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Abstract –This paper presents a proposed technique to compress images using 

weighted 3D polynomials fitting technique that fits all pixels as possible in the image. 

This technique uses high-order weighted 3D polynomials to obtain high quality 

compressed images especially in the medical images. These types of images seek for 

high details with an acceptable compression ratio.  This procedure of weighted 3D 

polynomials fitting ensures to preserve the quality of image during the decompression 

and zooming-in process. After applying scalar quantization and Huffman encoding to 

the weighted polynomials coefficients for each block of image; mean square error 

(MSE), peak signal to noise ratio (PSNR), processing time, and compression ratio (CR) 

are evaluated for different degree of weighted polynomials and for different medical 

image block sizes. Computer results showed that the proposed technique gives an 

acceptable image quality under zooming-in process compared with standard surface 

fitting that uses non-weighted polynomials but at the expanse of compression ratio. 

 

 

. 

Keywords: – Digital image processing, Image compression, Polynomial fitting,Image 

zooming. 

 

 

 

 

 



IJCCCE Vol. 16, No. 1, 2016 
 

Riyadh Jabbar Soudani 

 

 

Supporting Zooming-in Process for Image 

Compression Based on High-Order Weighted 3D 

Polynomials Fitting 

 

 

30 

 

1. Introduction 

Compression of visual information 

became very important for efficient use of 

media storage and for fast data transfer. 

Grayscale images require 8-bit for each 

pixel, while color images require 24-bit 

(three channels). Furthermore, the size of 

uncompressed image requires high 

bandwidth with low transfer rate. That is 

why the compression process plays an 

important role in dealing with multi 

media. The techniques of image 

compression are either lossless or lossy 

process.  

In lossless compression algorithms, the 

original image is recovered from the 

compressed image without losses any 

information. They use statistical methods 

to minimize the redundancy [1]. Most of 

applications that need accurate 

requirements such as medical imaging use 

lossless compression techniques. These 

techniques include run length encoding 

[2], Huffman encoding [3], Lempel–Ziv–

Welch (LZW) coding [4], and area coding 

[5]. Lossy compression algorithms give 

higher compression ratios than lossless 

algorithms. They are widely used in most 

applications when the quality of images is 

not the mean issue. These techniques 

include transformation coding (such as 

discrete Fourier transform (DFT), discrete 

cosine transform (DCT), and discrete 

wavelet transform (DWT)) [6], vector 

quantization, fractal coding, block 

truncation coding (BTC), and subband 

coding [7].  

Other compression techniques are 

Interpolation [8] and surface fitting. 

Surface fitting method uses single non-

weighted polynomial that fits the values 

of blocks pixels and transmits only the 

coefficients of the polynomial for each 

block [9], [10].  

The compression process in general 

attempts to decrease the size of 

uncompressed image while maintaining 

the quality of reconstructed image.  

Many parameters are used to test the 

performance of image compression 

process such as mean squared error 

(MSE), peak signal to noise ratio (PSNR), 

and compression ratio (CR). For an image 

of size mxn, the MSE is the cumulative 

squared error between uncompressed 

(original) image 𝑓(𝑖, 𝑗) and the 

reconstructed image 𝑔(𝑖, 𝑗) where 

𝑖 = 1,2 … 𝑚 and 𝑗 = 1,2 … 𝑛 and defined 

by [11]: 

 
𝑀𝑆𝐸 =

1

𝑚𝑥𝑛
∑ ∑ |𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)|2𝑛

𝑗=1
𝑚
𝑖=1     (1) 

 

PSNR is also used as a measure of 

quality of reconstructed image and 

defined as: 

 

𝑃𝑆𝑁𝑅 (𝑑𝐵) = 10 𝑙𝑜𝑔10 [
[2𝑏−1]

2

𝑀𝑆𝐸
] = 20 𝑙𝑜𝑔10 [

2𝑏−1

√𝑀𝑆𝐸
]  (2) 

 

Where b is pixel depth in bits. Low MSE 

and high PSNR means better compression 

scheme. 

Additional parameter is compression 

ratio, which is defined as: 

 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜(𝐶𝑅) =
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑚𝑎𝑔𝑒
  (3) 

 

In this paper, a proposed technique that 

uses weighted 3D polynomial fitting 

technique to compress a color medical 

image to support zooming-in process. 

Instead of using low order non-weighted 

polynomial, which is used in the 

traditional image surface fitting, high 

order weighted polynomials will be used 

to maintain zooming-in details and 

preserve the quality of medical image 

during the decompression process. 

 
2. Non-weighted 3D polynomial fitting 

In dealing with image processing, it is 

considered that image information in 2D 

matrix form, and be constructed of mrows 
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and n columns. Each element of this 

matrix represents the pixel value. In this 

technique, the image is divided to non-

overlapping square blocks, and the 

following non-weighted polynomial 

applies to each block [12]. 
 

𝑃𝑜𝑙𝑦𝑘(𝑥, 𝑦) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑦 + ⋯ +  𝑝(2𝑘−1)𝑥𝑘 + 𝑝2𝑘𝑦𝑘 (4) 

 

Where 𝑝0, 𝑝1, … , 𝑝2𝑘 are coefficients of 

non-weighted polynomial and k is the 

order of polynomial. There is no 

combination terms of x and y in (4), that 

is why it called non-weighted polynomial. 

The coefficients are calculated such that 

the MSE is reduced for each block. A 

simplified application of first order 

polynomial fitting was used in [9].  

After extracting the coefficients, the 

quantization and coding process (such as 

Huffman coding) are applied to minimize 

the bits-representation of coefficients. 

High-order polynomial means low MSE 

and gives good image quality. However, 

in the same time gives low compression 

ratio due to increasing in the number of 

coefficients. 

This paper will test the following non-

weighted polynomials for comparison 

with the proposed technique. 

 
𝑃𝑜𝑙𝑦1(𝑥, 𝑦) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑦         (5) 

 
𝑃𝑜𝑙𝑦2(𝑥, 𝑦) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑦 + 𝑝3𝑥2 + 𝑝4𝑦2    (6) 
 
𝑃𝑜𝑙𝑦3(𝑥, 𝑦) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑦 + ⋯ + 𝑝5𝑥3 +   𝑝6𝑦3  (7) 
 

These polynomials will apply separately 

to the same medical image in Figure1 

(high-details image of a marrow cavity 

where hematopoietic stem cells are found 

inside human body, size 256x512) for 

different block sizes (4x4, 8x8, and 

16x16) as in the following steps: 

a) Splitting the medical color image 

into three channels (red, green, 

and blue). 

b) For each channel, the matrix is 

divided into 4x4 blocks. 

c) For each block, first-order 

polynomial (5) is applied and the 

three coefficients are calculated 

according to the least squares 

fitting [12]. 

d) These coefficients (except 𝑝0 ) are 

quantized using uniform quantizer 

which has 25levels (which means 

each coefficient will take 5 bits). 

The step size (∆) between any 

two-quantization levels is 

evaluated according to the 

following equation [13]: 

 

∆=
|𝑀𝑎𝑥 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡−𝑀𝑖𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡|

25     (8) 

 

e) For additional minimization of the 

bit-representation of coefficients, 

Huffman coding [13] is applied to 

encode the coefficients values 

according to the probability of 

occurrence of the coefficient. 

 

 

 

 

 

 

 
Figure1 Original medical image(high details stem 

cells). 

 

The same steps are applied for each 

block of sizes 8x8 and 16x16, and for 

second-order and third-order polynomials 

(6) and (7). For decompression process, 

each block is constructed (16 points for 

case 4x4-block) from its own coefficients 

and the final image is reconstructed from 

all blocks. The compression time is 

evaluated for each case and the 

parameters (1-3) are calculated using 

Matlab (R2014a) program (on Intel i7-

core 3.6 GHz, Windows7 64 bits OS with 

32 GB RAM). 
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For 4x4-block size, Figure2 shows model 

calculations of coefficients and the 

resulted fitting pixels for randomly 

selected block. 

 

 
Figure 2Non-weighted Polynomial fitting and 

pixels values extraction for 4x4-block size. 

 

The following sample calculations show 

how to preserve the upper-left pixel in the 

three blocks (Figure2). The original pixel 

has the value 18 with indices (x=1 and 

y=1). Applying the non-weighted 

polynomials (5-7) yields: 

 for poly1;  10.93 + 0.47(1) +
1.92(1) = 13.3, 

 for poly2;  15.31 − 2.33(1) +
0.36(1) + 0.56(1)2  + 0.31(1)2 =
14.2, 

 for poly3;  18.81 − 0.25(1) −
7.29(1) − 0.37(1)2 + 3.75(1)2 +
0.12(1)3 − 0.45(1)3 = 14.3. 

 

The model of three non-weighted 

Polynomials and the related Matlab 

functions can be shown in Appendix A. 

The results in Table1 show the 

applications of these three types of non-

weighted polynomials fitting for different 

block sizes. 

It seems when the order of non-

weighted polynomial is increased, the 

quality of image improved slightly but at 

the expanse of compression ratio. 

Zooming-in details in this traditional 

fitting (non-weighted polynomials) will 

be corrupted due to missing the weighted 

coefficients that enhance the fitting 

process. 

Table 1 non-weighted polynomials fitting for high 

details image 

 
 

Figure 3 shows this drawback for the 

best case (7 coefficients polynomial with 

4x4-block size) and for two zooming-in 

factors 3x and 6x. 

 

 
Figure 3Corrupted details during zooming-in 

process: (a) Reconstructed image, (b) Zooming-in 

3x, (c) Zooming-in 6x 
 

Figure 4 shows the behavior of non-

weighted polynomials for randomly 

selected 4x4-block of the original medical 

image. 

 

 

 

 

 

 
Figure 4Surface fitting of non-weighted 

polynomials: (a) randomly selected 4x4-block, (b-

e) fitting byPoly1~Poly4. 
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Black points in the Figure 4 represent the 

original pixels (without fitting).Clearly, 

the fitting process does not cover all 

original pixels even if high-order non-

weighted polynomials are used. 

 

 

 
Table 2Samples of coefficients values for non-

weighted polynomials fitting 

 

 

 

 

 

 

Table 2 shows the values of coefficients 

for Poly1 to Poly4 for the same block  

 

 

 

 

 

values in Figure4. For high-order 

polynomials, the values of high-order 

coefficients have less affected and hence 

the fitting process does not sound 

appropriate to preserve the correct pixels 

values as shown obviously in Figure 4 

where surfaces (d) and (e) have not been 

improved. As a result, most of image 

details will be lost during the 

decompression process and under 

zooming-in process. 

 

3. Weighted 3D Polynomial Fitting 

(the Proposed Technique) 

The fitting process using traditional 

polynomials (non-weighted) seems does 

not preserve the correct pixels values after 

decompression process even though high-

order degree is used. Hence, the image 

details will be lost or degraded under 

zooming-in manner. To obtain smooth 

fitting process and cover most of pixels in 

correct 3D polynomial, the combination 

of x and y terms must be involved in 

fitting polynomial. These terms will give 

high non-linearity behavior that increases 

the turning points in the polynomial. The 

3D weighted polynomial that will be used 

in proposed technique is defined as: 

 

 

Where 𝑘 > 1 and  𝑝𝑖𝑗 is the coefficient of 

 𝑥𝑖𝑦𝑗 term. The coefficients 𝑝𝑖𝑗 when 

1 ≤ 𝑖, 𝑗 < 𝑘 are called weighted 

coefficients and the related  𝑥𝑖𝑦𝑗 called 

weighted terms. These weighted terms 

will play a dominant factor in fitting 

improvement process due to smooth non-

linearity behavior in the 3D polynomial. 

Three models of 3D weighted 

polynomials will be used in the fitting 

process as follows: 

 

 

 

 

The flow chart of compression process for 

the proposed technique can be shown in 

Figure 5. 

 

 
 

Figure 5 Compression process for the proposed 

technique 

 

The effect of choice of quantization 

levels will control the image quality and 

CR. More quantization levels means 

better quality but low CR, while less 

quantization levels means high CR but at 
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the expanse of image quality.  

In Figure 2, it is clear that the first 

coefficient (𝑝0) in all polynomials has 

high priority than the rest of coefficients 

(this is also true for weighted polynomial 

coefficients). Therefore, the coefficient 

𝑝0will stay as 8 bits, while others 

coefficients (which have smaller values) 

will be rounded and quantized by using 5-

bits. 

To increase CR further, Huffman 

encoding algorithm will be applied to the 

quantized coefficients. This process will 

not disturb the image quality; it just 

minimizes the bit representation of the 

quantized coefficients. The Huffman 

encoding is an optimum coding in the 

sense that no other uniquely decodable set 

of code words has a smaller average code-

word length for a given source. The 

Huffman encoding algorithm [13] works 

as follows: 

 

a) The quantized coefficients are set 

in the descending order. 

b) The quantized coefficients of least 

probabilities are regarded as being 

combined into a new symbol with 

probability equal to the sum of the 

two original probabilities. The 

probability of the new symbol is 

placed in the list in accordance 

with its value. 

c) The procedure is repeated until the 

final list of symbols. Symbol of 

only two for which a ‘0’ and ‘1’ 

are assigned. 

d) The code for each symbol is found 

by working backward and tracing 

the sequence of 0s and 1s assigned 

to that symbol as well as its 

successor. 

 

Figure 6 shows the flow chart of the 

decompression process for proposed 

technique. 

 
 
Figure 6Decompression process for the proposed 

technique. 

 

4. Results 

Matlab (R2014a) implementations have 

been carried out for the medical color 

image and for different block sizes. The 

results are compared with non-weighted 

polynomial fitting technique based on 

MSE, PSNR, CR, and zooming-in 

process. The model of weighted 3D 

polynomials fitting (10-12) will use the 

following Matlab function: 

 
  𝑝𝑜𝑙𝑦3𝐷𝑓𝑖𝑡 = 𝑓𝑖𝑡([𝑥, 𝑦], 𝑧, ′𝑝𝑜𝑙𝑦𝑘𝑘′)      (13) 

 

Where x and y are 2D indices of the 

block, z is the pixels values of the block, 

and k is the degree of the weighted 

polynomial that will fit the block pixels. 

Table 3 shows the results of the 

proposed technique (weighted 3D 

polynomials fitting) for the following 

parameters: 

 Medical color Image 512x256 

(uncompressed size=512 * 

256*3*8=3145728 bits). 

 Non-overlapped 4x4, 8x8, and 

16x16 block sizes. 

 5-bit uniform quantization for 

weighted coefficients 𝑝𝑖𝑗has been 

performed using Matlab function 

imquantize(), while coefficient 𝑝00 
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in proposed technique will stay as 

8 bits. 

 The Huffman encoding and 

decoding have been performed 

using the functions mat2huff ( ) 

and huff2mat ( ) which have been 

described in [11]. 

 
Table 3 Results of weighted 3D polynomials 

fitting (proposed technique) 

 
 

The calculation of processing time for a 

block compression has been performed by 

using the MATLAB commands (tic-toc). 

As shown in Table 3, for high quality 

image (PSNR=34.86 dB), Poly33 (4x4 

block size) is the best choice, but for good 

CR (10.44) Poly33 (8x8 block size) is an 

alternative good choice. For Poly44, the 

case of 4x4 block size is not practical to 

use due to CR will be around unity (16 

pixels with 15 coefficients). 

Figure 7 shows the behavior of 

weighted 3D polynomials fitting (10-12) 

for randomly selected 8x8-block size of 

the original image where black points 

denote the original pixels of the block. 

Clearly, the fitting process of Poly33 

cover most of original pixels due to using 

the weighted polynomials that generate 

more turning points in fitting process and 

hence is better than fitting process of non-

weighted polynomialsas in Figure4.  

 

 
 

Figure 7Surface fitting of weighted 3D 

polynomials: (a) randomly selected 8x8-block, (b-

d) fitting byPoly22~Poly44 

 

Additionally, preserving image details 

with this proposed technique gives the 

process of zooming-in a clear details and 

smooth depth (comparing with poor 

zooming-in for non-weighted polynomials 

fitting in Figure3) as shown in Figure.8 

for the case Poly33 fitting and 4x4-block 

size and for two zooming-in factors 3x 

and 6x. 

 

 

 

 
Figure 8Clear details (stem cells) during zooming-

in process by proposed technique: (a) 

reconstructed image, (b) zooming-in 3x, (c) 

zooming-in 6x. 

 

Figure 9 shows the image parameters 

comparison between non-weighted 3D 

polynomial fitting (Poly1, Poly2, and 

Poly3) and the proposed technique 

(weighted 3D polynomial fitting Poly22, 

Poly33, and Poly44) based on MSE, 

PSNR, and CR. 
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Figure 9Image parameters comparison between 

non-weighted polynomial fitting and proposed 

technique based on: (a) mean squared error, (b) 

peak signal to noise ratio, (c) compression ratio. 
 

Another useful comparison is for 

zooming-in process between non-

weighted 3D polynomial fitting and the 

proposed technique to show how the 

quality could be preserved under two 

passes of zooming-in process. Table4 

shows this comparison for 3x (300%) and 

6x (600%) zooming-in factors. 

 

Table 4Image qualitycomparison under 3x and 6x 

zooming-in factors. 

 

 

 

 

 

 

 

 

5. Conclusion 

In this paper, a weighted 3D polynomial 

fitting is proposed for image compression 

that support zooming-in process. 

Integrating with scalar quantizer and 

Huffman encoding offered a smooth 

fitting and clear depth details due to using 

weighted 3D polynomial which increases 

the turning points during the block fitting. 

This enhancement in depth of details can 

be seen visibly when comparing Figure 3 

and Figure 8 under two passes of 

zooming-in depth. Additionally, Matlab 

results showed that the proposed 

technique is better than non- weighted 3D 

polynomial fitting for preserving the 

image details as shown in Figure 9 when 

comparing MSE and PSNR. For the best 

case (Poly33 and 8x8 block size), 

MSE=163.25 and PSNR= 26 dB while for 

traditional fitting (Poly3 and 8x8 block 

size), MSE=272.37 and PSNR=23.77 dB. 

In addition, the case of Poly33 with 4x4 

block size, has also provided a superior 

degree of details (PSNR= 34.86 dB) but at 

expanse of compression ratio. In all cases, 

the proposed technique (weighted 3D 

polynomial fitting) maintains high details 

under compression and zooming-in 

process. 

 

Appendix 

 

The model of three non-weighted 

Polynomials and the related Matlab 

functions can be shown in Table A1. 
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Table A1 Models of Matlab functions 
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