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Abstract –Hexagonal hexapod robot is a flexible mechanical robot with six legs. It 
has the ability to walk over terrain. The hexapod robot likes insect so it has the same 
periodic gaits. These gaits are tripod, wave and ripple gaits. Hexapod robot needs to 
stay statically stable at all the times during each gait in order not to fall with three or 
more legs continuously contacts with the ground. The safety static stability walking can 
be indicated by the stability margin. In this paper we based on the forward, inverse 
kinematics for each hexapod’s leg to simulate the hexapod robot model walking for all 
periodic gaits and the geometry in order to derive the equations of the sub-constraint 
workspaces for each hexapod’s leg. They are defined as the sub-constraint workspaces 
volumes when the legs are moving without collision with each other and they are useful 
to keep the legs stable from falling during each gait. A smooth gait was analyzed and 
enhanced for each hexapod’s leg in two phases, stance phase and swing phase. The 
equations of the stability margins are derived and computed for each gait. The 
simulation results of our enhanced path planning of the hexapod robot approach whish’s 
include all the gaits are statically stable and we are compared between all stability 
margins for each gait. In addition, our results show clearly that the tripod gait is the 
fastest gait while the wave and the ripple gaits are more stable than the tripod gait but 
the last one has less peaks of stability margins than others. 
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1. Introduction                        
Multi-legged robots display significant 

advantages with respect to wheeled ones 
for walking over rough terrain because 
they do not need continuous contact with 
the ground. In Multi-legged robots, 
hexapod robots, mechanical vehicles that 
walk on six legs, have attracted 
considerable attention in recent decades. 
There are several benefits for hexapods 
rover such as: efficient one to maintain 
for statically stable static on three or more 
legs, it has a great deal of flexibility in 
how it can move [1]. Legs do less damage 
to the ground than tracks and wheels [2]. 
During the walking of the legged robot, 
there is a difficult problem of generation 
and control of the sequence of placing and 
lifting of legs such that at any instant 
body should be stable and capable of 
moving from one position to other. The 
generation and sequence of such leg 
motion is called gait [3].Hexapod robot 
looks like insect so it has the same gait. If 
a similar state of the same leg during 
successive strokes in the same time for all 
legs called “periodic gait” [1].These gaits 
are: Wave gait, Ripple gait, and Tripod 
gait [4]. The optimally stable range of the 
wave gait has been studied in [5]. While 
[6] calculated the loss stability for the 
phase modification of the wave gaits. In 
[7] presented a new criterion for the 
asymptotic stance stability of a statically 
balanced legged robot. 
         In this paper the main problem is 
when hexapod robot walking and may be 
fall down if the legs are not constraints so 
the static stability is analyzed according to 
constraints of each leg in order not to fall. 
 
2. Modeling of Hexapod Robot 

The legged locomotion verities by 
verity of usual terrain and it presents a set 
of difficult problems (foot placement, 
obstacle avoidance, load distribution, 
common stability) which must be taken 

into account both in mechanical 
construction of vehicles and in 
development of control strategies [8]. 
Besides that, these issues are using 
models that mathematically explain the 
verities of situations and for that; the 
robot modeling becomes a practical tool 
in understanding systems complexity and 
for testing and simulating diverse control 
approaches [9].The robot structure 
considered has (6) identical legs and each 
leg has (3) degree of freedom, in addition 
to that, all the related points for each joint 
have been put on the model, the legs 
numbering as shown in Fig. 1, robot’s 
center coordinate o (xo, yo, zo). 

 
 

 
 

Figure 1.Hexapod robot structure 
 
The z-axis pointing up, the x-axis 

pointing forward and the y-axis pointing 
left. Hexapod modeling consisting of two 
types, one is forward kinematic and its 
inverse, below will discuss in details for 
each type of kinematic. 

2.1. Forward kinematics for One Leg of 
hexapod robot  
The successful design of a legged robot 
depends to a large amount on the leg 
design chosen. Since all aspects of 
walking are ultimately governed by the 
physical limitations of the leg, it is 
important to select a leg that will allow a 
maximum range of motion and that will 
not inflict unnecessary constraints on the 
walking [10]. A three-revolute 
kinematical chain (R1, R2, R3) has been 
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chosen for each leg mechanism in order to 
imitate the leg structure as shown in Fig. 
2. A direct geometrical model for each leg 
mechanism is formulated between the 
moving frame oi(xi, yi, zi) of the leg base, 
where i=1…6, and the fixed frame o (xo, 
yo, zo) [10]. 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 2. Model and coordinates frame for leg 
kinematics. 

 
In this paper the BH3-R hexapod robot 

is taken as a case study of hexagonal 
hexapod robot. The lengths of the 
hexapod’s leg are: L1 = (2.9 cm), L2 = 
(5.7 cm), L3 = (10.8 cm) [11]. The robot 
leg frame starts with link (0) which is the 
point on the robot body where  the leg is 
jointed to; link (1) is the coxa, link (2) is 
the femur and link (3) is the tibia. Legs 
are distributed symmetrically around the 
axis in the direction of motion (x in this 
case). The general form for the 
transformation matrix from link (i) to link 
(i-1) using Denavit Hartenberg parameters 
are given in (1) [10, 12]: 

 

T୧୧ିଵ = ൦

cos θ୧ −sin θ୧ cosα୧
sin θ୧ cosθ୧ cosα୧

sin θ୧ sin α୧ a୧ cosθ୧
−cosθ୧ sin α୧ a୧ sin θ୧

0 sin α୧
0 														0

cosα୧ d୧
0 											1

൪    (1) 

 
The transformation matrix is a series of 
transformations: 

1. Translate di along zi-1 axis. 
2. Rotate θ୧about zi-1 axis. 
3. Translate α୧ about xi-1 axis. 

4. Rotate α୧ about xi-1 axis. 
The overall transformation is obtained as 
a product between three transformation 
matrixes: 
 
Tୡ୭୶ୟୠୟୱୣ = Tୡ୭୶ୟ୤ୣ୫୳୰T୤ୣ୫୳୰

୲୧ୠ୧ୟ                   (2)                      
 
Considering Fig. 2 and using (2) the 
coordinates of the leg tip are: 
 

x = cosθଵ ∗ (Lଵ +	Lଶ ∗ cosθଶ +	Lଷ ∗ cos(θଶ − θଷ)), 
y = sinθଵ ∗ (Lଵ +	Lଶ ∗ cosθଶ +	Lଷ ∗ cos(θଶ − θଷ)), 

				z = dଵ +	Lଶ ∗ sinθଶ +	Lଷ ∗ sin(θଶ − θଷ).                         (3) 
 
Where: d1 is the distance from the ground 
to the coxa joint. Li are the lengths of the 
leg links. 
 
 
2.2. Inverse kinematics 

The geometrical model described 
above establishes a link between the joint 
variable and the position and orientation 
of the end frame. The inverse kinematics 
problem consists of formative the joint 
angles from a given position and 
orientation of the end frame. The solution 
of this problem is significant in order to 
transform the motion assigned to the end 
frame into the joint angle motions 
matching to the desired end frame motion. 
The goal is to find the three joint variables 
θ1, θ2, and θ3 corresponding to the desired 
end frame position. The end frames 
orientation is not a matter, since only 
paying attention in its position [10]. 

 
 

 

 

 
 
 
 
 
 
 

Figure 3 Illustrations for solving inverse 
kinematics. 
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Using (3) and considering the 
following constraints: all joints allow 
rotation only about one axis, femur and 
tibia always rotate on parallel axes, and 
the physical limitation of each joint 
represents the joint angle. 

 The coxa joint angle can be found 
using atan2(y,x) function as can be seen 
from Fig. 3 A. 

 
θଵ = 	atan2(yଵ, xଵ)                                                                (4) 
 

In order to determine the other two 
angles a geometrical approach was 
considered. To further simplify the 
approach the leg tip coordinates were 
transformed to coxa frame using the 
transformation matrix below: 

 
Tୡ୭୶ୟ୤ୣ୫୳୰ = ൬(R୤ୣ୫୳୰

ୡ୭୶ୟ ) −(R୤ୣ୫୳୰ୡ୭୶ୟ )୘ ∗ d୤ୣ୫୳୰ୡ୭୶ୟ

0 1
൰                        (5) 

 

An angle φଶ  which is the angle relating to 
the femur servo position, can be derived 
directly from the triangle Fig. 3 B. 
 
θଶ = φଶ                                                                  (6) 
 
The angle ߮ଵ is the angle between the x-
axis and line a, and can be calculated with 
atan2 function: 
 
φଵ = atan2(yଷ, xଷ)                                                                (7) 
 
Where x3 and y3 are the leg tip 
coordinates in coxa frame. If it considers 
߮௧ being the entire femur span and apply 
the law of cosines results: 
 
φ୲ = acos ቀ୐మ

మାୟమି୐యమ

ଶ∗୐మ∗ୟ
ቁ                                                              (8) 

Where: 
ܽ = ඥݔଷଶ  ଷଶ                                                                       (9)ݕ	+
 
Next the femur angle can be found from: 
 
θଶ = acos ቀ ୐మమ

ଶ	୐మ∗୐య
ቁ + atan2(yଷ, xଷ)                                    (10) 

 
Again, applying the law of cosines to find 
the ߮ଷ angle: 

 
߮ଷ = acos ቀ௅మ

మା௅యమି௔మ

ଶ	௅మ∗௅య
ቁ                                                          (11) 

 
Considering Fig. 3 B, the ߠଷ can be found 
as follows [10]: 
 
θଷ = π − φଷ                                                                        (12) 
 
 
3. The Stability Analysis and 

Constraint Workspace 
In this paper, the two methods of one leg 
workspace are analyzed:  
 
3.1. Workspace of Hexapod’s Leg  

In this paper the Hexapod's leg 
workspace has been computed and 
analyzed. Hexapod's leg workspace can 
defined as the set of reachable points by 
the end-effector for each foot. These 
points (positions) depended on the leg 
orientation (the mechanical limits of the 
joints). The mechanical limits of the joints 
restrict leg motion and are a major factor 
to consider when developing walking 
algorithm for a hexapod module. The 
working volumes for each leg are 
identical because each leg of hexapod has 
the same geometrical configuration and 
joint limits; the analyation of the two 
approaches is evaluated the constraint 
workspace for BH3-R hexapod robot [11]. 
The limits of the joint variables for a 
representative one leg are shown in  
Table1. 
 

Table 1. Range of angles for one hexapod’s leg. 
 

Link Name 
 

 
The range of one robot’s leg angle in 

degree 
Coxa −90 < ଵߠ < 90 
Femur −45 < ଶߠ < 90 
Tibia    0	 < ଷߠ < 135 

 
These joint variable limits, then, 

separate the reachable area from the 
unreachable area. Reachable areas move 
with the body. The region included within 
the reachable area is known as the 
unconstrained working volume (UWV). 
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The constrained working volume (CWV) 
is defined as a subset of the original 
working volume, for each leg, that 
ensures static stability.  

Therefore, the (CWV) sets soft limits 
for each leg so as to exclude points from 
the working volume that may lead to 
instability. In our case, the working 
volume is also constrained to prevent leg 
collisions. An excluded area for hexapod's 
legs, then, is that part of the reachable 
area where, if a foot were placed there, 
instability or leg collision might result. 

 

 
 

Figure 4.Flowchart Workspace of hexapod’s leg 
 
Figure 4 shows that the flowchart of 
workspace. The workspace of robot leg is 
computed from kinematics and geometry 
as follow:   
 
3.1.1. Unconstrained Workspace 

The unconstrained horizontal 
workspace of hexapod leg is the reachable 
areas include the sections in the xy plane 
around the individual coxas and within 
the mechanical joint limits, the y plane 
equal (33.15 cm). The unconstrained 
vertical workspace, or z-plane reachable 
area, depends on the height of the 
hexapod’s center-of-body above the 
terrain is (5.5 cm). To define the 
maximum unconstrained vertical   
workspace, If a leg were extended to its 
fullest, the added lengths of radius body 
(13.75 cm), coxa (2.9 cm), femur (5.7 
cm), and tibia (10.8 cm) y-plane would 
equal (33.15 cm). The minimum 
unconstrained vertical workspace, If a leg 

were lack extent to its fullest, (θଷ	= 1350) 
the y-plane would equal (14.7cm) while 
the z-plane equal (9 cm). 
 
3.1.2. Constrained Workspace 

The CWV used in this paper results 
from six basic constraints: 
 the height (z = plane) from the ground 
to the CB (center body of robot) = (10.8 
cm) is fixed for minimum, maximum 
reach, the vertical maximum reach equal 
(24.25 cm) if θଷ = 800 and minimum 
reach equal (21 cm) if θଷ = 97o, 
  the suitable  posture of robot = (22.35 
cm) if θଷ = 90o, 
 The terrain is flat, 
  The legs are not allowed to collide or 
overlap, and  
 The horizontal workspace of hexapod 
leg is The reachable areas include the 
sections in the xy plane around the 
individual coxas, y-plane = 24.25 cm and 
within the mechanical joint limits but in 
this case limit joint (in proposed method, 
the half range of coxa angle is taken in 
order not to the legs collide) soothe range 
is (−45 < θଵ < 45)		degree. Another 
approach is derived for Constrained 
Workspace more details in [13], [14]. For 
the hexagonal model the mathematically 
(13)  for the radius of the annulus is : 

 
			r୫ୟ୶ଶ = (r୫୧୬ + Q)ଶ + ቀଵ

ଶ
∗ Pቁ

ଶ
                                         (13) 

 
Where: r୫ୟ୶, 	r୫୧୬, Q, P defined by Fig. 5. 
 

 
 

Figure 5.The relationship between the reachable 
area and annuls. 
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The rectangular area is the reachable area 
of each leg of robot, for our hexapod 
robot rmax = (10.5cm) from coxa joint. 
Added the length of center robot (13.75 
cm), rmax = (24.25 cm). The center of leg 
tip point is (22.35 cm) that it is equal to 
the posture robot in method1 above 
comparing between two constraints 
workspaces methods and found that the 
maximum reaches of the leg are equal for 
our hexapod robot. 
 
3.2. Static Stability analysis of hexapod 
robot 

The first gait of the hexapod robot is 
the tripod gait. In this gait the three legs 
stay on the ground (support pattern) while 
the other legs are on the air. The analysis 
of static stability depended on the (14) in 
[15] that only compute the S1, S2 and S3 in 
the Fig. 6 of three triangles and there are 
two conditions to set the robot stable first 
If S1, S2 and S3are >= zero, the tripod is 
considered stable other, the tripod is 
considered unstable more details in [15]. 
From the definition of “stability margin,” 
(sm),is the shortest distance from the 
vertical projection of the center of robot 
to the boundaries of the support pattern in 
the horizontal plane [5] the proposed 
method explained as below:   
In Fig. 6 derived L1 is derived in (16) (the 
distance line between two points) and the 
same thing for L2, L3 are computed for 
other legs, each L is considered as a base 
of the one triangle while the areas of the 
S1, S2 and S3 are previously computed so 
that the stability margin is the shortest 
perpendicular distances from L1, L2 and 
L3 to the center of robot (H1, H2, H3 
respectively). H1 is computed as in (17) as 
well as the H2, H3 are computed in the 
same manner. The stability margins are 
analyzed and computed for all cases of 
the legs motion for three gaits (tripod, 
ripple, wave) of hexapod robot as below: 
 

 
 
 
 
 
 
 
 

 
Figure 6.The stability analysis for the tripod gait 

when legs (1, 3, 5) on the ground. 
 

The triple equation of the Fig. 6 is: 
 

	Sଵ =
ଵ
ଶ
อ
1 1 1
xେ୆ xଵ xଷ
yେ୆ yଵ yଷ

อ                                                   (14) 

Where (xେ୆ , yେ୆) is the coordinate of CB 
point, (xଵ, yଵ) the coordinate of Leg 1, 
(xଷ, yଷ) the coordinate of Leg3. 
With expansion: 
 
Sଵ =

ଵ
ଶ
[(xଵ − xେ୆)(yଷ − yେ୆) − (xଷ − xେ୆)(yଵ − yେ୆)]    (15) 

 
Lଵ = sqrt((xଷ − xଵ)ଶ +	(yଷ − yଵ)ଶ)                                  (16) 
 
Where L1 is the distance between two 
points 
 
		Hଵ = 2 ∗ ቀୗభ

୐భ
ቁ                                                                     (17) 

 
From other triangles as shown in Fig. 6 
the stability margin is computed as: 
 
	smଵ = min(Hଵ	, Hଶ, Hଷ)                                                     (18) 
 
smଵis the stability margin of the support  
pattern of legs (1,3,5), similarly, smଶis 
derived for other three legs (2,4,6) as 
shown in Fig. 7 where the legs (2,4,6) are 
stance on the ground and (1,3,5) in the air. 
Also, (18) is derived for the other gaits of 
robot (wave and ripple). 
 
 
 
 
 
 
 
 

Figure 7.The stability analysis for the tripod gait 
when legs (2,4,6) on the ground. 
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In the wave gait only one leg in the air, 
while the others are on the ground so the 
support pattern is divided into five areas 
(S1, S2, S3, S4, S5) and the stability margin 
is evaluated for all the cases of wave gait 
as shown below: 

 
 

 
 
 
 
 
 
 
 
 
Figure 8. Case 1 representation where the support 
pattern (legs (2,3,4,5,6) on ground) of the wave 
gait. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Case 2 representation where the support 
pattern (legs (1,3,6,5,4) on ground) of the wave 
gait. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Case 3 representation where the support 
pattern (legs (1,2,6,5,4) on ground ) of the wave 
gait. 

  
 
 
 
 
 
 
 
 
Figure 11. Case 4 representation where the support 
pattern (legs(1,2,3,6,5) on ground) of the wave 
gait. 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.  Case5 representation where the support 
pattern (legs(1,2,3,6,4) on ground ) of the wave 
gait. 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Case 6 representation where the support 
pattern (legs(1,2,3,5,4) on ground ) of the wave 
gait. 
 
The stability margins of the ripple gaits as 
shown: 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 14. Case 1 representation where the support 
pattern (legs (2,3,6,5) on ground) of the ripple 
gait. 
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Figure 15. Case 3 representation where the support 
pattern (legs (1,3,6,4) on ground) of the ripple 
gait. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Case 4 representation where the support 
pattern (legs (1,2,5,4) on ground) of the ripple 
gait. 

 
 

4. Walking and path planning of 
hexapod robot: 

The path planning and algorithm of legs 
walking are explained as below: 
 

4.1. The mechanism of leg motion: 
     The mechanism of leg motion is very 
complex problem that each leg is forward 
and back motion. It derived from insect 
motion that has two phases: swing (the 
leg in the air) and stance (the leg in the 
ground) phases [4].Equations of motion in 
[16] are derived for two phases. The 
walking of hexapod robot is developed by 
combing the stance phase [16] explained 
by (19) and the swing phase [17] as in 
(20) to get our modified smooth gait for 
one hexapod’s leg as below:  
 
xtip୧ାଵ = xtip୧ +

୴∗ୡ୭ୱ(ம)
ଶ

 , 

ytip୧ାଵ = ytip୧ +
୴∗ୱ୧୬(ம)

ଶ
.                                                    (19) 

 
Where xtip୧, ytip୧the coordinates of leg 
tip derived from the forward kinematic, ߶ 
is the direction of motion and  describes 
how many centimeters per gait cycle the 
hexapod robot should move. 
The equations in swing phase are:  
 
x୲୧୮୧ = 2 ∗ ẋ ∗ dt(1 − cos ൬

πt
dt
൰), 

y୲୧୮୧ = 2	 ∗ ẏ ∗ dt(1 − cos ൬
πt
dt
൰), 

z୲୧୮୧ = h ∗ (1 − cos ቀ஠୲
ୢ୲
ቁ).                                                   (20) 

 
ẋ, ẏ are the speed of the hexapod robot’s 
truck in x and y directions,dt is the time 
duration for each step and h	is	the height 
of each step.  After explained the 
mechanism of leg motion, there is a need 
to show the movement of the center of 
body that moves from start point to the 
goal point so the new center point [15] is 
calculated as:  
 
CB୶୧ାଵ = CB୶୧ + L ∗ cos(ϕ), 
CB୷୧ାଵ = CB୷୧ + L ∗ sin(ϕ).                                              (21) 
 
Where		L	is	the	step	size. 
The start point (0,0) and goal point 
(100,0) for the straight line. 
 
 
5. Simulation Results 

The analysis of the stability margins 
above for three gaits (ripple, wave, and 
tripod) are discussed and simulated for 
each gait within the steps as below: 

a- The ripple gait cases  
 

 
 
 
Figure 17.  The final sm1= 2.4724 cm while the 
robot lift two forward legs (1,4). 
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Figure 18.  The final sm2= 14.7998 cm when the 
robot lift middle legs (2,5). 
 
 
 

 
 
Figure 19.  The last case of ripple gait in when the 
robot lift middle legs (3,6) so the final value of 
sm3= 1.0666. 
 
 
The sm2 is more stable and larger support 
pattern than sm1 and sm2 the last 
stabilities values near to zero (critical 
stable). 
 
b- The wave gait cases  

 
Figure 20.  The wave gait the sm1=6.0045 cm for 
lifting leg 1. 
 
 

 
Figure 21.  The robot lift middle left leg 2, the  
sm2 = 13.9733 cm. 
 

 

 
Figure 22.  The robot lifting leg 3 the sm3= 6.6249 
cm. 
 
 

 
Figure 23.  The hexapod robot lift forward leg 4 so 
the sm4= 5.9669 cm. 
 
 

 
Figure 24.  The robot lift the middle leg 5 and  the 
sm5= 13.9808  cm. 
 
 
 

 
Figure 25.  The last case of the robot lift the last 
leg 6 while  the sm6= 6.5843cm. 
 
 
 
 
 The results of sm for two figures (21-24) 
show that most stable values with the 
other wave gait cases. 
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c- Tripod gait cases  

 
Figure 26. The sm1= 6.6804 cm when the robot 
lifting three even legs (2,4,6). 
 
 
 

 
Figure 27. The second case of tripod gait for the 
sm2= 6.7628 cm when the robot lifting three odd 
legs (1,3,5). 
 
 

The two results of stability margins and 
the support pattern (i.e the yellow lines of 
legs on the ground in the simulation) are  
nearly equal for tripod gait. 
From the development path planning for 
hexapod walking, the one case from 
above all cases is compared as shown in 
Fig. 28.  

 
Figure 28. The stability margin for three gaits 

 
Fig. 28 Shows that all the cases of the 
stability margins for a-Tripple gait 
(sm1,sm2,sm3,sm4), b-Wave gait 
(sm1,sm2,sm3,sm4,sm5,sm6) and c-Tripod 
gait(sm1,sm2). 
 
 

6. Conclusion 
 In this paper the stability margins for 

all periodic gaits are analyzed and 
compared between the cases of each gait.  
The gaits are statically stable because the 
stability margins are positive values 
which meet the leg’s constraint 
workspaces. In our path planning from the 
start point to the goal point shows clearly 
that the tripod gait is the fastest gait 
because of the less moving steps and time 
period. In a comparison with the wave 
and the ripple gaits are needed a long time 
and more steps. Computing the stability 
margins for these gaits during the path 
planning process shows that the ripple 
gait has higher stability margins than the 
wave gait which is also has a higher 
stability margins than the tripod gait.    
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