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Stopping power and straggling have

been calculated by using Random Phase
Approximation (RPA) at low velocity at the
first and second approximation order, where
the influence of damping has been ignored. At
high velocities of a projectile, Plasmon Pole
Approximation (PPA) has been used to
calculate them without damping. In this
research, we discuses interaction of protons H
and helium He with solid matter Au (rs=1.49
a.u.), AL (rs=2.12 a.u.), K (rs=4.86 a.u.) and
Cs (rs=5.88 a.u.) in different adverbs. The
results were obtained in all areas of the
present work showed a good agreement with
the previous works for stopping power and
variance in energy loss (straggling). The
results also showed detailed behavior of (H
and He) of its interactions with four electron
gas targets medium. The results have been
achieved by using programs of matlab
language, which performed for the numerical

calculation.

Introduction

A heavy ion passing through a target
of convinced thickness will suffer a number

of collisions with the atoms and electrons of
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the target. There is amount of energy will be
transferred to the target atom and electron in
each collision. Because the collisions are
random and discrete, statistical fluctuation is
expected in the number of collisions. [1, 2]
variance of stopping power will be studied
because of the statistical nature for the
stopping power quality. The threshold effect
describes the energy loss and straggling in a
single crystal in channeling they found a mass
effect between channeled protons and
neutrons in the relative straggling values. [3,
4].
The decreasing soft ions in solid
matter due to interaction with the electrons of
the atoms have been of interest since the early
days of atomic physics [5]. Specific energy
loss is also a major amount when the length of
the road traveled by the ion at the center of
importance. Thus, the exchange of energy
between the ion intrusion and mail order to
target not only in the fundamental interests
but of the utmost importance to the depth
profiling techniques employing ionic rays and
applied to the thin-film as well as ion beam
based materials modification. The
decelerating force dE/dx, i.e. the mean energy

loss per path length, an ion experiences in a
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material is commonly denoted as the stopping
power S of the material [6]. Theoretical model
Stopping power and straggling .The stopping
power of matter for charged particles is a
main various

physical  quantity in

applications. It is a subject of great
importance in numerous areas of fundamental
and applied physics [5].

Theoretical model

Stopping power and straggling

The stopping power of matter for

charged particles is a main physical quantity
in various applications. It is a subject of great
importance in numerous areas of fundamental
and applied physics [5]. The interaction of
charged particles with matter has been a
subject of great interest both for the advance
of the knowledge of the basic interaction
processes, as well as for a multitude of

practical applications [6].

The problem of energy losses suffered by

charged particles moving in matter is of
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continuous interest in physics. When the ion
velocity is greater than the average velocity of
valence electrons in solids, a good description
of the loss can be achieved using a linear
response theory in which the screened
potential is treated to the lowest order to
calculate the loss due to the valence — band
electrons with atomic type calculations due to
core — electron excitations. However, at low
energies, the importance of screening
nonlinearities was demonstrated by using a
scattering theory approach to the stopping
power and density — functional theory
[7].When a charged particle is traversing
matter, it is loss energy due to interaction with
the target atoms. The energy loss of the
projectile per unit distance in the target
material is called the stopping power of the
material (dE/dx ) It depends on the charge ,
velocity of the projectile and, of course, the
target material .Stopping power has been

evaluated from equation.[8] :

i 0)

} is energy loss function as a function of k and w.

Where Z;is the projectile atomic number (Z,=1for H and Z,=2 for He) and e is the elementary charge.

If a beam of monoenergetic charged particles, with initial energy (E), passes through an absorber of thickness

(AX), due to the statistical fluctuation in the energy loss, the variance can be defined as follows [9]

Where Ae : the energy loss of the charged

particle when it passes through the absorber
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and — ae - IS the average energy loss of the

same particle in passing through the same
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absorber whose thickness is ( AX ). The

square root in Eq. (2) is called standard

deviation (Q) in energy loss (AE) from its

mean <AE> value.

The energy-loss straggling Q2 /dx represents
the fluctuation in the energy-loss spectrum

and it is given by [10]:
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Straggling is a complex issue in

general. Fluctuations in energy loss are
governed by the statistics of energy-loss
processes and charge-changing events. For
penetrating atomic ions, the former dominates
far light ions and hinge on close collision The

processes giving rise to the enhanced stopping

e (k, w)
power of light molecular ions less efficient
with regard to straggling. [10]. On the other
hand, charge-exchange straggling goes as the
square of the stopping power, therefore,
become relatively more important for

molecular than for atomic ions [11].

Dielectric Formalism for Stopping Power and straggling:

1- Low velocities

The Lindhard function [7] gives in a
self-consistent way an exact expression of the

dielectric constant for a non-relativistic free

ek, w) =<, (K)+ic, (K,®)

or 1 1

The imaginary part of

e (K, )

e, (K, @)

ckw) < (K+ie, (ko)

electron gas of high density at zero
temperature. In the low energy limit, within
the Random Phase Approximation (RPA) for
the dielectric constant, the loss function can

be written as follows:

C))

(5)

can be obtain by multiplying and dividing Eqg. (2) by its conjugate.

Therefore the || _—1 | can be written as:
e (k,w)

Im[ } J: — -
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From Nagg et al. [8] we have that:
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A good approximation to straggling of

e, (K) = C(K)Ff, (k) +1 for arbitrary k
o @)
=, (K) = C(K) D8 for k < 2k,
N ! a4k2 — k2 |k + 2k.]|
f(k)==|1+ E In E
Where T2 (O 2[ Ak .k, |k - 2k, J ®)
N a4k
cdo= 7zk';

The approximation of the dielectric constant at low velocities (vV<vi)

The first approximation fl(IZ) :

For € (|Z, ®) an approximation is made to Eq. (3), if € (IZ) >>€, (E, @) , therefore,

m[ —1 ]z =, (K, w) ©)
e (K, @) = (K

Using the first approximation method to £, (<) = 1.then, equation (6) becomes:

C(IZ)|: i J
Im|: —1 :|= L 2Kke | 20
e (K, ) [CK) +1] k3|:4k'; _'_1]
2k
Where k2 — 2K« (11)

The Second Approximation to f,(K) :

Winther [9]. Expanding the function f,(K)

energy loss values obtained numerically by

using the full (RPA) dielectric response

and then, (k) up to the second order in K

function has been proposed by Lindhard and and then, fl(lZ) becomes [10].

2K,

(12) fl(IZ)=1—1( 3 ]2
3

The imaginary part of the (RPA) dielectric loss function is given by inserting Eq. (12) and into Eq.

(6) as follows:




Let the constants {1‘[2 =1-

(14)

2- High velocities:

The key ingredient in the calculation of
stopping power is the linear-response function
€ (k,w) of the target material, € (K,®) for a

dense, and hence a degenerate electron gas, has

been calculated in various approximations in the

-1 j: k2 2K kg
e(k,w) ) 2 _ 2
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(13) Sake K
, 4k
— and k; = then Eq. (13) becomes
E V/4
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literature [12].At high velocities where the
projectile can excite plasmons in the medium,
Echenique et al., [13] and Basbas et al., [14] have
used the plasmon-pole approximation (PPA) of

the dielectric functione (K, ) :

2
P

e (k,w) =1+

(15)

4
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The constant g — (3/5)* 2k, is the

propagation of density disturbances in an
electron gas, ®, is the plasmon frequency

w, =32 /r>2and the effective band gap

energy ®g in semiconductors and insulators

give a collective resonance frequency

Plasmon dispersion is included
through the term containing PB° Single-
particle effects are accounted for by the term

equal to the square of kinetic energy k%/2, of a

free electron with momentum K . The small

constant y represents damping processes. It

Q, = (ws + a)g)llz [15]. follows that in the limit y—0[10]:
1 7702
Im|:€ (R,a))]_ S S = A) a6)
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Where Az — 02 + g?k2 + k*/4
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The upper and lower integration limits in "k"

are the maximum and minimum momentum

transfers k. and k. to the target electrons [16].

ki = {2(V2 _ ,82) + 2[(V2 —,82)2 . Qg]}l/Z (17)
This gives a threshold forv; v, = (B2 —2)*?
The results

We have made extensive calculation of
stopping power and straggling and the
numerical results for four solid targets, Au
(rs=1. 49a.u), Al (rs=2. 12a.u), k (rs=4. 86a.u)
and Cs (5.88 a.u.) have been presented [17].
These four targets have been chosen because

1- Fist approximation

Different approximations to the function

fl(IZ) in Eqg. (10) lead to different expressions

for the stopping power and straggling. By
substituting  dielectric ~ function in  first

of their frequent use in experiments [18] and
also of their different electron densities,
where (r5) is a measure of electron density. In
(m=e=h=1), and 1 au.
=0.529A,and 1 a.u. =27.2 eV.

atomic  unit

approximation (fl(IZ) =1) at low velocities
from eq.(10) for determine both stopping power
and straggling:

a- Stopping power: Substituting eq. (10) in eq. (1)

(18)

amziﬁ¥”

The maximum momentum transfer between
the collision electrons of projectile and

medium is(2Kg ). Then the average rate of

b- The straggling

——

dE
dx

2 = dK (ko 2k
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L R T

stopping power due to single charges at low

37 2 4 k2 )

velocity with no damping (Y - 0) is given by
the following Eq.
k3

(20) dE _ 2v°
(k2 +K2)

X" 3s (zfe2 )J:kvdlz

When we substituting eq(10 ) in eq( 2), One can get

(z7)

2he? Izkp dk

A(E)f

I dw.w?

2k w
( 2 +k§,)2




21 4he? 2Ke dk K e2nv? 2ke  k*dk
( ) :7(212).[0 mj}) a)3da)=T(212)J-o (k2+k|§)2

The Eqgs. (20,21) are solved by the program written by matlab language and the figures have been

gotten
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Fig.(1): stopping power in the first approximation of @)
low velocities for:
(a) proton
(b) Helium
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Fig.(2): straggling in the first approximation of low
velocities for:
(a) proton
b) Helium
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2- Second approximation

a- Stopping power

By substituting Eq. (14) into the stopping power Eq. (1), one can get:

(22) dE - dk kv 2Kw 2

Ll Tk + (ko /7T )

By using the standard integral solution [19], one can get the final solution to Eq. (22) as
follows: The stopping power for the second approximation at low velocity is given by the

following Eq.

(23) dE _ 2e? V( ) IZkF k3dk
dx  3Ad1° k? + (ko /T2 [

b- straggling

Now we discuss the variance (straggling) at low velocity ions with no damping by using the
second approximation by using Eq. (14) into Eq. (2) then the variance (straggling) is

given as follows:

(24)_ E _Zhe 2k dk deonco? 2k :
®="h kj‘) o 1 (k2 + (ko /11 )

_ ezh(zf)\/z J-Zk‘p k*dk (25)

(k2 +(kD/H)2)2

The Egs. (23, 25) are solved by the program written by matlab language and the figures have

been gotten
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Fig.(3): stopping power in the second approximation
of low velocities for:
(a) proton
(b) Helium
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Fig.(4): straggling in the second
approximation at low velocities for:
(a) proton
(b) Helium
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3- high velocities

By substituting the imaginary part of [%} for a suitable approximation of the dielectric
€

, @)

response € (k , a)) in the limit of damping process in Eq. (1) then we can find stopping power for high
velocities .[20] At high velocity imaginary part (energy loss function) given by eq. (16):

Let us take two special cases: (a) If A? = Qi = coﬁ , then

P S(wo—cw,)

(26) 2 2
et

= (k,w) 2

Below which plasmon contributions subside. Then by substituting Eg. (26) in Eg. (1) one can get,

@7 & 2 K[ )™ 0,

Ifa- A> = Qi = coi , then From the property of the Dirac-6 function
f(x') = j S(x — x') f (x)dx (28)

From comparison Eq. (27, 28) we get KIV do 25(w—A) =1
A
o

Therefore, the stopping power for high velocity of ions with no damping being as follows [10]:

2 2 i
(29)(:17E = zeﬁ(zz)lnlfi‘r
ax v k

By substituting Eq. (16) into Eq. (2) and therefore the variable in energy loss (straggling) becomes,

(30) @° _2e’n r*‘{kj dew.w [”‘;’P 5(0)—%)}(23)

dx  av? &k

By useful from eq. (28) in eq. (29), one can get:

BV enet (ynf()

(b) If a2 — 0%+ BPK? + Kk 474 Then Eq. (1) becomes

(32)

d£_ 2e? J.dk'zj-d wza)i

I = o A 5(60—A)><(212)

(?s?s)—e“’jk*Olk (22)

vl

By take the same last steps we can find the straggling equation written it as the following:
(35) 2  e’hw; krdk [ Q2 4
= p(zf)fzi? P+p*+k*/4

dx

(34) dE _ e’ e, )J-k+dk[

dx k?2

Eq. (29,31,34,35) has been solved numerically by using the program matlab (2012) and figures have
been obtained the following:
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Fig.(5): stopping power in the first case A° =<2t = <% at
high velocities for:

(@) proton
(b) Helium
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Fig.(6): straggling in the first case A° =<2% =z at
high velocities for: (a)proton

(@) Helium
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Fig.(7): stopping power in the second case
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Fig.(8): straggling in the second case
2 _ 2 212 4
A =Q + KT +KT/4 of high velocities for:
(a) proton

(b) Helium

Discussion and conclusions

The dielectric formalism have been

applied to calculate the main significant
magnitudes in the energy loss of hydrogen- and
helium-ion beams in a target, namely, stopping

power and straggling. The calculations have

——
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been done taking into account velocities of

projectile.

A good relationship has been obtained

from calculating the total stopping power,
straggling stopping power by using Lindhard
function of Random Phase Approximation with

]
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no damping for first and second order of
approximation at low velocities as used by
Nagy and Echenique [21] and Plasmon Pole
Approximation at high velocities. This study is

comparable to the result of Arista [22].

fig.(1) shows stopping power of proton

(H) and helium(He) at low velocities in first

—

approximation f(k)=1 for four different
targets (Au,AlLK,Cs) and fig.(2) which shows
straggling of of proton (H) and helium(He) at
low velocities in first approximation for four
different targets (Au,Al,K,Cs).while fig.(3)
shows stopping power of proton (H) and
helium(He) at

low velocities in second

_ 2
- 1( k
approximation fl(k)zl——(TJ for four

3| 2k

different targets (Au,AlLK,Cs) and fig.(4)
which shows straggling of of proton (H) and
helium(He) at
approximation

(Au,AlLK,Cs).

between them (first and second approximation
both

straggling remain on the same conduct. This

low velocities in second

for four different targets

in spite of the difference
respectively) stopping power and
means that stopping power and the straggling
have the same behavior in both approximations
formula. Stopping power and straggling have
large value for Au (rs=1.49 a.u.) which mean
that stopping power and straggling decreasing

with density parameter or wigner-sietz radius

(rs). The increasing of Winger Seitz radius (I;)

lead to decreasing with stopping power and

——

straggling of energy loss at low velocities with
no damping. This means that relation is inverse

proportional.

Fig.(5) shows stopping power of proton

(H) and helium(He) at high velocities in first
case A’ =Qi =a)§ for four different targets

(Au,ALK,Cs),

proton (H) and helium(He) at high velocities in

Fig.(6) shows straggling of

first case A’=Q%=w’ for four different

(Au,AlLK,Cs),while  fig.(7)
stopping power of proton (H) and helium(He)
at  high

AP =08 + K2 +K* 14

targets shows

velocities in  second case

for four different

targets (Au,Al K,Cs) and fig.(8)shows stopping
power of proton (H) and helium(He) at high

velocities in second case

A =QF +°K*+K* /4 for four different
targets (Au,AlLK,Cs), figures (5,6,7,8)show
dependant of energy loss on the Wigner Seitz

radius (rs) for different values of its at high
velocities. The increasing values of I leads to

decrease \7F (Fermi Velocity) of a target and also
the density of electrons according to the relation as
13
- 3 . .
I,=| —— | , where [is the radius of a sphere
4mn,
contains one electron [21] and n is the density of
electrons. The collision of ions in a target of small
I, means that there will be high dense of electrons

to screen the projectile and delay it. In addition, one
may expect a short interaction time, therefore each

target medium exhibits prevention against the

]
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projectile dependant on its density where then, A|(I’S:2.12) , K:(FS:4.86) and

AU(I’S =1-49) represents the highest screening and C (I‘ -5 88)
s\ls 7+ .
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