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Abstract –In this paper, a mobile manipulator consisting of four degrees of freedom 
(4-DOF) robotic manipulator mounted at the top of a mobile platform (front point) of a 
mobile robot with four differential drive wheels is presented. A mobile manipulator 
combines the dexterous manipulator capability offered by fixed-based manipulators and 
the mobility offered by the mobile robot. The work involves the modeling of mobile 
manipulator robot and using the partial feedback linearization approach. The central 
idea is to algebraically transform nonlinear systems dynamics into partially linear form, 
so that linear control techniques can be applied to control on the wheel mobile 
manipulator robot in order to track any trajectory such as an ellipse, circle….etc, 
without violating the non holonomic constraints. However, and in order to consider the 
uncertainty in system parameters and the effects of the external disturbances a nonlinear 
PID controller is proposed in this work. The results demonstrate a good ability of the 
designed nonlinear PID controller in regulating the mobile robot to track the desired 
path in the presence of the external disturbances and the uncertainty in system 
parameters 
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1. Introduction 
A mobile manipulator is nowadays a 

widespread term to refer to robots built 
from a robotic arm mounted on a mobile 
platform. Such systems combine the 
advantages of mobile platforms and 
robotic arms and reduce their drawbacks. 
For instance, the mobile platform extends 
the arm workspace, whereas an arm offers 
much operational functionality.  
Applications for such systems are abound 
in nuclear reactor maintenance, 
construction, military, mining, agriculture 
and planetary exploration [1]. Although 
appeared very early in robotics history a 
host of issues related to mobile 
manipulators have mainly been studied in 
recent years [2]. These include dynamic 
and static stability, force development and 
application, control in the presence of 
base compliance, dynamic coupling issues 
particularly; motion planning has 
generally been treated within the 
framework of optimal control. Mobile 
manipulators can be built based on 
various mobile platform designs that 
differ by the drive mechanism employed. 
The most commonly available mobile 
platforms use either a differential drive or 
a car-like drive. The former employs two 
independently driven wheels with a 
common axis, and casters that add 
stability to the mobile platform. The later 
is a tricycle design in which the driving 
front wheel is also used for steering [3]. 
Therefore mobile manipulator is an open 
field for many important and original 
research problems. 

 
This paper focuses on the trajectory 

tracking and control on the wheel mobile 
manipulator robot, where the four degrees 
of freedom manipulator AL5A type and 
the four driving wheel differential mobile 
robot A4WD1 type used in this work. For 
more details the reader can refer to [13]. 

2. Mobile Manipulator Robot 
Description  

The mobile robot (A4WD1) under 
study is made up of a rigid cart equipped 
with non-deformable four wheels which 
driven by four DC motors, with four 
degrees of freedom manipulator (AL5A) 
mounted at the front point of the platform. 

 

 
Figure 1 Mobile robot with four wheels 

differential drive 
 
 Figure 1 shows the mobile robot with 
four wheels differential drive;  where r is 
radius of the mobile robot’s wheel (cm), L 
is the distance between the two wheels of 
the robot (cm),fୋ is the location of point 
FP with respect to point G (cm),d is the 
distance from P to G (cm), FP is the place 
of manipulator,   G is the center of mass, 
and P is located in the middle of the axis 
that contacts the rear wheels of the mobile 
robot. 

 
3. Kinematic Model of A4WD1 

Mobile Robot 
Kinematics is the study of the 

mathematics of motion (position and 
velocity) without considering the forces 
that affect the motion, robot kinematics 
describe robot movements [4]. This 
section analyzes the kinematics of 2-DOF 
differential drive vehicle shown in   Fig. 
1. The purpose of kinematics is to define 
the relationship between all known or 
measurable positions and velocities, and 
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all quantities, which are computed by 
kinematics. 

3.1. Position of A4WD1 Mobile Robot 

  In order to specify the position of the 
robot on the plane, a relationship between 
the world reference frame of the plane 
and the local reference frame of the robot 
must be established. The origin Oof the 
world reference frame is selected at an 
arbitrary point on the plane as shown in 
Fig. 2, the point G is the centre of mass of 
the mobile robot, and specified by 
coordinates ݔୋ andݕୋ. The origin G of the 
local reference frame of the 
robot		X୫,Y୫is at the centre of the robot. 
The position of point Pin the local 
reference frame is specified by 
coordinates ݔ୔ andݕ୔. The angular 
difference between the world and local 
reference frames is given byߠ. The pose 
of the robot is described by a vector q, 
where: 
 

ܙ = ቎

ୋݔ
ୋݕ
ߠ

቏                                                 (1) 

 
Figure 2  Posture coordinates of mobile robot type 

A4WD1. 
 

3.2. Velocity of  A4WD1 Mobile Robot 
 
The velocity vector of the robot center of 

mass	Vୋ  where itsݔୋ,ݕୋ components are given by: 
 

ୋݔ̇ =	Vୋ	cos	(ߠ)                                       (2) 
ୋݕ̇ =		 Vୋsin	(ߠ)                                       (3) 
 
Dividing (3) by (2), we obtain: 

ߠ = tanିଵ ௬̇ృ
௫̇ృ

                                             (4) 

The linear velocity of the wheel 
symbolized by (ܸ), having angular 
velocity (φ̇), is expressed by; 

ܸ = φ̇	r                                                     (5) 

The velocity vector of the robot center 
of mass can be obtained by; 

Vୋ =
୚ైା	୚౎		

ଶ
                       (6) 

According to (6) the linear velocity for 
the left and the right wheels are in 
respective order; 

V୐ =	φ୐̇ 	r                                                  (7) 

Vୖ = φୖ̇	r                                                  (8) 

The mobile robot body rotational velocity 
is: 

ߠ̇ = ߱ = ୚౎ି୚ై
୐

= ୰
୐
	(	φୖ̇ − φ୐̇ )              (9) 

 
The kinematic equations of the mobile 
robot are: 

 

ܙ̇ = ൦

ୋݔ̇
ୋݕ̇
ߠ̇

൪ = ൥
cos(ߠ) 							0				
sin(ߠ) 							0				
0															1	

൩ ቂVୋ߱ ቃ           (10)                          

and, 

ቂVୋ߱ ቃ =

⎣
⎢
⎢
⎢
⎡
୰
ଶ
୰
ଶ

୰
୐
− ୰

୐
⎦
⎥
⎥
⎥
⎤
൤φୖ̇
φ୐̇
൨                                  (11)     

Combining (10) and (11) yields: 
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൦

ୋݔ̇
ୋݕ̇
ߠ̇

൪ =

⎣
⎢
⎢
⎢
⎡
୰
ଶ
cos(ߠ) ୰

ଶ
cos(ߠ)

୰
ଶ
sin(ߠ) ୰

ଶ
sin(ߠ)

୰
୐
− ୰

୐ ⎦
⎥
⎥
⎥
⎤
൤φୖ̇
φ୐̇
൨            (12) 

To construct viable system trajectories, 
the differential kinematics are required for 
point FP on the mobile platform. This 
point might be the base of arm or camera. 
On the other hand the system dynamics is 
minimum phase when designing the 
control law by considering the front point 
as the output [4]. It can be shown that this 
differential kinematics is described by 
[5]: 

൦

୊ݔ̇
୊ݕ̇
ߠ̇

൪ = ୰
ଶ
൦
cos(ߠ) −nଵ cos(ߠ) +nଵ
sin	(ߠ) + nଶ sin(ߠ) − nଶ

ଶ
	୐
− ଶ

	୐

൪ ൤φୖ̇
φ୐̇
൨   

                                                          (13) 

where   nଵ =
ଶ	୤ృ	ୱ୧୬	(஘)

୐
 , nଶ =

ଶ	୤ృ	ୡ୭ୱ	(஘)
୐

 

3.3. Kinematic Constraint of A4WD1 
Mobile Robot 

The mobile platform is subjected to 
three constraints. The first one is that the 
mobile robot cannot move in the lateral 
direction, which means that the platform 
must move in the direction of axis of 
symmetry. By multiplying (2) by sin(ߠ) 
and (3) by cos(ߠ), and subtract them 
results in; 
 
ୋݕ̇ cos(ߠ) − ୋݔ̇ sin(ߠ) = 0                     (14) 
 
Equation (14) can be expressed in terms 
of the coordinates (ݔ௉ ,  ௉) of the point Pݕ
on the platform: 
 
x୔ =	 xୋ − dcos(θ)                                (15) 
୔ݕ = ୋݕ − ݀sin	(ߠ)                                 (16) 
 
The velocity of point P which is located 
along the same axis of point G as: 
 
୔ݔ̇ =	 ୋݔ̇ +  (17)                            (ߠ)	sinߠ̇݀	

୔ݕ̇ = ୋݕ̇ −  (18)                             (ߠ)	cosߠ̇݀
 
Rewriting and arrangement of (17) and (18), 
we obtain: 
 
ୋݔ̇ =	 ୔ݔ̇ −  (19)                             (ߠ)	sinߠ̇݀
ୋݕ̇ = ୔ݕ̇ +  (20)                            (ߠ)	cosߠ̇݀	
 

From (14), (19), and (20) we obtain the 
first constraint: 
 
୔ݕ̇ cos(ߠ) − ୔ݔ̇ sin(ߠ) − ߠ̇݀ = 0          (21) 
 

The other two constraints are that the 
four driving wheels roll without slip. This 
implies that; 

୔ݔ̇ cos(ߠ) + ୔ݕ̇ sin(ߠ) + ߠ݈̇ = φୖ̇	r        (22) 
୔ݔ̇ cos(ߠ) + ୔ݕ̇ sin(ߠ) − ߠ݈̇ = φ୐̇ 	r        (23) 
 
whereφୖ and φ୐ are angular positions of 
the right wheel and the left wheel 
respectively, and݈is the distance between 
the driving wheels and point P as shown 
in Fig. 2( ݈ = ୐

ଶ
 ) . The coordinate vector 

of mobile robot at point P becomes: 
ܙ = ,୔ݔ] ,୔ݕ ,ߠ φୖ		, φ୐]୘ 

= [	qଵ , qଶ, qଷ , qସ , qହ]୘                            (24) 
 
While at point G the coordinate vector of 
the mobile robot is: 
 

ܙ = ,ୋݔ] ,ୋݕ ,ߠ φୖ		, φ୐]୘ 
= 	[	qଵ , qଶ, qଷ , qସ , qହ]୘                           (25) 

Hence, the three constrains can be written 
in Pfaffian form as follows [6], [7] and 
[8]: 

.(q)ۯ ܙ̇ = 0                                            (26) 
 

(q)ۯ = ൦

−sin	(ߠ) 			cos	(ߠ) −݀			0			0			
−cos	(ߠ) −sin	(ߠ) −݈				r					0					
−cos	(ߠ) −sin	(ߠ) ݈					0						r					 ൪ 

(27) 
or 
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(q)ۯ = ൦

aଵଵ aଵଶ aଵଷaଵସaଵହ
aଶଵ aଶଶ aଶଷaଶସaଶହ
aଷଵ aଷଶ 	aଷଷaଷସaଷହ

൪               (28) 

 
Equations (22) and (23) are the nonholonomic 
constraint and (21) is the holonomic 
constraint [7]. 

4. Equation of Motion of A4WD1 
Mobile Robot 

For accurate mobile robot system 
description, it is necessary to generate an 
appropriate dynamic model. The dynamic 
model allows the consideration of such 
properties as: mass, inertia, friction 
forces, centrifugal force, torque, etc. 
Mobile robot dynamical model is very 
important in cases when mobile robot 
velocities generate forces whose influence 
cannot be neglected during movement, so 
those appropriate control strategies and 
trajectories need to include mobile robot 
dynamic properties [9]. Dynamics motion 
equation can also be derived using Euler-
Lagrange. According to 
(29),L(ݍ,  stands for difference of	(ݍ̇
kineticܭ and potentialܸ energy. Under 
assumption that mobile robot moves only 
on a plane surface, potential energy of 
robot is zero (ܸ	 = 	0), and we have to 
find only the kinetic energy of the mobile 
robot. 

 
,ݍ)ܮ (ݍ̇ = ,ݍ)ܭ (ݍ̇ − (ݍ)ܸ = ,ݍ)ܭ  (29)      (ݍ̇

 
The equations of motion of non-

holonomically constrained systems are 
governed by [6,7]: 
 
ܙ̈(q)ۻ + 	۱(q, q̇) + 	۵(q) = ۳(q)τ +
୘(q)ۯ																																																								   (30) 

Where ۻ	(q) is the n x n dimensional 
positive definite inertia and mass 
matrix,۱(q, q̇) represents  the n vector of 
centripetal and coriol is torques,۵(q) is 
the gravitational force vector,߬ is the r-
dimensional vector of actuator 

force/torque, E(q) is the n x r 
dimensional matrix mapping the actuator 
space into the generalized coordinate 
space,  is an ݉-dimensional vector of  
Lagrange multiplierswith݉ represents 
the number of nonholinomic constraints 
and ۯ(q) is as defined in (27). The 
Lagrange equations of motion for the 
nonholonomic mobile robot system are 
governed by [10]: 

݀
ݔ݀

൬
ܭ߲
௜ݍ߲̇

൰ −
ܭ߲
௜ݍ߲

= ܳ௜ − ܽଵ௜ߣଵ − ܽଶ௜ߣଶ, 

݅ = 1, . . ,4                                                (31) 

Where Q୧ is the Lagrange force, a୧୨, j =
1,2 is given by (28), and ߣଵ	,  ଶ are theߣ
Lagrange multipliers. To obtain the 
holonomic constraint, we subtract (22) 
from (23),which leads to: 
 
ߠ2݈̇ = ோ̇߮)ݎ − ߮̇௅)                                   (32) 
 

Let constantܿ = ୰
ଶ௟

, and take the 
integral for both sides of (32) and 
properly choosing the initial condition of 
 :, and ߮௅ we can get		ோ߮,ߠ

ߠ = ܿ(߮ோ − ߮௅)                                      (33) 

This is clearly a holonomic constraint. 
Thus ߠ may be eliminated from the 
coordinate vector, where the coordinate 
vector ܙbecomes: 

ܙ = ,ୋݔ] ,ୋݕ φୖ		, φ୐]୘=[	qଵ , qଶ , qଷ, qସ]୘  (34)  
 
By adding (22) and (23) we obtain: 

୔ݔ̇ cos(ߠ) + ୔ݕ̇ sin(ߠ) = ܿ(φ̇ୖ + φ̇୐)      (35) 

The resultant two nonholonomic 
constraints are: 

ୋݔ̇ sin(ߠ) − ୋݕ̇ cos(ߠ) = 0                       (36) 
୔ݔ̇ cos(ߠ) + ୔ݕ̇ sin(ߠ) = ܿ(φ̇ୖ + φ̇୐)      (37)        
 
Also ۯ(q)( (27)) becomes: 
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(q)ۯ = ൤−sin
(ߠ) cos(ߠ) 			0			0

− cos(ߠ) −sin(ߠ) ܿܿ ൨ 

= ቂ
aଵଵ aଵଶaଵଷaଵସ
aଶଵ aଶଶaଶଷ			aଶସቃ                             (38) 

 
To apply the Lagrange formulation, the 

total kinetic energy of the mobile base 
and the right and left wheels are [11]: 

ܭ =
1
2
ଶீݔ̇)݉ + (ଶீݕ̇

+ ݉௖ܿ(߮̇ோ
− 															߮̇ ௅)൫̇(ߠ)ݏ݋ܿீݕ
− ൯(ߠ)݊݅ݏீݔ̇

+																				
1
2
ఠ(߮̇ோଶܫ + ߮̇௅ଶ)

+
1
2
ଶ(߮̇ோܿܫ − ߮̇௅)ଶ 

                                                         (39) 
where 

݉ = ݉௖ + 	4	݉ఠ +݉௠ 

ܫ = 	 ௖ܫ +  ఠܫ	4	

I is the moment of inertia of entire mobile 
robot with respect to the center of mass 
about vertical axis (kg.cm 2  ௖ is theܫ ,(
moment of inertia of platform without the 
driving wheel and motor rotor about 
vertical axis through G (kg.cm 2  ఠ is theܫ,(
moment of inertia of each wheel and the 
motor rotor about the wheel axis (kg.cm 2

),݉ is the mass of entire mobile robot 
(kg),݉௖ is the mass of the platform 
without the driving wheels and the rotors 
of DC motors (kg),݉ఠ is the mass of each 
driving wheel plus the rotor of DC motor 
(kg),݉௠ is the mass of the manipulator at 
FP (kg).Substituting the total kinetic 
energy (39) into (31), and substitute ߠ 
instead of ܿ(߮ோ −߮௅) according (33) we 
obtain: 

ୋݔ̈݉ −݉௖൫̈ߠ݊݅ݏߠ +	 ൯ߠݏ݋ଶܿߠ̇ − ߠ݊݅ݏଵߣ −
ߠݏ݋ଶܿߣ = 0	                                          (40) 
 
ୋݕ̈݉ +݉௖൫̈ߠݏ݋ܿߠ − ൯ߠ݊݅ݏଶߠ̇ + ߠݏ݋ଵܿߣ

− ߠ݊݅ݏଶߣ = 0 
                                                                   (41) 

݉௖ܿ(̈ݕୋܿߠݏ݋ − (ߠ݊݅ݏୋݔ̈
+ (Iܿଶ +																						 Iఠ)̈ୖߠ
− Iܿଶ̈ߠ୐ − τୖ + ଶߣܿ = 0 

                                                                       (42) 
−݉௖ܿ(̈ݕୋܿߠݏ݋ − (ߠ݊݅ݏୋݔ̈ − Iܿଶ̈ୖߠ

+																									 (Iܿଶ + Iఠ)̈ߠ୐
− τ୐ + ଶߣܿ = 0 

                                                                       (43)                         
These five equations of motion can be 

written in matrix form as: 
 
q̈(q)ۻ + 	۱(q, q̇) = ۳(q)τ −  ୘(q)λ     (44)ۯ
 
This equation is a form of (30) which 
ignores the gravity element. The matrices 
,q̈(q)ۻ ۱(q, q̇), and	۳(q) are given by: 

(q)ۻ = 

⎣
⎢
⎢
⎢
⎡ ݉ 0							 −݉௖ܿsinߠ
0																	 ݉ ݉௖ܿcosߠ
−݉௖ܿsinߠ ݉௖ܿcosߠ 							Iܿଶ + Iఠ

݉௖ܿsinߠ
–݉௖ܿcosߠ
−Iܿଶ

݉௖ܿsinߠ − ݉௖ܿcosߠ − Iܿଶ														Iܿଶ + Iఠ
⎦
⎥
⎥
⎥
⎤

 

۱(q, q̇) =

⎣
⎢
⎢
⎢
⎡−݉௖̇ߠଶcosߠ
−݉௖̇ߠଶsinߠ

0
	0 ⎦

⎥
⎥
⎥
⎤

,߬ = 	 ቂ
	߬ோ
߬௅ ቃ, 

ߣ = ൤ߣଵߣଶ
൨      and      ۳(q) = ൦

0					0
0						0
1						0
0						1

൪ 

The robot parameters are given in 
Table 1, where they were taken from the 
manufacture data [13] except I௖ and Iఠ 
where they were calculated. 

 
Table 1. Robot Parameters 

cm
ωm

I
Ic

2cmkg
2cmkg

mm
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For more details about manipulator 
robot (4-DOF) dynamics and kinematics 
(forward & inverse) the reader may refer 
to [10]. 

5. Partial Feedback Linearization 
Feedback linearization is an approach 

to nonlinear control design that has 
attracted lots of research in recent years. 
The central idea is to algebraically 
transform nonlinear systems dynamics 
into (fully or partly) linear ones, so that 
linear control techniques can be applied. 
The basic idea of simplifying the form of 
a system by choosing a different state 
representation is not completely 
unfamiliar; rather it is similar to the 
choice of reference frames or coordinate 
systems in mechanics. The applications of 
feedback linearization include helicopters, 
high-performance aircraft, industrial 
robots, biomedical devices, and vehicle 
control [11] and [12]. 

Backing to (44) we see that the number 
of degree of freedom is greater than the 
number of actuators (four degree of 
freedom and two actuators). Accordingly 
the system is classified as under actuator 
mechanical system. One can design a 
controller for this type of system is by 
partially linearizing it with respect to 
desired outputs. It is also named as input-
output linearization [14]. Here it is 
required that the number of outputs is 
equal to the actuator numbers and also the 
system are minimum phase with respect 
to these outputs (refer to reference [15] 
for more details about the minimum phase 
concept).  

In order to partially linearize the 
system dynamics as given by (45), we 
need first to write the system dynamics 
independent of Lagrange multipliers ߣ 
and secondly assign two outputs for input-
output linearization.  

6. Input-Output Linearization 
As a first step to input output 

linearization we will represent the motion 
(44) and the constraint (26) independent 
of ߣ in state space by properly choosing a 
state vector. To do so, we define a 4 2 
dimensional matrix (ݍ)ࡿ such that 
(ݍ)ࡿ(ݍ)࡭ 	= 0 [11]. It is straightforward 
to verify that the following matrix has the 
required property: 
 

(q)܁ = ൦

݈ܿ	cos݈ܿߠ	cosߠ
݈ܿsin݈ܿߠsinߠ

1						0
0						1

൪ = [ ଵܵ ܵଶ]       (45) 

 
where ଵܵ and ܵଶ are two linearly 
independent column matrices. From the 
constrain (26),̇ܙ is in the null-space 
ofۯ(q)i.e., ̇ܙ ∈ }݊ܽ݌ݏ ଵܵ, ܵଶ}. Hence it is 
possible to express ̇ܙ as a linear 
combination of ଵܵand ܵଶ, that is, 

ܙ̇ = ઼(q)܁ = δଵ ଵܵ + δଶܵଶ                       (46) 
 

Owing to the choice of S(q) matrix, we 
have: 
 

઼=൤δଵδଶ
൨ = ൤߮ோ		̇߮௅̇

൨                                       (47) 

Differentiating (46), and substituting the 
expression for ̈ܙ into (44), and by 
multiplying both sides by܁୘(q), we 
obtain: 
 
୘(q)܁ ∗ (q)܁൫(q)ۻ ∗ ઼̇ + (q)܁̇ ∗ ઼൯ + 
୘(q)܁ ∗ ۱(q, q̇) = τ                                (48) 
 
Where ܁୘(q) ∗ ୘(q)ۯ = 0 is used to 
eliminate Lagrange multiplierߣ and 
୘(q)܁ ∗ ۳(q) = ۷ଶ×ଶ (the 2 2 identity 
matrix). 
      Now by using the state-space vector 
࢞ = ൣq୘δ୘൧

୘
 ୘, we[ୋφୖφ୐φ̇ୖφ̇୐ݕୋݔ]

will be able to represent the constraint and 
motion equations of mobile platform in 
state space form, that is; 
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࢞̇ = ൤̇ࢗ
઼̇
൨ = ൤܁(q) ∗ ઼࣋ ൨ + 

൤ ૙
୘(q)܁) ∗ (q)ۻ ∗ ଵ൨ି((q)܁ ߬                 (49) 

where 

	࣋ = ଵି((q)܁(q)ۻ୘(q)܁) ∗ 
઼(q)܁̇(q)ۻ୘(q)܁−) − ,୘(q)۱(q܁ q̇))   (50) 

The coordinates of the reference point to 
be the output equation which represents 
the head of mobile robot is: 
 
࢟ = (q)ࢎ =  ୘[ிݕிݔ]
= ீݔ] +	fୋ	cos(ߠ)ீݕ +	fୋ	sin(ߠ)]	୘   (51) 

It has been proved in reference [11] that 
the system dynamics (49) is minimum 
phase when the output is taken as in (51). 
This satisfies the second requirement for 
input-output linearization described 
above. 

Now to derive the input-output 
dynamics we differentiate (51) as follows: 

࢟̇=డࢎ(୯)
డ୯

௛ܬ =ܙ̇ ∗ (q)܁) ∗ ઼) 

= ൫ܬ௛ ∗ ൯઼(q)܁ = ∅(q) ∗ ઼                     (52) 
 
Where ܬ௛is the Jacobian matrix, and∅(q) 
is called the decoupling matrix that 
described by: 

∅ = ௛ܬ) ∗ ((q)܁ = 

൤݈ܿcos(ߠ) − ܿ	fୋ	sin(ߠ) ݈ܿ	cos(ߠ) + ܿ	fୋ	sin(ߠ)
݈ܿsin(ߠ) − ܿ	fୋ	cos(ߠ) ݈ܿ	sin(ߠ) + ܿ	fୋ	cos(ߠ)

൨  

                                                                      (53) 

Then, differentiate (46) again to get; 

࢟̈ = ∅̇(q) ∗ ઼ + 	∅(q) ∗ ઼̇                      (54) 

To complete the input-output 
linearization, the following input 
transformation is utilized; 
 
ݒ = ∅̇(q) ∗ ઼ + 	∅(q) ∗ ઼̇ 
= ∅̇(q) ∗ ઼ + 	∅(q){࣋ + ୘(q)܁) ∗ (q)ۻ ∗
 ଵ߬}                                               (55)ି((q)܁

Let ઼̇ =  yields ,ݑ

ݒ = ∅̇(q) ∗ ઼ + 	∅(q)(56)                        ݑ 
 
Hence, 

ݑ = ∅(q)ିଵ(ݒ − ∅̇(q) ∗ ઼)                    (57) 

and 

࢟̈ =  (58)                                                      ݒ

Consequently (49) becomes: 

࢞̇ = ቂ܁(q) ∗ ઼
૙

ቃ + ቂ૙۷ቃ  (59)                           ݑ

where ۷ is 2 2 identity matrix. Also the 
actuators ߬ in terms of ݑ is: 

߬ = ઼(q)܁̇(q)ۻൣ୘(q)܁ + ۱(q, q̇)൧ +
																															ቀ܁୘(q)ۻ(q)܁(q)ቁ  (60)    ݑ

Finally it is more convenient to rewrite 
(58) in terms of the error function; i.e., if 
we define the error ݁ = ቂ

݁ଵ
݁ଶቃ ∈ ℛ

ଶas 

݁ = ݕ − ௗݕ = ቂ
ிݔ − ௗଵݕ
ிݕ −  ௗଶቃ, then (58)ݕ

becomes: 

݁̈ = ݒ −  ௗ                                             (61)ݕ̈

where  ݕௗ is the desired path. The task 
now is to design a control law that will 
asymptotically regulate the error 
dynamics in the above equation to the 
origin. The controller design details are 
presented in the following section.   

7. The Proposed Control Law and 
Simulation Results 
In the present work a nonlinear PID 

controller is proposed  
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ݒ = ቂ
ଵݒ
ଶቃݒ

=

⎣
⎢
⎢
⎢
ௗଵݕ̈⎡ − ݇௣ଵ݁ଵ − ݇ௗଶ݁̇ଵ − ݇௜ଵන tanିଵ(ߛଵ݁ଵ)

௧

଴
ݐ݀

ௗଶݕ̈ − ݇௣ଶ݁ଶ − ݇ௗଶ݁̇ଶ − ݇௜ଶන tanିଵ(ߛଶ݁ଶ)
௧

଴
ݐ݀
⎦
⎥
⎥
⎥
⎤
 

                                                           (62) 

This control law is a PD plus nonlinear 
integral controller. Due to the nonlinear 
integral term, the controller is robust with 
respect to the disturbances and the 
uncertainty in system model. If the 
disturbances are of non-vanishing type the 
controller will be able only to attenuate 
their effects [14] and keep the output near 
the desired path. The disturbances and the 
uncertainty in system model can be 
represented in (61) as follows: 

݁̈ = ݒ − ௗݕ̈ +  (63)                                  (ݐ)ߟ

Where (ݐ)ߟ is the perturbation term that 
represents the effect of the disturbances 
and the uncertainty in system model in the 
input-output dynamics. It is assumed 
bounded at least locally, i.e., 

|(ݐ)ߟ| < ௢ߟ                                             (64) 

In the following figures, the front point 
(FP) is represented by blue color, and the 
center of mass point (G) is represented by 
magenta color, and in all cases the 
ellipsoid figure is the desired trajectory 
(in (61) the desired trajectory is 
represented by ݕௗ). The ellipsoid 
trajectory is shown in Fig. 3 where the 
ݔ − ݕ and ݏ݅ݔܽ −  are measured in ݏ݅ݔܽ
meters. 
 
 
 

 
 

Figure.3.the ellipsoid trajectory in  ݔ,  ݕ
plane 

 
The controller parameters ݇௣, ݇௜, ݇ௗ 

and ߛ are selected for the case where the 
perturbation term equal to zero ((ݐ)ߟ = 0) 
and according to the following tests; 

Test 1: 
࢖࢑ = ૚, ࢏࢑ = ૚, ࢊ࢑ = ૚ and ࢽ = ૚ 
Figure 4 shows the simulation result for 
the  front point (FP) and the center of 
mass point (G) trajectory which response 
under the proposed controller in (62) and 
when they starting at the desired 
trajectory. 

 
 

Figure 4 Robot tracking with݇௣ = 1, ݇௜ = 1,
݇ௗ = 1 and ߛ = 1 
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The performance of the controller is well 
clarified in Fig. 5. where the error 
betwwen ݔ	,  and thier desired trijectory  ݕ
are eleminated after 9	ܿ݁ݏ.. 

 

Figure.5.The errors ݁ଵ = ிݔ) − ௗଵ) and ݁ଶݕ =
ிݕ) − ௗଶ) with݇௣ݕ = 1, ݇௜ = 1, ݇ௗ = 1 and 

ߛ = 1 

To improve the response, the next two 
tests are made in order to select the 
controller parameters with better 
performance as follows;  

Test 2: 

࢖࢑ = ૟, ࢏࢑ = ૛, ࢊ࢑ = ૜ and ࢽ = ૜ 

Figure 6 plots the FP and G points which 
track the ellipsoid trajectory while in Fig. 
7 the error is plotted for ݔி and ݕி  from 
their desired values. Figure 7 shows the 
error is die out after3	ܿ݁ݏ.. 

 
Figure 6  Robot tracking with݇௣ = 6, ݇௜ = 2,

݇ௗ = 3 and ߛ = 3 

 

 
 

Figure 7  The errors ݁ଵ = ிݔ) − ௗଵ) and ݁ଶݕ =
ிݕ) − ௗଶ) with݇௣ݕ = 6, ݇௜ = 2, ݇ௗ = 3 and 

ߛ = 3 
Test 3: 

࢖࢑ = ૛, ࢏࢑ = ૜, ࢊ࢑ = ૞ and ࢽ = ૛ 

Further improvement is gained in this test 
as depicted in Figs. 8 and 9 where the 
error is eliminated after 2	ܿ݁ݏ. only. The 
controller parameters used in this test is 
used also in the following test where the 
perturbation term existed and bounded by 
|(ݐ)ߟ|) 3 < 3). 

 
 

Figure 8  Robot tracking with݇௣ = 2, ݇௜ = 3,
݇ௗ = 5 and ߛ = 2 
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Figure 9  The errors ݁ଵ = ிݔ) − ௗଵ) and ݁ଶݕ =
ிݕ) − ௗଶ) with݇௣ݕ = 2, ݇௜ = 3, ݇ௗ = 5 and 

ߛ = 2 
 
Test 4: 
࢖࢑ = ૛, ࢏࢑ = ૜, ࢊ࢑ = ૞, ࢽ = ૛ and  

|(࢚)ࣁ| < 3 
In this test the performance of the 
proposed controller with nonlinear 
integral element is examined for the case 
of existence of a bounded perturbation 
term and for initial condition not lies on 
the desired. The result is shown in Fig. 10 
and with good error decay as plotted in 
Fig. 11. The results also show the ability 
of the proposed nonlinear controller in 
attenuating the effect of the perturbations 
within 3	ܿ݁ݏ.. 
 

 
 

Figure10 Robot tracking with݇௣ = 2, ݇௜ = 3,
݇ௗ = ߛ , 5 = 2 and |(ݐ)ߟ| < 3 

 

 
 

Figure 11 The errors ݁ଵ = ிݔ) −  ௗଵ) andݕ
݁ଶ = ிݕ) − ௗଶ) with݇௣ݕ = 2, ݇௜ = 3, ݇ௗ =

5݇ௗ = ߛ , 5 = 2 and |(ݐ)ߟ| < 3 

8.  Conclusions 
Using the partial feedback linearization 

the model for a mobile robot with four 
differential drive wheels is derived. The 
two outputs selected in this work are the ݔ 
and ݕ position of the front point where the 
mobile robot is minimum phase. To force 
the front point to track the desired 
trajectory, a nonlinear PID controller with 
nonlinear integral element is designed. 
The results prove the ability of the 
proposed controller in regulating the front 
point to track an ellipsoid reference 
trajectory for different initial condition 
and with and without the presence of a 
perturbation term. This also reveals that 
the proposed controller is robust with 
respect the uncertainty in system 
parameters and for bounded external 
disturbances.  
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