Strongly semicontinuity in intuitionistic fuzzy specal topological spaces Hanna H. Alwan¹, Luma S. hany²

¹Education Dyalaa, Dyalaa

²Dep. of Mathematics, College of education For women, University of Tikrit, Tikrit, Iraq

(Received 13 / 10 / 2008, Accepted 15 / 12 / 2008)

Abstract

The aim of this paper is generalize the concept of fuzzy strongly semicontinuous due to Bai shi zhong [2] to intuitionistic fuzzy specal topological space. We study the relation between strongly semicontinuous with semicontinuous and precontinuous. Some of properties are studied using these concepts .We investigate several characterization.

1. Introduction

After the introduction of fuzzy by Zadeh there have been number of generalization of this fundamental concept . The notion of intuitionistic fuzzy sets introduced by Atanassov is one among them . Using the notion of intuitionistic fuzzy sets Coker[3] introduced the notion of intuitionistic fuzzy topological spaces[4]. The concept is used to define intuitionistic fuzzy specal set by Coker [7] and intuitionistic fuzzy specal topological spaces are introduced.

In section 3 we introduced the concepts of strong semiinterior and strong semi-closure. We also establish some of their properties. In section 4 we introduce strongly semicontinuous, strongly semi-open function. At the same time we establish some of their characteristic properties and also discuss the relations between those and continuous(open), semicontinuous, (semi-open, preopen functions).

preliminaries 2.

First we shall present the fundamental definitions **Definition 2.1** [8]

Let X be a nonempty set .An intuitionistic fuzzy special set A is an object having the form A = $\langle x, A_1, A_2 \rangle$, where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2$ $= \phi$. The set A_1 is called the set of members of A, while A_2 is called the set of nonmembers of A.

Definition2.2 [2]

Let $F: X \rightarrow Y$ where X and Y are ITS.

1. If $B = \langle x, B_1, B_2 \rangle$ is an intuitionistic fuzzy special set

in Y ,then the preimage of B under f denoted by $f^{-1}(B)$ and defined $f^{-1}(B) =$) $\langle x, f^{-1}(B_1), f^{-1}(B_2) \rangle$.

2. if A= $\langle x, A_1, A_2 \rangle$ is an intuitionistic fuzzy special set in X

, then the image of A under f denoted by f(A)and f (A) = $\langle y, f(A_1), f(A_2) \rangle$, where defined by

$$\underline{f}(A) = \left(f(A_2^c)\right)^c.$$

Corollary2.3 [10]

Let A, A_i ($i \in J$) be an intuitionistic fuzzy special sets in Χ

, B, B_i ($j \in K$) an intuitionistic fuzzy special sets in Y, and f: $X \rightarrow Y$ be function then

- 1. $A_1 \subseteq A_2 \rightarrow f(A_1) \subseteq f(A_2),$
- 2.
- $\begin{array}{l} B_1 \subseteq B_2 \xrightarrow{} f^{-1}(B_1) \subseteq f^{-1}(B_2) , \\ A \subseteq f^{-1} (f(A)) \text{ ,and if f is injective , then } A = \end{array}$ 3. $f^{-1}\left(\mathrm{f}\left(\mathrm{A}\right) \right) ,$

 $f(f^{-1}(B) \subseteq B)$, and if f is surjective, then 4. $f(f^{-1}(B)) = B$.

5.
$$f^{-1}(\cup B_j) = \bigcup f^{-1}(B_j),$$

6.
$$f^{-1}(\cap Bj) = \cap f^{-1}(Bj),$$

- 7. $f(U A_i) = U f(A_i)$,
- $f(\cap A_i) \subseteq \cap f(A_i)$, if f is injective, then $f(\cap$ 8. $A_{i} = \bigcap f(A_i)$,
- $f^{-1}(\widetilde{Y}) = \widetilde{X}, f^{-1}(\widetilde{\Phi}) = \widetilde{\Phi},$ 9.
- if f is surjective f ($\widetilde{\mathbf{X}}$) = $\widetilde{\mathbf{Y}}$, $f^{-1}(\overline{B})$ = 10. $f^{-1}(B)$.11

12. if f is surjective then $\overline{(f(A))} \subseteq f(\overline{A})$ and if furthermore f is injective , we have $\overline{(f(A))} = f$ (A).

Definition2.4

Let (X,T) be aspace and let A be an intuitionistic fuzzy special sat of X. Then A is called :

- 1- intuitionistic fuzzy special semi-open set (SOS, for short) iff $A \subset cl(int(A))[1]$.
- 2- intuitionistic fuzzy special pre-open set (POS, for short) iff $A \subseteq int(cl(A))[1]$.
- 3- intuitionistic fuzzy special semi-closed set (SCS, for short) iff $int(cl(A)) \subset A$. [6].
- 4intuitionistic fuzzy special pre-closed set (PCS, for short) iff $cl(int (A)) \subseteq A$. [5].

We denoted SO(X) to the family of intuitionistic fuzzy semi-open sets of a space (X,T)

- 5- intuitionistic fuzzy special strongly semi-open set of X iff there is open set $B \in T$ such that $B \subset$ $A \subset int(cl(B)).$
- 6- intuitionistic fuzzy special strongly semi-closed set of X iff there is closed set $B \in X$ such that $cl(int(B)) \subseteq A \subseteq B.$

Definition2.5[7]

An intuitionistic fuzzy special topology on a nonempty set X is family T of intuitionistic fuzzy special sets in X containing $\tilde{\Phi}$, \tilde{X}

And closed under finite infima and arbitrary suprema in this case

the pair (X, T) is called an intuitionistic fuzzy special topological space and any intuitionistic fuzzy special set in T known open set in X.

From now the word space means an intuitionistic fuzzy special topological space.

Definition26 [2]

Let A be an intuitionistic fuzzy special set in a space (X, T). Then

1. sintA = \cup { B : B \subseteq A B \in SO(X) } is called the semi-interior of A .

2. sclA = \cap { B : A \subseteq B B \in SC(X) } is called the semiclosure of A.

Definition2.7 [3]

An intuitionistic fuzzy special set A in a space (X, T) is called an intuitionistic fuzzy special preopen set if $A \subseteq$ intclA

The complement of an intuitionistic fuzzy special preopen set A is called an intuitionistic fuzzy special preclosed set in X.

Definition2.8 [5]

Let f: X \rightarrow Y be a function from a space (X, T) into a space (Y, ψ) then :

1. f is continuous function if $f^{-1}(B)$ is open set of X for each set B in Y.

2. f is semicontinuous if $f^{-1}(B)$ is semi-open set in X , for each open set B in Y .

3- f is precontinuous if $f^{-1}(B)$ is pre-open set in X ,for each open set B in Y .

4- f is semi-open (semi-closed) function if f (A) is semi-open (semi-closed) set of Y ,for each open set A in X .

5- f is pre-open (pre-closed) function if f(A) is pre-open (pre-closed) set of Y, for each open set A in X.

3- Intuitionistic fuzzy special strongly semiinterior and strongly semi-closure Definition3.1

Let A be an intuitionistic fuzzy special set in a space (X, T). Then.

- SSint A =∪ {B: B ⊆ A, B is strongly semiopen set of X} is called intuitionistic fuzzy special strongly semi-interior of A.
- SSCI = ∩ B: B ⊆ A, B is strongly semi-closed set of X} is called intuitionistic fuzzy special strongly semi-closure of A

proposition3.2

Let A and B an intuitionistic fuzzy special set A in a space (X, T), then the following statement are valid

$$\begin{array}{ll} 1 & \text{intA} \subseteq \text{SSintA} \subseteq \text{SintA} \subseteq \text{A} \subseteq \text{SclA} \\ & \subseteq \text{SSclA} \subseteq \text{clA} \end{array}$$

- 2- $A \subseteq B \Rightarrow SSintA \subseteq SSintB; SSclA \subseteq SSclB$
- 3- SSintX=X;SSclX=X , SSint ϕ =

$$\phi$$
; SScl ϕ = ϕ

4- $A \in SSO(X)$ iff SSintA=A

5-
$$A \subseteq SSO(X)$$
 ff SSclA=A

- 6- SSint(SSintA)=SSintA, SScl(SSclA)=SSclA
- $7 \quad \text{SSCI(SSCIA)} = \text{SSCIA}$
- 7- SSint $(A \cap B) \subseteq$ SSintA \cap SSintB and
- 8- $SScl(AUB) \subseteq SSclAU SSclB$

<u>Proof</u> This is immediate from definition 3.1 **<u>Theorem3.3</u>** Let Abe an intuitionistic fuzzy specal set of space (X, T), then :

1- SSintA =SScl A

2-
$$\overline{\text{SSintA}} = \text{SSint}\overline{\text{A}}$$

We prove only (1)

By [prop. 3.2] SSintA \subseteq A and SSintA \in SSO(X), then $\overline{A} \subseteq \overline{SSintA}$

And SSintA is strongly semi-closed set in X

Hance SScl A \subseteq SSintA (1) Conversely

By [prop. 3.2] $A \subseteq SSintA$ and SScIA is strongly semi-closed set in X

Then $\overline{\text{SSintA}} \subseteq \overline{\text{A}}$ and $\overline{\text{SSintA}} \in \text{SSO}(X)$ So that

 $\operatorname{SScl}\overline{A} \subseteq \operatorname{SSintA} A$

Hance $SSintA \subseteq SSclA \dots \dots (2)$ From (1) and (2) we get

SSintA =SScl A

In the sam way we prove 2

4-Intuitionistic fuzzy special strongly semicontinuous, strongly semi-open and strongly semi-closed functions Definition4.1 [1]

Let f: $X \rightarrow Y$ be a function from a space (X, T) into a space

 (Y,ψ) . The function f is called;

1. strongly semicontinuous if $f^{-1}(B)$ is strongly semiopen set in X, for each open set B in Y.

2- strongly semi-open function if $f\left(A\right)$ is semi-open set in Y ,for each open set A in X .

3- strongly semi-closed function if f(A) is semi-closed set in Y, for each closed set A in X.

Theorem4.2

Let f: $X \to Y$ be a function from a space (X, T) into a space

 (Y,ψ) then the following are equivalent:

1. f is strongly semicontinuous.

 $2 - f^{-1}(B)$ is strongly semi-closed set in X , for each closed set B of Y .

3- f (SSclA) \subseteq clA ,for each set A of X

4- $SScl(f^{-1}(B)) \subseteq f^{-1}(clB)$ for each set B of Y.

$$5 - f^{-1}(\text{intB}) \subseteq \text{SSint}(f^{-1}(B))$$
 for each set Bof Y

Theorem4.3

Let f: $X \to Y$ be a function from a space (X, T) into a space (Y, ψ) where is one-one and onto , then f is strongly semicontinuous function iff $(f(A)) \subseteq (SSintA)$ for each set A of X

Proof

Let f be strongly semicontinuous and A be any open set of X, then (int $f^{-1}(A)$) is strongly semi- open set in X. By theorem 4.2 and fact that f is one –one, we have f ¹(intf (A)) \subseteq SSint $f^{-1}f(A)$)=SSintA again since f is onto, we have intf(A) \subseteq f f^{-1} (intA) \subseteq (SSintA) Conversely

Let B open set in Y, then B =intB By hypothesis $f(SSint(f^{-1}(B))) \supseteq int(ff^{-1}(B))=intB=B$

This implies that

$$(f^{-1}(B)) = f^{-1}f(SSint(f^{-1}(B))) \supseteq f^{-1}(B)$$

Hance

 f^{-1} (B)=SSint(f^{-1} (B)), i.e f^{-1} (B) is strongly semiopen set of X

Thus

F is strongly semicontinuous.

Theorem4.4

Let f: X \rightarrow Y be a function from a space (X, T) into a space

 (Y,ψ) then the following are equivalent:

- 1. f is strongly semicontinuous
- 2. $f(intA) \subseteq SSint(f(A))$ for each set A of X.
- 3. $\operatorname{int}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{SSint}B)$ for each set B of Y.

Proof (1) \Leftrightarrow (2) \Leftrightarrow (3) . analogous to the proof of theorem 4.2

Theorem4.5

Let f: X \rightarrow Y be a function from a space (X, T) into a space

 (Y,ψ) where is one-one and onto , then f is strongly semiclosed function iff $f^{-1}(SSclB) \subseteq cl(f^{-1}(B))$ for each set B of Y. Proof analogous to the proof of theorem 4.3

Theorem4.6

For the function f: $X \to Y$ from a space (X, T) into a space

 (Y,ψ) then the following statements are valid

- 1- if f is continous then is stongly semicontinuous then f is semicontinuous.
- 2- if f is open (closed) then f is stongly semiopen(stongly semi-closed).
- 3- If f is strongly semicontinuous then f is precontinuous.
- 4- If f is stongly semi-open (stongly semiclosed) then f is pre-open (pre-closed).
- 5- If f is stongly semi-open (stongly semiclosed) then f is semi-open (semi-closed).

Example 4.7

Let X ={1,2,3}, T= $\langle \tilde{\Phi} , \tilde{X}, A, B \rangle$, where A= $\langle x, \{1\}, \{2,3\} \rangle$, B= $\langle x, \{1,2\}, \tilde{\Phi} \rangle$ and Y= {a,b,c}, $\psi = \langle \tilde{\Phi} , \tilde{Y} \rangle$, C} where C= $\langle y, \{a,c\}, \{b\} \rangle$

References

[1] B. Krsteska ,Fuzzy strongly pre-open sets and Fuzzy strong

precontinuity ,Math. Vesnink 50 (1998),111-123

[2] B.S.Zhong, Fuzzy strongly semi-open sets and Fuzzy strong semicontinuity, Fuzzy set and systems 52 (1992) 345-351

[3] D. Coker, An introduction to intuitionistic Fuzzy topological spaces ,fuzzy sets and system ,88(1997) 81-89.

[4] J.K.Jone& Y.b.Jun.park, Intuitionistic Fuzzy alphacontinuity and intuitionistic Fuzzy precontinuity, IJMMS, 19 (2005), 3091-3101

[5] K .K Azad , On Fuzzy semicontinuity ,Fuzzy almost continuity and weakly continuity , J.Math. Anal.Appl. 82 (1981) 14-32

[6] K.M. Abd EL- Hakeim ,Fuzzy weakly totally semicontinuous mappings , Fuzzy set and systems , 119 (2001) 505-512

[7] S. Ozcag & D. coker , On connectedness in intuitionistic Fuzzy special topological spaces , Internat . J.Math. Math. SCI. 21 (1998) ,no. 1, 33-4

Defined a function $f: X \rightarrow Y$ as follows f(1)=a, f(2)=b, f(3)=c

f is not continuous since $f^{-1}(C) = \langle x, \{1,2,3\}, \{2\} \rangle \notin T$ But f is strongly semicontinuous since intclint $f^{-1}(C) = intclA = X$

And $f^{-1}(C) \subseteq X$, so f is precontinuous where intel $f^{-1}(C) = X$

From example 4.7 we conclude that:

- 1- f is not continuous but f is precontinuous.
- 2- f is not continuous but f is strongly semicontinuous.
- 3- f is not continuous but f is semicontinuous.

Example 4.8

Let X ={1,2,3}, T= $\langle \widetilde{A}, \widetilde{X}, \phi \rangle$, where A= $\langle x, \{2\}, \langle 2 \rangle$

{1,3}>, And Y= {a,b,c}, $\psi = \langle \widetilde{\Phi}, \widetilde{Y}, B \rangle$ where B=<y,{a},{c} > Defined a function f: X \rightarrow Y as follows f(1)=a,f(2)=b,f(3)=c

f is not continuous since f $^{\text{-1}}(B) = <x, \{1\}$, $\{3\} > \not\in T$

also f is not semicontinuous since intclint f⁻¹(B)= ϕ

And
$$f^{-1}(B) \not\subset \phi$$

But f is precontinuous since intel $f^{-1}(B)=X$ and $f^{-1}(B)\subseteq X$

Example 4.9

Let X ={1,2,3}, T=< \widetilde{A} , \widetilde{B} , \widetilde{X} , ϕ } , where A= <x,{1},{2,3}>,

$$B = \langle x, \{2\}, \{1\} \rangle, C = \langle x, \{1,2\}, \phi \rangle$$

And Y= {a,b,c,d}, $\psi = \langle \widetilde{\Phi}, \widetilde{Y}, D \rangle$ where D= $\langle y, \{a, b\}, \{c,d\} \rangle$ Defined a function f: X \rightarrow Y as follows f(1)=a,f(2)=b, f(3)=c

 f^{-1} (D) =<x,{2,3} , {1} > \notin T, so f is not continuous but is semicontinuous since clint f^{-1} (D)=clB=A

[8] S. O zcag& D. Coker . A note on connectedness in intuitionistic Fuzzy special topological spaces, Internat. J. Math. & Math. SCI.VOL. 23,No 1 (2000) 45-54.