
ADAB AL-RAFIDAYN, VOL.(68) 2013م/1435ھـ

٣٧

THE ARCHITECTURE AND CONSTRUCTION
OF AN OPTIMAL GRAMMAR

 Lect. Dr.Abbas Fadhil Albayati

1. Introduction

The Optimality Theory is a relatively new theory of language that
was originally proposed by the linguists Alan Prince and Paul Smolensky
(1993/2002), and was later expanded by Alan Prince and John McCarthy
(see, e.g., McCarthy, 2004). It is a major assumption of the theory that
‘there are no fixed bounds on language’ (see Aitchison, 2003, p. 32) .

Although much of the interest in optimality theory has been
associated with its use in phonology, the area to which optimality theory
was first applied, the theory is also applicable to other subfields of
linguistics, e.g. syntax and semantics.

Optimality theory is usually considered a development of generative
grammar, which shares its focus on the investigation of universal
principles, linguistic typology, and language acquisition.

The optimality theory grammar is an input–output mechanism that
pairs an output form to an input form in a way that each input has precisely
one output (Kager, 2004, p.18). To accomplish this function, the grammar
contains a component which matches the input with an infinite set of
candidate output forms, and another component that evaluates the candidate
output forms by a set of ranked constraints, and selects the optimal output
among these. These two components are known as Generator and
Evaluator, respectively. Generator is a function that, when applied to some
input, produces a set of candidates, all of which are logically possible
analyses of this input. Similarly, Evaluator is a function that, when applied
to a set of output candidates, produces an output, the optimal analysis of the
input (cf. Vogel, 2004, p. 211). In addition to Generator and Evaluator, the

Dept. of English / College of Languages / Univesity of Salahaddin

 THE ARCHITECTURE AND CONSTRUCTION OF AN OPTIMAL GRAMMAR
Lect. Dr. Abbas Fadhil Albayati

 ٣٨

grammar contains a Lexicon storing all lexical forms that are input to
Generator.

2. Components of the Optimality Theory Grammar
The model of grammar provided by the Optimality Theory consists

of the following:
2.1 Lexicon

Lexicon contains lexical representations (or underlying forms) of
morphemes, which form the input. In other words, it contains all contrastive
properties of morphemes (roots, stems, and affixes) of a language,
including phonological, morphological, syntactic, and semantic properties.
The Lexicon provides the input specifications which are to be submitted to
the Generator. In this connection, perhaps the most striking property of the
Lexicon, as conceived of in the Optimality Theory, is that no specific
property can be stated at the level of underlying representations. So no
constraints hold at the level of underlying forms. This is called Richness of
the Base (see Kager, 2004, pp. 19-20).

The Optimality Theory thus abandons the Morpheme Structure
Constraints (MSCs), which in classical generative phonology (see, e.g.,
Chomsky & Halle, 1968) account for prohibitions against specific types of
structure at the level of the morpheme, in specific languages. MSCs were
used, for example, to express prohibitions against front rounded vowels, or
sequences of three or more consonants, or two labial consonants occurring
within a morpheme. In the early 1970s, MSCs were argued to be
theoretically problematic in the sense that they duplicate information which
is, independently, expressed by phonological rewrite rules, or that they
globally guide the application of rules, a property called ‘structure-
preservingness’. By locating the burden of explanation of the lack of
specific kinds of structure at the level of the output, the Optimality Theory,
at least in principle, circumvents this duplication problem (also see
Chomsky, 1995, p. 52).
2.2 The Generator

The Generator generates output candidates for some input, and then
submits these for evaluation. The essential property of the Generator is that
it is free to generate any conceivable output candidate for some input. This
property is called Freedom of Analysis. Accordingly, any amount of
structure may be posited. The only true restriction imposed on all output

ADAB AL-RAFIDAYN, VOL.(68) 2013م/1435ھـ

٣٩

candidates generated by Generator is that these are made up of licit
elements from the universal vocabularies of linguistic representation, such
as segmental structure (features and their grouping below the level of the
segment), prosodic structure (mora, syllable, foot, prosodic word, etc.), and
morphology (root, stem, word, affix, etc.), and syntax (X-bar structure,
heads, complements, specifiers, etc). Within these limits, ‘anything goes’,
as Ito and Mester (2004, p. 559) put it. The Generator contains information
about the representational primitives and their universally irrevocable
relations. For example, in case of syllable structure in phonology, the
Generator tells that the nucleus may dominate an onset or a coda, but never
vice versa.

Since Generator generates all logically possible candidate analyses
of a given input, an optimal grammar needs no rewrite rules to map inputs
onto outputs. All structural changes are applied in one step, in parallel. The
evaluation of these candidate analyses is the function of the Evaluator, the
component of ranked constraints, which is discussed in the next section.
2.3 The Evaluator

Evaluator is the set of ranked constraints, which evaluates output
candidates as to their harmonic values, and selects the optimal candidate.
The Evaluator is undoubtedly the central component of the grammar since
it is burdened with the responsibility of accounting for all observable
regularities of surface forms. Although any candidate output can be posited
by the Generator, the crucial role of Evaluator is to assess the harmony of
outputs with respect to a given ranking of constraints.

The Evaluator is structured as a language-specific hierarchy of
universal constraints, plus devices for evaluation. The latter include the
means to assess violation marks on candidate outputs for every constraint,
and the means to rank an infinite set of candidate outputs for harmony with
respect to the hierarchy of constraints, and select the most harmonic one of
these as optimal – the actual output of the grammar. Let us now take a
closer look at each of these devices:
2.3.1 The Constraint Hierarchy

The constraint hierarchy contains all universal constraints, which are
ranked in a language-specific way. We tentatively assume that all
constraints are ranked with respect to each other, so as to exclude variable
and undetermined rankings. Within the hierarchy, dominance relations are
transitive. So there is Transitivity of Ranking, e.g.

 THE ARCHITECTURE AND CONSTRUCTION OF AN OPTIMAL GRAMMAR
Lect. Dr. Abbas Fadhil Albayati

 ٤٠

 If Constraint 1 dominates Constraint 2 and Constraint 2 dominates
Constraint 3, then Constraint 1 dominates Constraint 3.

As a simplified example of constraints and their working, let us
consider the manifestation of the English plural /z/:

Input Output

/kæt + z/ [kæts]

/dɒg + z/ [dɒgz]

/diʃ + z/ [diʃɪz]

We also need to consider the following constraint set, in descending
order of domination (M: Markedness, F: Faithfulness):

1. M: *SS: Sibilant-Sibilant clusters are ungrammatical: One violation for
every pair of adjacent sibilants in the output.

2. M: Agree(Voi): Agree in specification of [voi]: One violation for every
pair of adjacent obstruents in the output which disagree in voicing.

3. F: Ident(Voi): Maintain the identity of the [voi] specification: One
violation for each segment that differs in voicing between the input and
output.

4. F: Max: Maximize all input segments in the output: One violation for
each segment in the input that does not appear in the output. This constraint
prevents deletion.

5. F: Dep: Output segments are dependent on having an input
correspondent: One violation for each segment in the output that does not
appear in the input. This constraint prevents insertion.

ADAB AL-RAFIDAYN, VOL.(68) 2013م/1435ھـ

٤١

The following tableau shows the hierarchy of these constraints in the
case of ‘cats’ in the English language:

/kæt + z/ *SS Agree Max Dep Ident

Kætɪz *!

Kætɪs *! *

Kætz *!

Kæt *!

☞ kæts *

No matter how the constraints are re-ordered, the ‘ɪs’ allomorph will

always lose to ‘ɪz’. This is called ‘harmonic bounding’ (Prince &

Smolensky, 2002, p. 193). The violations incured by the candidate ‘dɒgɪz’

are a subset of the violations incured by ‘dɒgɪs’; specifically, if you
epenthesize a vowel, changing the voicing of the morpheme is gratuitous
violation of constraints. In the ‘dɒg + z’ tableau, there is a candidate ‘dɒgz’
which incurs no violations whatsoever. Within the constraint set of the

problem, ‘dɒgz’ harmonically bounds all other possible candidates. This
shows that a candidate does not need to be a winner in order to
harmonically bound another candidate. This property of ranking will allow
us to construct ranking arguments, as we shall see below:

2.3.2 Marking of Violations
With respect to violation marks, we assume that each output

candidate is provided with as many marks (asterisks) as it has violations for
a constraint. This number of marks potentially ranges from zero until

 THE ARCHITECTURE AND CONSTRUCTION OF AN OPTIMAL GRAMMAR
Lect. Dr. Abbas Fadhil Albayati

 ٤٢

infinite. However, for purposes of determining optimal outputs, an infinite
number of marks is never practically relevant. The essence of minimal
violation of constraints is that every violation of a constraint serves a
purpose, specifically to avoid a violation of some higher-ranked constraint.
Prince and Smolensky (2002, p. 27) call this property Economy. It
maintains that banned options are available only to avoid violations of
higher-ranked constraints and can only be banned minimally. For example,
the Generator component is free to submit any kind of analysis of the
English word /bed/ that is couched within the universal alphabet of
representational options, including excessively unfaithful candidates such
as [pɪlow] and [mætrəs]. But these candidates will be ruled out regardless
of constraint ranking, since they violate faithfulness constraints without
compensation from reductions in markedness.
2.3.3 Harmony Evaluation

We have not yet precisely formulated in which way the evaluation of
output candidates by ranked constraints proceeds. Evaluator determines the
harmonic status of output candidates, and eventually the most harmonic or
optimal candidate. To this end, it uses a process by which the set of
candidates is reduced until the point is reached at which one output
remains. This is a multi-step process.

The major property of this evaluation process is that it applies from
one state to another without looking ahead to following steps. That is, the
elimination of candidate outputs by a constraint (CX) is never affected by a
lower-ranked constraint (CY) stated in a non-serial manner. This is called
Strict Domination, meaning that violation of higher-ranked constraints
cannot be compensated for by satisfaction of lower-ranked constraints (cf.
Dresher, 1996, p. 8).

Optimality does not involve any kind of compromise between
constraints of different ranks. No smaller amount of violations can
compensate for ranking of constraints. Domination is strict, i.e. any
candidate that incurs a violation of some higher-ranked constraint (on
which another candidate incurs no violations) is mercilessly excluded,
regardless of its relative well-formedness with respect to any lower-ranked
constraints (for further details, also see Legendre, 2001, pp. 1-27).

There is yet another sense in which domination is strict: Constraint
violations are never added for different constraints. The added violations of
two lower-ranked constraints (Constraint 2 and Constraint 3) are not able to

ADAB AL-RAFIDAYN, VOL.(68) 2013م/1435ھـ

٤٣

cancel out a single violation of a higher-ranked constraint (Constraint 1).
That is, lower-ranked constraints cannot team up against a higher-ranked
constraint.

Not all interactions of constraints are of this relatively simple kind,
i.e. where an optimal candidate satisfies a high-ranked constraint that is
violated by all competitors. Actually, most interactions involve some
degree of violation in the optimal candidate. Violation of a constraint is, by
itself, an insufficient ground for ungrammaticality. It is necessary to recall
that the goal of evaluation is to single out one unique form as the most
harmonic one. Elimination of all candidates in the set under consideration is
therefore not allowed. This must be avoided. Hence for a violation of some
constraint to be fatal, at least one other form must occur in the candidate set
that satisfies it, without being less harmonic on higher-ranked constraints,
of course. Constraint 1 should not be a no-pass filter. If no such form can be
found, some violation must be taken for granted (Prince & Smolensky,
2002, p. 73).

In such a situation, in which all remaining candidate outputs violate
a constraint (due to higher-ranked constraints), the seriousness of violation
must be taken into account for each individual form. That is, forms with
fewer violation marks of Constraint 1 are preferred to forms with more
violation marks for Constraint 1. This situation may still produce a ranking
argument for Constraint 1 and Constraint 2. Here the amount of violation is
decisive.

Finally, if multiple candidates have the same number of violations
for Constraint 1 (and this equals the minimal violation in the set), then all
survive and are passed on for evaluation by the next constraint down the
hierarchy, Constraint 2. Here lower-ranking constraint will be decisive.
This situation can be represented as an all-pass filter Constraint 1. Of
course, ties between candidates may also arise between forms that have no
violations at all, or between forms that have two, three, or any number of
violations.

The above discussion emphasizes that lower-ranked constraints are
not rendered inactive, or switched off by higher-ranked constraints, but that
their violation is only avoided with less priority. Lower-ranked constraints
may be violated by the optimal output, but their violation must be minimal.
Given the chance, any constraint (regardless of its position in the hierarchy)

 THE ARCHITECTURE AND CONSTRUCTION OF AN OPTIMAL GRAMMAR
Lect. Dr. Abbas Fadhil Albayati

 ٤٤

will be active in determining the optimal output (activity of a dominated
constraint).

The final property of Evaluator is Parallelism, which means that all
constraints pertaining to some type of structure interact in a single
hierarchy (see Prince & Smolensky, 2004, pp. 27-29). In a trivial sense, it is
parallelism which predicts that faithfulness constraints may interact with
markedness constraints in a single hierarchy. But at a higher level of
sophistication, parallelism is also the basis of explanation of phenomena
involving interface properties. In particular, many examples show that
morphological and phonological properties of an output form are mutually
dependent. The most spectacular cases will come from the area of prosodic
morphology, i.e. types of morphology that depend on aspects of
syllabification and metrical structure such as reduplication, infixation, and
truncation. According to Kager (2004, p. 25), it is parallelism that makes
information flow back and forth between morphological and prosodic
aspects in such cases.

Given two candidates, A and B, A is better than B on a constraint if
A incurs fewer violations than B. Candidate A is better than B on an entire
constraint hierarchy if A incurs fewer violations of the highest-ranked
constraint distinguishing A and B. A is optimal in its candidate set if it is
better on the constraint hierarchy than all other candidates. For example,
given constraints C1, C2, and C3, where C1 dominates C2, which
dominates C3 (C1 >> C2 >> C3), A is optimal if it does better than B on
the highest ranking constraint which assigns them a different number of
violations. If A and B tie on C1, but A does better than B on C2, A is
optimal, even if A has 100 more violations of C3 than B. This comparison
is often illustrated with a tableau. As noted earlier, the pointing finger
marks the optimal candidate, and each cell displays the number of
violations for a given candidate and constraint. Once a candidate does
worse than another candidate on the highest ranking constraint
distinguishing them, it incurs a crucial or fatal violation, marked in the
tableau by an exclamation mark. Once a candidate incurs a crucial
violation, there is no way for it to be optimal, even if it outperforms the
other candidates on the rest of constraints. The following tableau
summarizes the above discussion:

ADAB AL-RAFIDAYN, VOL.(68) 2013م/1435ھـ

٤٥

A violation tableau

C1 C2 C3

☞A * * ***

B * **!

3. Infinity and Optimality Theory
Freedom of Analysis may seem to pose an overwhelming

computational problem for the basic function of a grammar, which is to
provide a mapping between input and output. Perhaps the most apparent
fear is that an infinite candidate space is computationally intractable.
Reactions to this point focus on the nature of candidate space, on evaluation
strategies which assure a more efficient processing, and on computational
results booked so far in modelling Optimality Theory (for more details, see
Prince & Smolensky, 2002).

Firstly, it is a well-accepted assumption among linguists that there is
a distinction between the grammar (competence) and its implementation
(performance). This distinction is assumed in most formal theories of
grammar, and particularly in generative linguistics (Chomsky, 1965).
Therefore a model of grammar is adequate to the extent that it explains
observed systematicities in natural languages, and the grammatical
judgements of speakers. Explaining the actual processing of linguistic
knowledge by the human mind is not the goal of the formal theory of
grammar, but that of linguistic disciplines such as psycholinguistics,
neurolinguistics, cognitive linguistics, and computational linguistics. The
central point is that a grammatical model should not be equated with its
computational implementation.

Secondly, turning now to computational plausibility, the fact that
candidate space is infinite does not imply that the problem is logically
unsolvable. We may convince ourselves of this by thinking of arithmetic or
any kind of numerical problem. For example, there is a unique solution to
the equation 3n2 − 3 = 45: (n = 4), which you will be able to find after a

 THE ARCHITECTURE AND CONSTRUCTION OF AN OPTIMAL GRAMMAR
Lect. Dr. Abbas Fadhil Albayati

 ٤٦

moment’s thought, even though the candidate set is infinite, as it involves
all integers. From a computational viewpoint, the decisive factor is that a
guaranteed method (an algorithm) exists that will certainly produce a
solution for any input. Therefore, no simple argument against the
Optimality Theory as being computationally intractable can be based on the
observation that candidate space is infinite (see McCarthy, 2001, p. 14).

Thirdly, smart computational strategies may eliminate suboptimal
candidates by classes, rather than on a one-by-one basis. As soon as a
candidate has been excluded due to its violation of some constraint, the
evaluation process can immediately eliminate all other candidates that
violate this constraint more severely. This leads us to yet another property
of candidate space that might be put to use in computational evaluation
models. By far the great majority of candidates proposed by Generator can
never be selected as optimal, under any possible ranking of constraints.
Such intrinsically suboptimal candidates can be readily identified as
follows: They share with another candidate (of the same input) some set of
violation marks, but have at least one additional violation of some other
constraint. Sophisticated evaluation strategies may capitalize on this. Since
the identification of intrinsically suboptimal candidates involves no ranked
constraints, infinite candidate space may be drastically reduced by
eliminating the worst-of-the-worst of candidates by preprocessing prior to
the evaluation by ranked constraints. Since this preprocessing would
eliminate the great majority of candidates, the ultimately relevant remaining
part of candidate space may well have quite manageable proportions, and
perhaps even reduce to a finite set (Hammond, 1997; Prince, 1994).
4. Summary and Conclusions

The Optimality theory is a linguistic model proposing that the
observed forms of language arise from the interaction between conflicting
constraints. It aims to present grammars that are based on universal
constraints that are essentially violable. A different set of constraints may
apply in different Languages, but they are all selected from the same pool
of universal constraints. The same constraints may apply in a different
order, which results in changing the output that appears on the surface.
There are three basic components of the theory:

ADAB AL-RAFIDAYN, VOL.(68) 2013م/1435ھـ

٤٧

1. Generator, which generates the list of possible outputs or candidates.
These are taken from the lexicon that contains the lexical representations
(underlying forms) of the morphemes and supplies the input for the
Generator. The phonological form of the morphemes is language-specific.
The Generator produces a potentially infinite number of output candidates
and passes them to the Evaluator. The Input is different from one language
to another because the underlying forms of the lexicon comprise the input
2. Constraint, which provides the criteria, violable constraints, used to
decide between candidates. If two candidates both comply with several
constraints, there must be further (lower-order) constraints which
differentiate between the two and select one candidate. If two candidates
cannot be differentiated, they are identical.
3. Evaluator, which chooses the optimal candidate based on the
constraints. It consists of a set of ordered constraints, and evaluates the
output candidates with regard to their harmony values, i.e. the degree to
which they comply with the constraints. It selects the optimal candidate.
The selection is unique in the sense that there is one optimal candidate as
output.

The Optimality Theory assumes that these components are universal.
Differences in grammars reflect different rankings of the universal
constraint set. Consequently, language acquisition can be described as the
process of adjusting the ranking of these constraints.

References

 Aitchison, J. (2003). Linguistics (6th ed.). London: Teach Yourself.
 Chomsky, N. (1995). The Minimalist Program. Cambridge, MA: The MIT
Press.
 Dresher, B. E. (1996). The Rise of Optimality Theory in First Century
Palestine. GLOT International 2, 1/2, January/February, p. 8.
 Ito, J., & Mester, A. (2004). The Phonological Lexicon. In J. J. McCarthy
(Ed),Optimality Theory in Phonology (pp. 552-568). Oxford: Blackwell
Publishing.
 Kager, R. (2004). Optimality Theory. Cambridge: Cambridge University
Press.

 THE ARCHITECTURE AND CONSTRUCTION OF AN OPTIMAL GRAMMAR
Lect. Dr. Abbas Fadhil Albayati

 ٤٨

 Legendre, G. (2001). An Introduction to Optimality Theory in Syntax. In
G.Legendre, J. Grimshaw, & S. Vikner (Eds.), Optimality-Theoretic Syntax.
Cambridge, MA: MIT Press.
 McCarthy, J. (2001). A Thematic Guide to Optimality Theory.
Cambridge: Cambridge University Press.
 McCarthy, J. (Ed.) (2004). Optimality Theory in Phonology: A Reader.
Malden, MA: Blackwell publishing
 Prince, A., & Smolensky, P. (2002). Optimality Theory: Constraint
Interaction in Generative Grammar. N.P: ROA
 Prince, A., & Smolensky, P. (2004). Optimality Theory: Constraint
Interaction in Generative Grammar. In J. McCarthy (Ed.), Optimality
Theory in Phonology: A Reader (pp. 3-71). Malden, MA: Blackwell Publishing.
 Vogel, R. (2004). Remarks on the Architecture of Optimality Theoretic
Syntax Grammars. In R. Blutner & H. Zeevat (Eds), Optimality Theory and
Pragmatics (pp. 211-227). New York, NY: Palgrave Macmillan.

