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Abstract: 

Stopping power and straggling have 

been calculated by using Random Phase 

Approximation (RPA) at low velocity at the 

first and second approximation order, where 

the influence of damping has been ignored. At 

high velocities of a projectile, Plasmon Pole 

Approximation (PPA) has been used to 

calculate them without damping. In this 

research, we discuses interaction of protons H 

and helium He with solid matter Au (rs=1.49 

a.u.), AL (rs=2.12 a.u.), K (rs=4.86 a.u.) and 

Cs (rs=5.88 a.u.) in different adverbs. The 

results were obtained in all areas of the 

present work showed a good agreement with 

the previous works for stopping power and 

variance in energy loss (straggling). The 

results also showed detailed behavior of (H 

and He) of its interactions with four electron 

gas targets medium. The results have been 

achieved by using programs of matlab 

language, which performed for the numerical 

calculation.                                                        

           

Introduction 

A heavy ion passing through a target 

of convinced thickness will suffer a number 

of collisions with the atoms and electrons of 

the target. There is amount of energy will be 

transferred to the target atom and electron in 

each collision. Because the collisions are 

random and discrete, statistical fluctuation is 

expected in the number of collisions. [1, 2] 

variance of stopping power will be studied 

because of the statistical nature for the 

stopping power quality. The threshold effect 

describes the energy loss and straggling in a 

single crystal in channeling they found a mass 

effect between channeled protons and 

neutrons in the relative straggling values. [3, 

4]. 

The decreasing soft ions in solid 

matter due to interaction with the electrons of 

the atoms have been of interest since the early 

days of atomic physics [5]. Specific energy 

loss is also a major amount when the length of 

the road traveled by the ion at the center of 

importance. Thus, the exchange of energy 

between the ion intrusion and mail order to 

target not only in the fundamental interests 

but of the utmost importance to the depth 

profiling techniques employing ionic rays and 

applied to the thin-film as well as ion beam 

based materials modification. The 

decelerating force dE/dx, i.e. the mean energy 

loss per path length, an ion experiences in a 
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material is commonly denoted as the stopping 

power S of the material [6]. Theoretical model 

Stopping power and straggling .The stopping 

power of matter for charged particles is a 

main physical quantity in various 

applications. It is a subject of great 

importance in numerous areas of fundamental 

and applied physics [5].  

Theoretical model  

Stopping power and straggling 

 The stopping power of matter for 

charged particles is a main physical quantity 

in various applications. It is a subject of great 

importance in numerous areas of fundamental 

and applied physics [5]. The interaction of 

charged particles with matter has been a 

subject of great interest both for the advance 

of the knowledge of the basic interaction 

processes, as well as for a multitude of 

practical applications [6]. 

      The problem of energy losses suffered by 

charged particles moving in matter is of 

continuous interest in physics. When the ion 

velocity is greater than the average velocity of 

valence electrons in solids, a good description 

of the loss can be achieved using a linear 

response theory in which the screened 

potential is treated to the lowest order to 

calculate the loss due to the valence – band 

electrons with atomic type calculations due to 

core – electron excitations. However, at low 

energies, the importance of screening 

nonlinearities was demonstrated by using a 

scattering theory approach to the stopping 

power and density – functional theory 

[7].When a charged particle is traversing 

matter, it is loss energy due to interaction with 

the target atoms. The energy loss of the 

projectile per unit distance in the target 

material is called the stopping power of the 

material (dE/dx ) It depends on the charge , 

velocity of the projectile and, of course, the 

target material .Stopping power has been 

evaluated from equation.[8] :  
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is energy loss function as a function of k and w.            

Where Z1is the projectile atomic number (Z1=1for H and Z1=2 for He) and e is the elementary charge. 

If a beam of monoenergetic charged particles, with initial energy (E), passes through an absorber of thickness 

)( x , due to the statistical fluctuation in the energy loss, the variance can be defined as follows [9] 

2)( EE                                                                                           (2) 

Where E  : the energy loss of the charged 

particle when it passes through the absorber 

and  E  is the average energy loss of the 

same particle in passing through the same 
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absorber whose thickness is ( x ). The 

square root in Eq. (2) is called standard 

deviation )(  in energy loss ( E ) from its 

mean E  value. 

The energy-loss straggling dx/2  represents 

the fluctuation in the energy-loss spectrum 

and it is given by [10]: 
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Straggling is a complex issue in 

general. Fluctuations in energy loss are 

governed by the statistics of energy-loss 

processes and charge-changing events. For 

penetrating atomic ions, the former dominates 

far light ions and hinge on close collision The 

processes giving rise to the enhanced stopping 

power of light molecular ions less efficient 

with regard to straggling. [10]. On the other 

hand, charge-exchange straggling goes as the 

square of the stopping power, therefore, 

become relatively more important for 

molecular than for atomic ions [11].  

Dielectric Formalism for Stopping Power and straggling: 

1- Low velocities 

The Lindhard function [7] gives in a 

self-consistent way an exact expression of the 

dielectric constant for a non-relativistic free 

electron gas of high density at zero 

temperature. In the low energy limit, within 

the Random Phase Approximation (RPA) for 

the dielectric constant, the loss function can 

be written as follows:  
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From Nagg et al. [8] we have that:  
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            The approximation of the dielectric constant at low velocities (v<vf) 

i. The first approximation  )(1 kf


: 

For ),( k
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  an approximation is made to Eq. (3), if ),()( 21 kk
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Using the first approximation method to 1)(1 kf
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ii.  The Second Approximation to )(1 kf


: 

A good approximation to straggling of 

energy loss values obtained numerically by 

using the full (RPA) dielectric response 

function has been proposed by Lindhard and 

Winther [9]. Expanding the function )(1 kf


 

and then, )(1 kf


 up to the second order in k


and then, )(1 kf


 becomes [10]. 
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The imaginary part of the (RPA) dielectric loss function is given by inserting Eq. (12) and into Eq. 

(6) as follows: 
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2-  High velocities: 

The key ingredient in the calculation of 

stopping power is the linear-response function 

),( k


  of the target material, ),( k


  for a 

dense, and hence a degenerate electron gas, has 

been calculated in various approximations in the 

literature [12].At high velocities where the 

projectile can excite plasmons in the medium, 

Echenique et al., [13] and Basbas et al., [14] have 

used the plasmon-pole approximation (PPA) of 

the dielectric function ),( k


 : 
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 The constant 
Fk2/1)5/3( is the 

propagation of density disturbances in an 

electron gas, ωp is the plasmon frequency 

2/32/1 /3 sp r and the effective band gap 

energy ωg in semiconductors and insulators 

give a collective resonance frequency 

2/122 )( gpo    [15]. 

Plasmon dispersion is included 

through the term containing β
2
. Single-

particle effects are accounted for by the term 

equal to the square of kinetic energy k
2
/2, of a 

free electron with momentum k


. The small 

constant γ represents damping processes. It 

follows that in the limit γ→0[10]: 
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The upper and lower integration limits in "k" are the maximum and minimum momentum 

transfers k+ and k- to the target electrons [16].  

  (17)                               ])v[(2)2(vk
1/2222222
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The results  

We have made extensive calculation of 

stopping power and straggling and the 

numerical results for four solid targets, Au 

(rs=1. 49a.u), Al (rs=2. 12a.u), k (rs=4. 86a.u) 

and Cs (5.88 a.u.) have been presented [17]. 

These four targets have been chosen because 

of their frequent use in experiments [18] and 

also of their different electron densities, 

where (rs) is a measure of electron density. In 

atomic unit (m=e=ħ=1), and 1 a.u. 

=0.529A,and 1 a.u. ≈27.2 eV. 

1- Fist approximation 

Different approximations to the function 

)(1 kf


in Eq. (10) lead to different expressions 

for the stopping power and straggling. By 

substituting dielectric function in first 

approximation )1)(( 1 kf


 at low velocities 

from eq.(10) for determine both stopping power 

and straggling:    

a- Stopping power: Substituting eq. (10) in eq. (1) 
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The maximum momentum transfer between 

the collision electrons of projectile and 

medium is )2( Fk


. Then the average rate of 

stopping power due to single charges at low 

velocity with no damping 0)(γ is given by 

the following Eq. 
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b- The straggling  

When we substituting eq(10 ) in eq( 2), One can get  
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The Eqs. (20,21) are solved by the program written by matlab language and the figures have been 

gotten       
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Fig.(1): stopping power in the first approximation of 

low velocities for: 

(a) proton 

 (b) Helium 

 

(b) 

Fig.(2): straggling in the first approximation of low 

velocities for: 

(a) proton 

(b) Helium  
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2- Second approximation 

a- Stopping power 

By substituting Eq. (14) into the stopping power Eq. (1), one can get: 

 
 2

1
0

.

0 2224 )/(

2
z

kk

k
d

k

kd

dx

dE vk

D

 





 






                                               (22) 

By using the standard integral solution [19], one can get the final solution to Eq. (22) as 

follows: The stopping power for the second approximation at low velocity is given by the 

following Eq. 
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b- straggling 

 Now we discuss the variance (straggling) at low velocity ions with no damping by using the 

second approximation by using Eq. (14) into Eq. (2) then the variance (straggling) is 

given as follows: 
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The Eqs. (23, 25) are solved by the program written by matlab language and the figures have 

been gotten     
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                         (b)  

Fig.(3): stopping power in the second approximation 

of low velocities for: 

(a) proton 

(b) Helium 

 

 

(b) 

Fig.(4): straggling in the second 

approximation at low velocities for: 

(a) proton 

(b) Helium  
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3- high velocities 

By substituting the imaginary part of 
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velocities .[20] At high velocity imaginary part (energy loss function) given by eq. (16):        

Let us take two special cases: (a) If  
222

ppA  , then  

)(
2),(

1
Im p

p

k




















                                                                (26)      

Below which plasmon contributions subside. Then by substituting Eq. (26) in Eq. (1) one can get, 

 2

1

.

0

2

)(
2

2
zd

k

kde

dx

dE k

k

vk

p

p

 






















                                                (27)    

  If a-
 

222

ppA  , then From the property of the Dirac-δ function  

(28)                      )()()                     dxxfxxxf(    

 From comparison Eq. (27, 28) we get  A
A

d

KV

1)(
0

 


 

Therefore, the stopping power for high velocity of ions with no damping being as follows [10]: 

 



k

k
z

v

e

dx

dE p 



ln
2

2

13

22                                                                                   (29) 

By substituting Eq. (16) into Eq. (2) and therefore the variable in energy loss (straggling) becomes,  

 2

1
0

2

2

22

)(
2

.
2

zd
k

kd

v

e

dx
p

pk

k
























 


                                 (30)  

By useful from eq. (28) in eq. (29), one can get: 

  

















k

k
z

v

e

dx

p 




ln2

12

322                                                                              (31) 

(b) If 4/42222 KKA p   Then Eq. (1) becomes 

       2

1

2

3

2

)(
2

.
2

zA
A

d
k

kd

v

e

dx

dE p
  








                                         (32) 

 2

13

22

zA
k

kd

v

e k

k

p









 




                                                                                      (33) 

 
















 




4/42

2

2

2

13

22

k
kk

kd
z

v

e

dx

dE pk

k

p


 

 


                                            (34) 

  By take the same last steps we can find the straggling equation written it as the following:  

 
























4/42

2

2

2

12

222

k
kk

kd
z

v

e

dx

pk

k

p


 

 


                                         (35) 

Eq. (29,31,34,35) has been solved numerically by using the program matlab (2012) and figures have 

been obtained the following: 
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                                      (a) 

 

 

 

                                          (b) 

Fig.(5): stopping power in the first case  at 

high velocities for: 

(a) proton 

(b) Helium 

 

(b) 

Fig.(6): straggling in the first case at  

high velocities for:   (a)proton 

(a) Helium  
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                (a) 

 

 

  

             

 

 

 

(b) 

Fig.(7): stopping power in the second case 

at high velocities for: 

(a) proton 

(b) Helium  

 

(b)  

Fig.(8): straggling in the second case 

of high velocities for: 

(a) proton 

(b) Helium  

 

 

 

 

Discussion and conclusions  

The dielectric formalism have been 

applied to calculate the main significant 

magnitudes in the energy loss of hydrogen- and 

helium-ion beams in a target, namely, stopping 

power and straggling. The calculations have 

been done taking into account velocities of 

projectile. 

A good relationship has been obtained 

from calculating the total stopping power, 

straggling stopping power by using Lindhard 

function of Random Phase Approximation with 
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no damping for first and second order of 

approximation at low velocities as used by 

Nagy and Echenique [21] and Plasmon Pole 

Approximation at high velocities. This study is 

comparable to the result of Arista [22]. 

fig.(1) shows stopping power of proton 

(H) and helium(He) at low velocities in first 

approximation 1)(1 kf


 for four different 

targets (Au,Al,K,Cs) and fig.(2) which shows 

straggling of of proton (H) and helium(He) at 

low velocities in first approximation for four 

different targets (Au,Al,K,Cs).while fig.(3) 

shows stopping power of proton (H) and 

helium(He) at low velocities in second 

approximation 

2

1
23

1
1)( 












Fk

k
kf 




for four 

different targets (Au,Al,K,Cs) and fig.(4) 

which shows straggling of of proton (H) and 

helium(He) at low velocities in second 

approximation for four different targets 

(Au,Al,K,Cs). in spite of the difference 

between them (first and second approximation 

respectively) both stopping power and 

straggling remain on the same conduct. This 

means that stopping power and the straggling 

have the same behavior in both approximations 

formula. Stopping power and straggling have 

large value for Au (rs=1.49 a.u.) which mean 

that stopping power and straggling decreasing 

with density parameter or wigner-sietz radius 

(rs). The increasing of Winger Seitz radius )( sr  

lead to decreasing with stopping power and 

straggling of energy loss at low velocities with 

no damping. This means that relation is inverse 

proportional.  

Fig.(5) shows stopping power of proton 

(H) and helium(He) at high velocities in first 

case 
222

ppA   for four different targets 

(Au,Al,K,Cs), Fig.(6) shows straggling of 

proton (H) and helium(He) at high velocities in 

first case 
222

ppA   for four different 

targets (Au,Al,K,Cs),while fig.(7) shows 

stopping power of proton (H) and helium(He) 

at high velocities in second case 

4/42222 KKA p     for four different 

targets (Au,Al,K,Cs) and fig.(8)shows stopping 

power of proton (H) and helium(He) at high 

velocities in second case  

4/42222 KKA p   for four different 

targets (Au,Al,K,Cs),  figures (5,6,7,8)show 

dependant of energy loss on the Wigner Seitz 

radius )( sr for different values of its at high 

velocities. The increasing values of sr  leads to 

decrease Fv


 (Fermi Velocity) of a target and also 

the density of electrons according to the relation as 

3/1

4

3












e

s
n

r



, where sr is the radius of a sphere 

contains one electron [21] and n is the density of 

electrons. The collision of ions in a target of small 

sr  means that there will be high dense of electrons 

to screen the projectile and delay it. In addition, one 

may expect a short interaction time, therefore each 

target medium exhibits prevention against the 
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projectile dependant on its density where 

)49.1( srAu represents the highest screening and 

then, )12.2( srAl  , )86.4(  srK and

)88.5( ss rC . 
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 الايقاف والتطىح للبروتىن والهليىم في المىاد الصلبة

 سحش يضْش يطشش

 جبيعخ ري قبس/كهٍخ انطت/قسى انفسهجخ ٔانفٍضٌبء انطجٍخ

 

اٌ قذسح الاٌقبف ٔانزطٕح حُسِجذ ثبسزخذاو رقشٌت انطٕس انعشٕائً عُذ انسشع انٕاطئخ ٔثزقشٌجٍٍ يٍ 

عُذ انسشع انعبنٍخ نهجسٍى انسبقط اسزخذو رقشٌت قطت . الاضًحلالرأثٍش  أًْمانشرجخ الأنى ٔانثبٍَخ. حٍث 
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رفبعم  بانجحث، َبقشُعُذ ٔجٕد الاضًحلال. فً ْزا  ٔانزطٕح نلأْذافانجلاصيٌٕ نحسبة قذسح الاٌقبف 

 Au (rs=1.49 a.u.)، AL (rs=2.12 a.u.)، K (rs=4.86 a.u.) andانجشٔرَٕبد ٔانٓهٍٕو يع انًٕاد انصهجخ 

Cs (rs=5.88 a.u.)  أٌ انُزبئج انزً رى حصٕل عهٍٓب خلال ْزِ انذساسخ اظٓشد ثبٌ ُْبك يخزهفخ. فً ظشٔف

انًفقٕدح )انزطٕح(، اٌ انُزبئج انًسزحصهخ ثٍُذ انسهٕك انزفصٍهً انزجبٌٍ فً انطبقخ الإٌقبف ٔ قذسح ثٍٍرٕافق جٍذ 

حُصهذ عهى انُزبئج  انًخزهفخ.راد كثبفّ انكزشٍَّٔ  لأْذاف)انجشٔرٌٕ ٔانٓهٍٕو( نزفبعهّ يع اسثعخ أسبط  نلإٌَٔبد

 انحسبثبد انعذدٌخ. لإجشاءثبسزخذاو ثشايج ثهغخ انًبرلاة ٔانزً اعذد 

 

 

 


