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Abstract: 
This work deals with Monte Carlo integration error analysis problem.. The main result is that the Monte Carlo 

integration error is proportional to 
2/1n , and the n dependence of the error is independent of the nature of the 

integrand and, most importantly, independent of the number of dimensions This work also presents the analytical 

derivation of the relation n/  in addition to the error estimate for numerical integration methods. 

1. Introduction 
Both the classical numerical integration methods and the 

Monte Carlo methods yield approximate answers whose 

accuracy depends on the number of intervals or on the 

number of trials respectively [2], [4]. So far, we have 

used the exact value of various integrals to determine the 

error in the Monte Carlo method approaches zero as 

approximately 
2/1n  for large number of trials n this is 

due to the central limit theorem [9]. Section 2 discussed 

how to estimate the Monte Carlo error, while section 3 

estimates the error of the numerical integration methods 

[10]. Finally section 4 shows the analytical derivation of 

the standard deviation of the mean [10].  

2. Monte Carlo Error Estimating  
In the following, we shall find how to estimate the error 

when the exact solution is unknown. Our main result is 

that the n dependence of the error is independent of the 

nature of the integrand and, most importantly, 

independent of the number of dimensions [9]. 

Because the appropriate measure of the error in Monte 

Carlo calculations is subtle [10], we first determine the 

error for an explicit example. Consider the Monte Carlo 

evaluation of the integral of xxf )(  in the interval 

[0, 4]. Our result for a particular sequence of 
510n   

random number using the sample mean method is 

332517.5nF  . By comparing nF   to the exact 

result of ,333333.5F  we find that the error 

associated with 
510n  trials is approximately 

0.000817. 

The best way to estimate the error if the exact result is 

unknown, so to calculate the probability that the true 

value F is within a certain range centered on nF .If the 

integrand is constant, then the error would be zero, that 

is, nF  would equal F  for any n. This limiting behavior 

suggests that a possible measure of the error is the 

variance 
2 defined by [6], [7],[10]:  
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From the definition of the standard deviation  , we see 

that if f is independent of x,   is zero. For our example 

and the same sequence of random numbers used to obtain 

332517.5nF , we obtain 00742.0n . Because this 

value of    is two larger than the actual error, we 

conclude that   cannot be a direct measure of this error. 

Instead   is a measure of how much the function f(x) 

varies in the interval of interest. 

Another clue to finding an appropriate measure of the 

error can be found by increasing n and seeing how the 

actual error decreases as n increase [9], [10]. In table 1 

we see that as n goes from 10n to 
510n , the 

actual error decreases by a factor of 10, that is, as
2/1/1 n . However, we also see that n   is roughly 

constant and is much larger than the absolute error

FFn  .  
 

n 
nF  FFn   n  

10 5.192817 0.140517 0.229488 

 5.517878 0.184545 0.151467 

310  5.394788 0.061454 0.034668 

410  5.306105 0.027229 0.041050 

510  5.332517 0.000817 0.007420 

Table 1: Examples of Monte Carlo measurements of the 

mean value of  xxf )(  in the interval [0, 4]. The 

standard deviation  n  is found using (1) 

One way to obtain an estimate for the error is to make 

additional runs of n trails. Each runs of n trials yields a 

mean or measurement which is denoted by M . In 

general, these measurements are not equivalent because 

each of which use a different finite sequence of random 

numbers [10]. Table 2 shows the results of ten separate 

measurements of 
510n  trials each. 

Run   
M  FM   

1 5.327045 0.006288 

2 5.340285 0.006952 

3 5.326770 0.006563 

4 5.323363 0.009970 

5 5.324491 0.008842 

6 5.310109 0.023225 

7 5.350355 0.017021 

8 5.368457 0.035124 

9 5.308147 0.025186 
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10 5.341014 0.007681 
Table 2: Examples of Monte Carlo measurements of the 

mean value of  xxf )(  in the interval [0, 4]. A 

total of 10 measurements of 
510n  trials each were 

made.  The mean value  M  and the absolute error for 

each measurement are shown. 

From table 2 we see that the absolute error varies from 

measurement to another. Qualitatively, the magnitude of 

the difference between the measurements is similar to the 

actual errors, and hence these differences are a measure 

of the error associated with a single measurement. To 

obtain a quantitative measure of this error, we determine 

the differences of these measurements using the standard 

deviation of the means m    which is defined as [7], [9], 

[10]: 
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From the values of M  in table 2 and the relation (3), 

we find that 01746.0m . This value of m  is 

consistent with the results for the absolute errors shown 

in table 2 which varies from 0.006288 to 0.035124. 

Hence we conclude that m  is a measure of the error for 

a single measurement. The more precise interpretation of 

m  is that a single measurement has a 99.88% chance of 

being within m  of the true mean. Hence the probable 

error associated with m  for first measurement of nF  

with 
510n  is 006288.0327045.5  . 

Although m  gives an estimate of the probable error , 

our method of obtaining m  by making additional 

measurements is impractical because we could have 

combining the additional measurements to make  a better 

estimate. In section 4 we derive the relation [10]  
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The reason for the expression 11 n  in (5.a) rather 

than n1  is similar to the reason  for the expression 

21 n  in the error estimates of the least squares fits 

[5], [10]. To compute  , we need to use n trials to 

compute the mean )(xf  and we have only (n-1) 

independent trials remaining to calculate . Because we 

almost always make a large  number of trials , we will 

use the relation (5.b) and consider only this limit in 

section 3. From (5) the probable error of our initial 

measurement is approximately 0.00742/316.228   

0.000024, which is consistent with the known error of  

0.0008177 and with our estimated value of 01746.0m . 

  One way to verify the relation (5) is to divide the initial 

measurement of n trials into s subsets. This procedure 

does not require additional measurements. We denote the 

mean value of  f(xi) in the kth subset by Sk [9], [10]. As 

an example, we divide the 
510  trials of the first 

measurement into s = 10 subsets of 
410/ sn  trials 

each. The results for  Sk  are shown in table 3. 

 

Subset k Sk FSk   

1 5.539686 0.026352 

2 5.344153 0.010819 

3 5.357490 0.024156 

4 5.371903 0.038569 

5 5.305586 0.027747 

6 5.327480 0.005853 

7 5.325547 0.007786 

8 5.347085 0.013752 

9 5.313694 0.019640 

10 5.344287 0.010954 
 

Table 3: The values of  Sk  for xxf )(  for  

40  x  is shown for 10 subsets of 
410  trials each.  

The average value of f(x) over the 10 subsets is 5.33969, 

agree with the result of nF  for the first measurement 

shown in table 2.  

As expected, the mean value of f(x) for each subset k do 

not equal. A reasonable candidate for a measure of the 

error is the standard deviation of the means s  of each 

subset, where  

                       
222
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where the average are over the subsets [10]. From table 3 

we obtain 0201.0s , a result that is approximately 

equal to our estimate of 0.01746 for m . However, we 

would like to define an error estimate that is independent 

of how we subdivide the data. This quantity is not s , 

but the ratio ss   which for our example is 

approximately 0064.0100201.0  . This value is 

consistent with both m  and the ratio n . We 

conclude that we can interpret the n trials either as a 

single measurement or as a collection of s measurements 

with n/s trials each. In the former interpretation the 

probable error is given by the standard deviation of the n 

trials divided by the square root of the number of trials. 

In the same spirit, the later interpretation implies that the 

probable error is given by the standard deviation of the s 

measurements of the subsets divided by the square root 

of the number of measurements [10]. 

3. Error Estimates for Numerical Integration 
The truncation error estimates is depended on the number 

of intervals for the numerical integration methods. These 

estimates are based on the assumed adequacy of the 

Taylor series expansion of the integrand f(x) [1], [10]: 
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We first estimate the error associated with the 

rectangular methods with f(x) evaluated at the left side of 

each interval. Let error i  in the interval  be 

the difference between (8) and the estimate xxf i )( : 
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We see that to leading order in x the error in each 

interval is of order 
2)( x . Because there are a total of n 

intervals and  nabx )(   , the total error 

associated with the rectangular methods is                      

              
12)(  nxnn i . 

The estimated error associated with the trapezoidal rule 

can be found in the same way [3],. The error in the 

interval  is the difference between the exact 

integral and the estimated one:           
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If we use (8) to estimate the integral and (7) to estimate 

)( 1ixf  in (10), we find that the term proportional to 

the first derivative f   cancels and that the error 

associated with one interval is of order 
3)( x . Hence, 

the total error in the interval [a, b] associated with the 

trapezoidal rule is of order 
2n  [10]. 

Because Simpson's rule is based on fitting  f(x) in the 

interval  to a parabola, error terms proportional 

to f   is omitted. We might expect that error terms of 

order 
4))(( xxf i   contribute, but these terms 

canceled by virtue of their symmetry. Hence the  

term of the Taylor expansion of f(x) is adequately 

represented by Simpson's rule.If we retain the 

term in the Taylor series of f(x) we find that the error in 

the interval  is of order   and 

the total error in the interval [a, b] associated with 

Simpson rule is of order )( 4 n . 

The error estimates can be extended to two dimensions in 

a similar manner [2]. The two dimensional integral of f(x, 

y) is the volume under the surface determined by f(x, y). 

In the rectangular approximation methods, the integral is 

written as a sum of the volumes of parallelograms with 

cross sectional area yx  and a height determined by 

f(x, y) at one side. To determine the error we expand f(x, 

y) in a Taylor series [1], [3], [10] 
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and write the error as  

             yxyxfdxdyyxf iii ),(),(   (12)  

If we substitute (11) in (12) and integrate each term, we 

find that the term proportional to f and the integral of (x - 

xi) dx yields 
2

2
1 )( x . The integral of this term with 

respect to dy gives another factor of  y . The integral of 

the term proportional to )( iyy   yield a similar 

contribution. Because y  also is order x , the error 

associated with the interval and ],[ 1ii yy  is 

of leading order in x : 
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We see that the error associated with one parallelogram 

is of order 
3)( x . Because there are n  parallelograms, 

the total error is order 
3)( xn  . However, in two 

dimensions the total error is of order 
2/1n . In contrast 

the total error in one dimension is order 
1n as we saw 

earlier. 

The corresponding error estimates for the two 

dimensional generalizations of the trapezoidal rule and 

Simpson's rule are of order 
1n  and  

2n  respectively. 

In general if the error goes as of order 
an

  in one 

dimension then the error in d dimensions goes as 
dan /

.In contrast Monte Carlo errors vary as of order 
2/1n

independent of d. Hence for large enough dimension d, 

Monte Carlo  

integration method will lead to smaller errors for the 

same choice of  n [9], [10]. 

4. The Standard Deviation of the Mean 
In section 2 we gave empirical reasons for the claim that 

the error associated with a single measurement consisting 

of n trials equals n/ , where   the standard 

deviation in a single is measurement. We now present an 

analytical derivation of this relation [7], [8], [10]. 

The quantity of experimental interest is denoted as x. 

Consider m sets of  measurements each with n trials for 

total mn trials. We use the index  to denote a particular 

measurement and the index i to designate the ith trial 

within a measurement. We denote ix ,   as trial i in the 

measurement  . The value of a measurement is given 

by [7], [8], [10]: 
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The mean M   of the total mn individual trials is given 
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The difference between measurement   and the mean 

of all the measurements is given by 

             MMe                (16) 
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We can write the variance of the means as 

             



m

mm e
1

212



               (17) 

Now we wish to relate m  to the variance of the 

individual trials. The discrepancy id ,  between an 

individual sample ix ,  and the mean is given by [3], 

[10]:   

               Mxd ii  ,,      (18) 

Hence the variance 
2  of the  mn individual trials is 
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If we substitute (21) into (17) we get 
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The sum in (22) over trials i and j in set    contains two 

kinds of terms those with i = j and those with ji   . 

We expect that id ,  and  jd ,  are independent  and 

equally positive or negative on the average. Hence in the 

limit of a large number of measurements we expect that 

only the terms with i = j in (22) will survive and we write  
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If we combine (23) with (19)  we arrive at the desired 

result [10] 
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 تحليل خطأ تكامل مونت كارلو

 عبد الكريم إبراهيم شيت
 قسم الرياضيات ، كلية التربية الأساسية ، جامعة الموصل ، الموصل ، العراق

( 9002/  80/  95، تاريخ القبول: 9002/  5/  81) تاريخ الاستلام:   

 الملخص
 تناول هذا البحث مسألة تحليل خطأ تكامل مونت كارلو. النتيجة الرئيسة في هذا البحث هي أن خطأ . 

  تكامل مونت كارلو يتناسب مع
2/1n  . وأنه لا يعتمد على طبيعة الدالة المراد تكاملها ولا يعتمد على عدد أبعاد التكامل.  

     إضافة إلى تقدير خطأ طرائق التكامل العددي. n/ليلي للعلاقة  استعرض البحث أيضا الاشتقاق التح

  

 
 

 

 

 

 


