known nonlinear
second-order evolution equations describing various
processes in biology [1].

When Au)=1, B(u)=A4u and C(u) = AU — Au? where
A A, and 4, eR,
equation (2) becomes:
2
aiu:ailzj_kﬂluaiu_}_izu_lsuz, OSX<1, 0<t<l1
ot ox OX

...(3)
which is called the nonlinear Murray equation with initial
condition:
u(x0)=F(x) , 0<x<1...(4)
and mixed boundary conditions:
u(0,t)=G(t), o<t<i ..(5
auéi,t)zl(t) , 0<t<1...(6)
such that F(x) is prescribed space-dependent and G(t),
I(t) are prescribed time-dependent.




Cherniha, R. M. [1] is found the exact solution for (3)
such that:

2
+C exp(yt+
U(X,t)=ﬂq o &Pl }4()”'(7)
A3+ Co €XP(=4,1)
wherey:%ﬂ1¢0

Co is constant such that A5 +c, exp(—4,t) #0and Cq is
arbitrary constant .

3. Review of the operational matrices and Haar
wavelets:

The main benefit of operational matrix is to transfer the
differential equations into the algebraic ones or the
Lyaponov form. Then they can be solved in the computer
oriented methods, that is much easy and time efficient.

The operational matrix Q¢ of an orthogonal matrix d)(t)
can be expressed by:

(@, ]=l0]-[Qa]-fo]™--(®)

where [QB]IS the operational matrix of the block pulse
function:

/2 1 .. 1

1 0 1/2 1 1 .09)
QBm:f o ... 12 .. 1
o ... 0 1/2 1
o ... .. 0 1/2

If the transform matrix [(I)] is unitary ,that is

[(I)]_l = [(I)]T, then the equation (8) can be rewritten as
[7,8]:
Q.]=[¢] Qe]-To]” --.10)

The Haar functions are an orthogonal family of switched
rectangular waveforms where amplitudes can differ from
one function to another. They are defined in the interval

[0,1) by [6,7]:
1

ho(t):ﬁ
J
02 k_Jl,t k—%lz
| 2 27 (11)
> k-1/2 k
h0-—{ 7 <y
m
0 otherwise in [0,)

where i=0,1,2,.....m-1, m=2% and o is a positive
integer. J and k represent the integer decomposition of
the index i, ie. i=2"+k-1.

Theoretically, this set of functions is complete. ho(t) is
called the scaling function and hl(t) the mother

wavelet, such that from the mother wavelet hl(t),
compression and translation are performed to obtain
h,(t) and hy(t).

Any function u(X,t) which is square integrable

in the region 0<t<land O<X<1can be expanded
into Haar series by [6]:

ay

m-1m-1

u(x,t) = zzcijhi(x)hJ(t)

i=0 J=0

where ¢ :Jl'u(x,t)hi(x)dxTu(x,t)hj(t)dt-

..(12)

The equation (12) can be written into the discrete form
by:

u(x,t) =H"(x)-C-H(t) ...(13)
where
Coo Cor - - Coma
Cio Cp - Cima
[cl=| : R :
Co1o Cm—l,l ------ Cotma

is the coefficient matrix of u(X,t) calculated by:
[C]=[H]-[u]- [H] (14)

For deriving the operational matrix of Haar wavelets, we
let [¢] = [H] in the equation (10), and obtain:

[QH ]: [H] [QB]' [H]T -..(15)

where [QH]is the operational matrix for integration of
[H].

For example, the operational matrix of the Haar wavelet

in the case of m=4 is given by:
[QH ]: [H ]A*A '[QB]'[H ]1*4

M1 1 1 1 1 1 1 1 1
2 2 2 2 stz 2 2 2
11 101 1 11 101
A L S R
1
B e
7ooﬁfﬁ 000 o 0 & -
[ 05 —025 -00884 00884
0.25 0  -00884 0.0884
“l0.0884 0.0884 0 0
(00884 —0.0884 0 0

4.Numerical solution:

We will use the operational matrices of the Haar
wavelets to solve the nonlinear Murray equation (3)
numerically.

The integration of equation (13) with respect to the
variable (t) ylelds [6]:

J.u(xt)dt—J-H (x)-Cu-H(t)dt=HT -Cu- J'H(t)dt

T ko] a6

Further integration of with respect to the variable (X)
gives:

J-u(x,t)dx=J.HT(x)‘Cu‘H(t) dx:J.HT(x) dx-Cu-[H]
0 0 0

=[H] [Qu] -[cu]-[H] ...(17)
The double integration of (u) with respect to the
variables (x) and (t) gives:

t Xu(x,t) dx dt=t i HT(x)-Cu-H(t) dx dt
00 00
=.X[HT(X) dx-Cu~Jt‘H(t) dt
0 0

[T T leul M) -(19)



also

t x X

”Iu(x,t) dx dx dt

000

HT(x)-Cu-H(t) dx dx dt

L

JX.JX‘H (x) dx dx-Cu- j‘H(t) dt
00

O Sy <

~[HT [ou?] el [} W] (19)
Now by integrating equation (3) with respect to (t), we
get:
b au(x,t)
=4

Eu(x t)

2%u(xt)
af T

dt+tju(x ) dt+ 4 ju(x t) dt—4, ju (xt)dt

-(20)
By using the initial condition (4), we get:

Ju(x. )~ F()= f Al
.21

Now, the double integration for equation (21) with
respect to (x) gives

J.Iu(xt)dxdx ”F ) dx dx = J'J'[ou(xt) E)u(Ot)}d < dt

* Al.!.([#ldx dt +ﬂz.|:ﬁu(xﬂ) dx dx dt

dtmlju(xt uXt)dt+lju(xt)dt—ljuz(x,t)dt

—ﬂej‘ﬁuz(x,t) dx dx dt ---(22)
000

by using the boundary condition (6), we get:
”u(xt)dxdx HF X) dx dx = Ju(xl) u(0,t)]dt - ”m)dxm

0

+zlj)':|)'[“ xt _u (;‘t)}dx dt+22j;:[;[u(x,t) dx dx dt

..(23)

t XX
—ﬂsj.jjuz(x,t) dx dx dt
000
by using the boundary condition (5) and by rearranging
the equation (23) we get

“‘u(xt)dxdx J’u(xt)dt ”1” 2(x,t) dx dt — AQJ.“.u(xt)dxdxdt
000
I

x) dx dx — IG t)dt - jjl )dx dt - j'I t) dx dt
0 00 00

+13Ijju (x,t) dx dx dt =

..24)
we transform equation (24) into the matrices forms by
usmg equation (13), we get

II [ -[Cu]-[H ()] dx dx - I[ (T -[cu]-[H (b)) dt

0

o

jZ’l-:[-I (X)]T .[Cuz],[H (t)] dx dt A,Z:[EJ:.[H ]T [CU [H ]dX dx dt
*‘em['* T -fev?} (e ax ax ot - H [H(t)] o dx
_"”H(X]T-[JZ]. H:]dt—” K -[3:)1[H@) dxd:_i”[H JH@oxet

...(25)
such that [Cu ];t [Cu], from equation (13) [Cuz] is
[cuz]=[H]- ] - [HT

...(26)
d b oo ] T

q¢

F(Xl) F(Xl) """ F(Xl)
F(Xz) F(Xz) """ F(Xz)
RS |
Flx,) Flx) = o F(x),
..(27)
where _
Xi=$ % i=123,.......
m is the dimension of the matrix.
G(t,) 6(t,) -~ - G(t,)
G(tl) G(tz) """ G(tm) (28)
Ol | P |
6t) Gft,) - - 6ty ).
and also
_I(tl) I(tz) """ I(tm)_
It) 1t,) - - It,)
[‘]3]: [H ]mxm : [H ]mxm
06 16) - 16
..(29)
where
ti:iJri;l =123
2m  m
[3.]-[0, ---30)

Now, by using the integrations (16),(17),(18) and (19),
the equations (25) becomes:

(] -[QA ] -feu} (H]- (HT - [eu} lou ]

-2 W] [QuT | MIHT foul (4T T | foa )]
~2-[HT -oi ] -loul-lou}[H]

w5 [T QAT | [M1-(HT ol ([T | [u W)

~ [T -2 [ [ HI-[HT -} [ou W]

[T -[QnT - [3s] [Qu][H]

A HT T [o.FHeu ]G3

such that the dimension for all matrices are MxmMm,[y] is
Haar wavelets matrix, [Q,,] is the operational matrix of

the Haar wavelet, [Cu] is the coefficient matrix of
u(xt):

Cu 0,0 Cu 0,1 Cu 0,m-1
Cul,o Cul,l Cul,m—l
cul=| : :
_Cu m-1,0 CU m-1,1 CU m-1,m-1 | mxm

by multiplying [H]T to the right hand side and [H] to
the left hand side of each term in equations (31), we get:

[0a] -feu]-leub@u]- 2 [QuT < [H}HT -lcul (HIF [T |lon]
o[t leubl@ule - QBT (W) (W] -foul HIF T [o]



=[a] BB en - Ru T -oshou - 20T -[o.F ) feu]
...(32)

To find the coefficient matrix [Cu] which have 2™ of
the elements respectively, we solve the equation (32)
which given nonlinear system of the equations such that

the variables number are 2™ and we will can be solved
this nonlinear system by Newton-Raphson method, after
this we find the matrix solution [u] by using the equation
(13) that is:

[u]=[H]"-[Cu]-[H]
5.Numerical results:

In this section, we have solved equation (32) with the
initial condition:

Ay +C, eXp(X)
0)=F(x)=22— 27
u(x,0) = F(x) e,
and mixed boundary conditions:
2
Ay tC € t
u(0,t)=G(t)= Hprq o0
43 +Cp (- 2t)
WY ). 47 ep(r)
X A3 +C, eXp(=A,t)
with ¢, =1,¢c, =Ly =1 4 =14, =1and 4, =1.
When m=4 then, from the equation (11),we get:

11 1 1
2 2 2 2
i1 1 1
2 2 2 2
[H]= 1 1, 0
2o 2
1 1
o o - -1
V2o V2]

from the equation (15), we get:

0.5 -0.25 -0.08838835 - 0.08838835
3 0.25 0 -0.08838835 0.08838835
[Q.]= 0.08838835 0.08838835 0 0
0.08838835 - 0.08838835 0 0

from the equations (27),(28) and (29), we get:

1+exp(l/8)
2
1+exp(3/8
2
(

)
1+exp(5/8)
)

2
1+exp(7/8
2

where -1

m

x, =1/8,x, =3/8,x,=5/8,x,=7/8-
1+exp(l/8) 1+exp(3/8) 1+exp(5/8)
1+exp(-1/8) 1+exp(-3/8) 1+exp(-5/8)
1+exp(1/8) 1+exp(3/8) 1+exp(5/8)

1+exp(-1/8) 1+exp(-3/8) 1+exp(-5/8)
1+exp(1/8) 1+exp(3/8) 1+exp(5/8)

1+exp(-1/8) 1+exp(-3/8) 1+exp(-5/8)
1+exp(l/8) 1+exp(3/8) 1+exp(5/8)

1+exp(-1/8) 1+exp(-3/8) 1+exp(~5/8)

1 i-1

"'2m m
t,=1/8,t,=3/8,t,=5/8,t,

exp(1/8) exp(3/8) exp(5/8)
1+exp(-1/8) 1l+exp(-3/8) 1l+exp(-5/8

exp(1/8) exp(3/8) exp(5/8)

[,]=H] 1+exp(-1/8) 1+exp(-3/8) 1+exp(-5/8

) ) )
exp(1/8) ) exp(3/8) ) exp(5/8) :
) ) )
) ) )

1+exp(7/8)

1+exp(-7/8)
1+exp(7/8)

1+exp(-7/8)
1+exp(7/8)

1+exp(-7/8)
1+exp(7/8)

1+exp(~7/8)

[3.]=[H] HT

where t = then

=71/8.

exp(7/8
1+exp( 7/8
xp(7/8
1+exp
exp(7/8
1+exp(-7/8
exp(7/8)
l+exp(-7/8

1+exp(-1/8) 1l+exp(—3/8) 1l+exp(-5/8
exp(1/8) exp(3/8) exp(5/8)
1+exp(-1/8) 1l+exp(—3/8) 1+exp(-5/8

p.J=[.f

Now, by substitute the matrices [Q, ],[3,].[3,]and [J;]
in the system (32) we get the nonlinear system consist of
16 equations and 16 variables represents the matrix
element [Cu] and by solving this system by Newton-

)
g WY
)
)

Raphson method, we obtain:

10.10183769

—1.89521262
—-0.50987624
—-0.85421023

[cu]=

—2.75857293 —0.75219935 —1.31428609 |

0.63010358
0.16954517
0.28412063

0.17830194
0.04533763
0.08412725

Now, by using the equation (13), we get:

[ul=[H]"-[cu]-[H]

121897916 1.57944828 2.04285639 2.64426733 ]
1.41429195 1.86543632 2.43987543 3.20809527
1.66361808 2.23745460 2.94331184 3.94463010
1.98260505 2.72469607 3.57568574 4.92209913 |

034581088
0.08340445
0.17254757 |

Table (1). A comparison between the operational matrix of the Haar wavelets method with exact solution for

nonlinear Murray equation with: m=4 C,

=1c,

=ly=1 4

=1,4,

=land 4, =1.

The value of (x) The value of (t) | The numerical solution | The exact solution of | The absolute error
of u(x,t) u(x,t)
0.125 0.125 1.21897916 1.21329571 0.00568345
0.125 0.375 1.57944828 1.56980863 0.00963965
0.125 0.625 2.04285639 2.03027312 0.01258327
0.125 0.875 2.64426733 2.62430764 0.01995968
0.375 0.125 1.41429195 1.40702557 0.00726638
0.375 0.375 1.86543632 1.84734180 0.01809451
0.375 0.625 2.43987543 2.42192096 0.01795447
0.375 0.875 3.20809527 3.16921683 0.03887843
0.625 0.125 1.66361808 1.65577963 0.00783845
0.625 0.375 2.23745460 2.20370145 0.03375315
0.625 0.625 2.94331184 2.92480673 0.01850511
0.625 0.875 3.94463010 3.86889407 0.07573602
0.875 0.125 1.98260505 1.97518616 0.00741889
0.875 0.375 2.72469607 2.66127629 0.06341977
0.875 0.625 3.57568574 3.57052484 0.00516090
0.875 0.875 4.92209913 4.76729744 0.15480169

Now when m=8 then, from the equation (11),we get:

q0



[0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 0.3536 0.3536 0.3536 -0.3536 -0.3536 - 0.3536 - 0.3536
0.5000 0.5000 -0.5000 -0.5000 0 0 0 0
| o 0 0 0 05000 0.5000 -0.5000 -0.5000
H= 07071 -0.7071 0 0 0 0 0 0
0 0 07071 -07071 0 0 0 0
0 0 0 0 0.7071 -0.7071 0 0
0 0 0 0 0 0 07071 -0.7071 |
[20.0712 -5.4431 -1.4417 -2.4719 -0.4421 -0.5818 -0.7618 -0.9933 |
-3.6959 1.2140 0.3056 0.5627 0.0880 0.1227 0.1677 0.2256
-1.0056 0.3304 0.0842 0.1539 0.0252 0.0346 0.0468 0.0625
-1.6547 0.5448 0.1388 0.2537 0.0416 0.0571 0.0772 0.1030
U=l 03160 01027 00262 00478 00078 00108 00145 00194
-0.4043 0.1319 0.0336 0.0614 0.0101 0.0138 0.0187 0.0249
-0.5177 0.1693 0.0431 0.0789 0.0129 0.0177 0.0240 0.0320
| -0.6633 0.2174 0.0554 0.1013 0.0166 0.0228 0.0308 0.0411 |
[1.0994 1.2507 1.4190 1.6133 1.8279 2.0773 2.3567 2.6769 |
1.1797 13467 15334 1.7492 19889 22674 2.5804 2.9395
1.2671 1.4519 1.6594 1.8996 2.1677 2.4792 2.8304 3.2335
,_|1:3695 15744 18056 20734 23737 27225 31170 35700
1.4852 1.7079 1.9673 2.2614 2.6042 2.9904 3.4353 3.9398
1.6159 1.8645 2.1543 2.4839 2.8680 3.3022 3.8026 4.3712
1.7605 2.0384 2.3626 2.7324 3.1633 3.6518 4.2152 4.8563
11.9277 22388 26019 3.0173 3.5013 4.0514 4.6860 5.4094

Table (2). A comparison between the operational matrix of the Haar wavelets method with exact solution for

nonlinear Murray equation with: m=8 ¢, =1,c, =1,y =1 ,4, =14, =1and 4, =1.

The value of (x) The value of (t) The numerical solution | The exact solution of | The absolute error
of u(xt) u(x,t)
0.0625 0.0625 1.09937606 1.09989383 0.00051777
0.0625 0.1875 1.25074607 1.24876384 0.00198223
0.0625 0.3125 1.41899616 1.41774616 0.00125000
0.0625 0.4375 1.61328036 1.60953036 0.00375000
0.0625 0.5625 1.82789323 1.82716100 0.00073223
0.0625 0.6875 2.07731696 2.07408472 0.00323223
0.0625 0.8125 2.35670372 2.35420372 0.00250000
0.0625 0.9375 2.67693647 2.67193647 0.00500000
0.1875 0.0625 1.17967123 1.17768899 0.00198223
0.1875 0.1875 1.34671970 1.34223747 0.00448223
0.1875 0.3125 1.53337426 1.52962426 0.00375000
0.1875 0.4375 1.74917743 1.74292743 0.00625000
0.1875 0.5625 1.98885723 1.98562410 0.00323223
0.1875 0.6875 2.26737974 2.26164751 0.00573223
0.1875 0.8125 2.58043810 2.57543810 0.00500000
0.1875 0.9375 2.93952095 2.93202095 0.00750000
0.3125 0.0625 1.26709247 1.26584247 0.00125000
0.3125 0.1875 1.45190697 1.44815697 0.00375000
0.3125 0.3125 1.65941651 1.65639875 0.00301777
0.3125 0.4375 1.89960388 1.89408611 0.00551777
0.3125 0.5625 2.16768823 2.16518823 0.00250000
0.3125 0.6875 2.47918399 2.47418399 0.00500000
0.3125 0.8125 2.83039725 2.82612949 0.00426777
0.3125 0.9375 3.23350304 3.22673527 0.00676777
0.4375 0.0625 1.36948344 1.36573344 0.00375000
0.4375 0.1875 1.57442949 1.56817949 0.00625000
0.4375 0.3125 1.80557083 1.80005306 0.00551777
0.4375 0.4375 2.07338910 2.06537134 0.00801777
0.4375 0.5625 2.37366003 2.36866003 0.00500000
0.4375 0.6875 2.72251937 2.71501937 0.00750000
0.4375 0.8125 3.11696782 3.11020005 0.00676777
0.4375 0.9375 3.56995811 3.56069035 0.00926777
0.5625 0.0625 1.48517474 1.47892474 0.00625000
0.5625 0.1875 1.70793283 1.70418283 0.00375000
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0.5625 0.3125 1.96731696 1.96283473 0.00448223
0.5625 0.4375 2.26144516 2.25946292 0.00198223
0.5625 0.5625 2.60422378 259922378 0.00500000
0.5625 0.6875 2.99042162 2.98792162 0.00250000
0.5625 0.8125 3.43532640 3.43209417 0.00323223
0.5625 0.9375 3.93984326 3.93911103 0.00073223
0.6875 0.0625 1.61593729 1.60718729 0.00875000
0.6875 0.1875 1.86454480 1.85829480 0.00625000
0.6875 0.3125 2.15427276 2.14729052 0.00698223
0.6875 0.4375 2.48387974 2.47939750 0.00448223
0.6875 0.5625 2.86798674 2.86048674 0.00750000
0.6875 0.6875 3.30216037 3.29716037 0.00500000
0.6875 0.8125 3.80258022 3.79684799 0.00573223
0.6875 0.9375 437115007 4.36791784 0.00323223
0.8125 0.0625 1.76054556 1.75252779 0.00801777
0.8125 0.1875 2.03844430 2.03292654 0.00551777
0.8125 0.3125 2.36255632 2.35630632 0.00625000
0.8125 0.4375 2.73236604 2.72861604 0.00375000
0.8125 0.5625 3.16330423 3.15653646 0.00676777
0.8125 0.6875 3.65184155 3.64757379 0.00426777
0.8125 0.8125 4.21516822 4.21016822 0.00500000
0.8125 0.9375 4.85631961 4.85381961 0.00250000
0.9375 0.0625 1.92773793 1.91922016 0.00851777
0.9375 0.1875 2.23882799 2.23081022 0.00801777
0.9375 0.3125 2.60190225 259315225 0.00875000
0.9375 0.4375 3.01726763 3.01101763 0.00625000
0.9375 0.5625 3.50127250 3.49200474 0.00926777
0.9375 0.6875 4.05141198 404464421 0.00676777
0.9375 0.8125 4.68602139 467852139 0.00750000
0.9375 0.9375 5.40941845 5.40441845 0.00500000
6.Conclusion:

In this paper, we solved the non-linear Murray equation
by using the operational matrices of the Haar wavelets
method. This method is very convenient for solving the
boundary value problems, since the boundary conditions
are taken care for automatically. It transforms the
nonlinear partial differential equation into a nonlinear
algebraic equation by using matrices representation,
which is implied to smooth solution. All these matrices
in this numerical solution are represented in all time
steps. We solved this nonlinear algebraic equations by
using Newton-Raphson method and we compared the
numerical solution with the exact solution of the Murray
equation. We obtained that this method is simple in the
computation and we note that the accuracy of the
obtained solution is quite high even if the number of
calculation points is small. This circumstance follows
from table (1) and figures (1) and (2) such that the
number of grid points (the dimensions of the matrices)
are 4*4. By increasing the number of collocation points
the error of the solution rapidly decreases as shown in the
table (2) and figures (3) and (4) such that the number of
grid points are 8*8.
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Figure (1). An illustration the numerical solution for
nonlinear Murray equation u(x,t) with: m=4
¢, =1c,=1y=1 4, =11,=1and 4, =1

Figure (2). An illustration the exact solution for nonlinear
Murray equation u(x,t) with: m=4 C; =1,¢, =Ly =1

Ay =14, =1and 4, =1.



Figure (3). An illustration the numerical solution for
nonlinear Murray equation u(x,t) with: m=8

C,=lc,=1y=1 ,4,=14,=1and 4, =1.
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Figure (4). An illustration the exact solution for
nonlinear Murray equation u(x,t) with: m=8

C,=lc =1y=1 4, =11,=1and 4, =1
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