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Abstract

In this paper ,we introduce a new method as a modified of the (LTB) algorithm for image
compression, by using the standard MV-algebra (A, ®, ~ ,0), where A=[0,1] is the unit interval
of real numbers with the internal binary operation © which is defined by x®y=min {1, x+y }and
the internal unary operation ~ x =1-x, for all X,y belong to A and a constant 0. We prove some
mathematical properties of standard MV-algebra to use them as a mathematical support in our
modified method, we call this method (CSLTB). A comparison was made between our method
and (LTB algorithm , JPEG algorithm) by the PSNR (Peak signal Noise Ratio) and RMSE (Root
Mean Square Error).Show that our method has better performance.

—sdadal)

8l MV L sladiuy el baual (LTB) 4 lsal pesiS sana 335k diadl s (4 Liedd
Capad Al @ Adalal) AU dleal) o ddiall 2ac Y (e Aalaal) daal 5yl A=[0,1] o) Cus (A, @, ~, 0)
A <y 5 xJ9, ~x=1-x 4l LaVilely, x @ y=min{1,x+y} b LS
Gy, Aaaall Lyl Slacaly ) GullS Lgaladind @l MV uad Ay )1 Gal al) any Uia yy 285 0 il
( (JPEG) 4i)sas (LTB) daislsd) e IS Oy Wik o 4l Cuiy | (CSLTB) aul legle Lkl
(RMSE) &l 5 (3,LiDM slia suall add 4u) (Peak Signal Noise Ratio) (PSNR) 48 (unliall aladinly
Ly yla Jee 36LS 530 0a ol | (Laall e 5l ,3a00) (Root Mean Square Error)

Introducion

Image can be defined as a two dimensional light intensity function f(x, y), where x and y
denotes spatial co-ordinates and the value of ‘f ‘at any point is directly proportional to the
brightness (gray level) of the image at that point.[19].Interest in image compression dates back
more than 35 years. The initial focus of research efforts in this field was on the development of
analog methods for reducing size of data representation of an image, the practical application of
the theoretic work that began in the 1940s, by C.E Shannon and others [20].

On the other hand Chang devised MV-algebras to study many-valued logics, introduced by Jan
Lukasiewicz in 1920. In particular, MV-algebras form the algebraic semantics of Lukasiewicz
logic, [6].Given an MV-algebra A, an A-valuation is a homomorphism from the algebra of
propositional formulas (in the language consisting of @, ~, and 0) into A. Formulas mapped to 1
(or ~ 0) for all A-valuations are called A-tautologies. If the standard MV-algebra over [0,1] is
employed, the set of all [0,1]-tautologies determines so-called infinite-valued Lukasiewicz logic
[21].
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In 1965 L.A.Zadeh introduced the notion of fuzzy subset of a set, the theory of fuzzy relations is
widely used in many applications [2,3,11,16] and particularly in the field of image processing ([8]-
[10],[13] - [15], [18] and [23]). As a matter of fact, fuzzy relations fit the problem of processing the
representation of an image as a matrix with the range of its elements previously normalized in [0,
1], [17,22] .

In 2006, A. D. NOLA and C. Russo provided a mathematical support for some techniques of image
processing based on the theory of fuzzy sets.They used the Lukasiewicz Transform by mean of the
partition of unity in MV-algebra . The Lukasiewicz Transform and its residual are semimodules
homomorphism and their compositions yields the identity. These algebra tools allowed them to
define the algorithm for image processing Lukasiewicz Transform Based (LTB) [1]

In this paper ,we give a new method as a modified (LTB) method as we mentioned in the abstract.

1. Some Basic Concepts
In this section,we review some basic definitions and notations of semimodules over semirings and
MV- algebra with its proves that we need in our work.
Definition (1.1):- [1]
A semi ring is an algebraic structure (S, +, ., 0, 1), with two internal binary operations, + and .
and two constants 0,1 e S such that
(S1) (S,+, 0) is a commutative monoid,
(S2) (S, . , 1) isamonoid,
(S3)x.(y+z)=xy+xzand (x+y). z=xz+yzforallx,y,z € S,
(S4)0x=x0=0forall x € S.
A semi ring is said to be commutative iff the commutative property holds for the multiplication
too.We will consider only non-trivial semi rings, i. e. semi rings such that 0 # 1.

Definition(1.2) :- [1]

Let S be a semiring. A left S-semi module is a commutative monoid

(M, +y , 0) with an external operation, called scalar multiplication, with coefficients in S
® :(ssmeSXM>seme M,

Satisfying, for all s,s’ € S and m,m’' € M, the following condition :

(M1) (ss) em=se (s"em);

(M2) se(m+ym)=sem+y Sem’;

(M3) (s+s')em=sem+ys em;

(M4) 1lem=m;

(M5) Se0y=0y=0em.

The definition of a right S-semi module is analogous.

If S and S’ are semi rings and M is both a left S-semi module and a right S’-semi module, M will

be called an (S, S’)-bisemimodule iff it satisfies the following additional condition :

(M6) (sesm) es' s’ =s @5 (meg's’) forallse S,s’e S andme M,

Where s and *s" mean the external products with scalars in S and in S’ respectively. In particular, if
S is commutative, any left or right S —semi module is an (S,S)-bisemimodule and we will call it ,
shortly , an S-bisemimodule . Note that we will always omit the “»” symbol

Throughout this section S will denote the semi ring (S, +, ., 0, 1), and M = (M,+y ,0) will be a left
semimodule over S. Obviously all the following definitions and results hold both for right and left
S-semimodules.

Definition(1.3):-[6]
An algebraic structure A=( A ,®, ., ~,0), is said to be an MV -algebra iff it satisfies the
following equations:

1L (XxX®y)®z=xD (yD 2);

2.XPYy=y®X;

3.x® 0=x;
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~~X=X;
X®~0=-~0

L ~(XQYy)ByYy=~(~yDX)DX.

Remark(1.4):-[1]

On every MV — algebra it is possible to define another constant and two further operations as
follows 1=~0,XQy=~(~x® ~y) , x O y=x0~y

The following properties follow directly from these definitions

(1) ~1=0

(2) X y=~(x0-~Yy)

(B) x®1=1

4 (xOy)@y=(y©OXx) ®x
5) x&®&~x=1

In follows we will often denote an MV-algebra by (A, ©, 0, ~,0,1)

Definition (1.5):- [6]
Let A be an MV-algebra ,the binary relation <is defined on A by
x<y iff ~x @ y=1.forallx,y € A.

Remark (1.6):-[5]

The relation < which is defined in the definition (1.5) is a partial order ,called natural order of A.
This relation also determines a lattice structure with 0,1 respectively infimum and supremum
elements, vand A defined as follows:-

Xvy=(X0~y)@y=(x0y) @y

XAY=~(Xv~y)=x0(-xYy)

Definition (1.7):- [21]

The MV - algebra is called complete if it is complete as a lattice ,and that is an MV- chain if it is
totally ordered by its natural order .

Remark (1.8):- [4]
Let A=(A, @, O, ~,0,1) be a complete MV — algebra , X be a non empty set , and A% is the set of
all functions from A to X . Then A*=(A%, @, O, ~ ,0,1) is a complete MV-algebra with operations

defined pointwise , for any MV- algebra A it is possible define semirings | " =(A, A, ® ,0,1)
and

| "=(A,v,®,0,1) called semirings reduct of A.

Moreover the monoid M=( A*, v, 0) is a bissmimodule over both | “and | " with scalar
multiplication af =~a Of and af=a ©f,foralla € Aand f € A*. analogously

(A", v, 0) is a bisemimodule over | " and |~ foranyn e N.Miscalled aMV- | "-

Semimodule ( respectively : MV- |_“semimodule ) over A.

If A is an MV- chain the MV — semimodules over it will be called Lukasiewicz | "-
semimodule

and Lukasiewicz |_"- semimodule respectively .

Definition (1.9):- [2]
Let A be an MV- algebra a finite sequence of element of A ,(ag ,...,an-1) IS a partition of unity if
aO +...+ an-1 =1

Proposition (1.10):-[1]
LetneN ,n>kandkeZ.Then {po ,ps, ....pn-1} is a partition of unity in the MV- algebra [0,1] ¥
where
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{—(n—l)x+1 it 0= xs<_1
Po(x) = 0 stherwise | e (1)
. n—2
Pra(x) = {(n—l)x—(n—z) if  _—g=x=1 ... )
0 otherwise
and

k-1 k

Py = |(TUx—(=t) i S s sy 3)
k k+1

—(n—l)x+k+1 if — < xin_l
for k = 0 otherwise |, o

Definition (1.11):- [7,12]
Let S be a semiring and let M=( M , +, 0 ) be an S — semimodule ,furthermore , let X be a non
empty setand n € N . A semimodule homomorphism

h, : M* — M" is called transform of order n , if there exists a homommorphism Ap MY = M
having the following properitys

(T1) hyo Ano hy=hy

(TZ) /,i,n o hn O/,i,n: /,i,n

Definition (1.12):- [1]
Consider the MV- algebra A = ([0,1], @, ©, ~,0,1) and the set X =[0,1] .The operator
Hn : [0,2]°Y — [0,1]" defined by

N1

H,: f € [0,1]°Y ( V flz)a ,,,k.u)> < oA,
fo=()

ael0.1]
is called Lukasiewicz transform, where Py ,... ,Pn1 is the partition of unity defined by proposition
(1.10).

Theorem (1.13):- [1]
Hn is a Lukasiewicz | " - semimodule homomorphism from ([0,11°Y, v/, 0) to ([0,1]", v, 0) .

Definition (1.14):- [7]

Let (X, =) and (Y, =) be two ordered sets. A map h: x — vy is said to be residuated if it is isotone
and, forall y e Y, the set {xe X : h(x) = y} admits the greatest element, denoted by h* (y). The
map

h*: Y = Xis called the residual ,or the residual map, of h.

Theorem (1.15):- [1]
The map Hy is residuated and A , is its residual map. Moreover Hyo Apn=1p01)", Where A, is the
Lukasiewicz inverse transform defined by

n-1

An:iV=(Wo,...,vna) € [01]" = ~( v (~wOpx)) e [0,2]°1
k=0
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Definition (1.16):- [16]
Let X be a non-empty set and | be the closed interval [0, 1] of the real line (real numbers). A
fuzzy subset A in X (a fuzzy subset of X) is a function from X in to I.

Remark (1.17):-
1) According to the theorem (1.15) Hy, is transform of order n from the semimodule
([0,11°%, v, 0) to ([0,1]", v , 0) .
2) Every element in [0,1]°* is a fuzzy subset of [0,1] .

2. The Lukasiewicz Transform Based (LTB) Algorithm for ImageProcessing

In [1] the authers introduced (LTB) algorithm , and we describe it brifly as follow :-

Step 1 :- Fuzzyfy the image matrix of the dimension ( m x n) into a fuzzy matrix X=(x;) of
dimension ( m x n ) ( i.e each image matrix must be seen as a [0,1] valued function defined on
(a subset ) of [0,1] ) . Every gray image is treated as afuzzy matrix and the (RGB) colour image is
treated as three fuzzy matrices.
Step 2 :- Rewrite the fuzzy image matrix X = ( X;; ) as a ( mn ) vector (X'o ,...,x'mn-1) by setting for
all (k=0, ... ,mn-1), X'k = Xqin) r@en) Where q(k,n) and r(k,n) are , respectively , quotient and
remainder of the Euclidean division k/n .

Step 3 :- Set Dx={L :k=0,...,mn-1} < [0,1]

mn -1
and define the function
k
f: e Dx » X'k € [0,1]

mn -1
Step 4 :- Find the partition of unity ( po,...,pn-1 ) defined by proposition (1.10) .
Step 5 :- Apply the Lukasiewicz transform H,(fx) to compress the image .
Step 6 :- To decompress the image apply A n(Hn(fx)) the residual of the Lukasiewicz transform .
Step 7 :- Rewrite A (Hn(fX)) as an ordinary matrix.

3. The Main Result

The technige of (LTB) image processing based on the MV- algebra ( [0,1], ®, ~ ,0) (i.e the
LTB algorithm depend on the definition of the binary operation @ and the unary operation ~ and
the constant 0 ).
In this section we give a new method as a modefied of the (LTB) for image processing based on the
standard MV — algebra ( [0,1], @, ~,0) endowed with binary operation @ defined by
x @ y=min{1,x+Yy}and the unary operation ~x =1-x, for all x,y € A and the constant 0 .
Now , we prove some mathematical results about the standard MV- algebra as a mathematical
support to our algorithm.

Proposition (3.1) :-

If ([0,1], & ,~, 0) is a standard MV- algebra and X, y € [0,1] then
Q) xOy=max{0,x+y-1}

(i) X OQy=max {0, x-y}

(iii) Xvy=max{x,y}

(iv) XAy=min{x,y}

Proof:-

Q) From the definition of the binary operation O in remark (1.4) and since ([0,1], @ ,~,0) s

a standard MV- algebra where
XOYy=~(~x®~y)=1(1-x®1-y)=1-min{1l,1-x+1-y}
=1-{min{l1,2-x-y}}=max{1-1,1-{2-x-y }}=max{0,x+y-1}.
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(i) By the definition of the binary operation © ijn remark (1.4) and since ([0.1], © ,~,0) is
a standard MV — algebra and by (i) we have
XOy=x@~y=max{0, x +~y -1} [from (i)]
=max {0, x+1-y-1}=max {0, x-y}.
(ili) ~ From the definition of v in remark (1.6) , ([0,1], ® , ~, 0) is a standard MV- algebra and
by (i) we get
Xvy=(x0~y)®@y=min{l,( xO~y)+y}
=min{1l,max{0,x+~y-1} +y}
=min{l, max{0,x+1-y-1}+y}
=min{1, max{0,x-y}+y}

X if Xy
ly if X<y
=max{x,y}—>xvy=max{x,y}

(iv) By definition of A in remark (1.6), ([0,1] , ©, ~, 0) is a standard MV — algebra and
from(iii), we have

XAY=~(~xv-~y)=1-(1-x v1-y )= 1-max {1-x,1-y} = min {1- (1-x), 1- (1-y),
=min{x,y}n

Proposition (3.2) :-

Let ([0,1], ®, O, ~, 0, 1) be the standard MV- algebra , f e [0,1]®" and Py , Py ,...,Pn.1 be the
partition of unity defined by proposition (1.10) .Then there exists X" e [0,1] such that

Pe(X) +f(x") > 1, forallk=0,1,2,...,n-1.

Proof:-

If k=0andx'=0 e [0,1], then Py(0) =1 = Py (X) +f(X") > 1

[Since f is a function from [0,1] to [0,1] (fuzzy subset of [0,1]) Therfore 0< f(x) < 1, V xe [0,1] ]
= If k=n-landx'=1 e [0,1], then

Pra(X) =Pr1(1)=(n-1) 1 -(n-2) =1

= Ppa (X) +f(x) > 1 [since 0 < f(x') < 1]

If k=2,...,n-2and X' =

L,then
n-1

k k
Pu(x) =P (—) =(n-1) —
() =P = ()
= P (X) +f(x) > 1 m.

Theorem (3.3):-
Let ([0,1], ®,0,~, 0, 1) be the standard MV-algebra and Pg,Ps,...,Pn.1 be the partation of unity
defined by proposition (1.10) . Then Ha(f) = (sup {f(x) +P«(x) -1} , v fe[0,1]°Y .
xe[0,1]

(k1) =1

Proof:-
From the definition of Lukasiewicz Transform (definition (1.12)) , we have

Hh=( v ) OPX) )

xe[0,1]
By proposition (3.1) (i) and (iii) we have

v fX)OPX) = sup {max {0, f(x) + Px(X) -13}

xe[0,1] xe[0.1]
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from proposition (3.2) there exists x’ € [0,1] such that
f(X) +Pc(x) > 1 = f(X') +Pc(X")-1 >0

= sup { max {0, f(x) + Px(x) -1}} = sup {f(x) + Px(x) -1}
xe[0,1]

xe[0,1]

Ha( = (- sup {9 + Pux) -13 ).

xe[0,1]

Definition (3.4):-
We call the Lukasiewicz Transform in theorem (3.3) the standard Lukasiewicz Transform , denoted
by SH, .

corollary (3.5):-
Let ([0,1], ®,0,~,0, 1) be the standard MV-algebra and Pg,Ps,...,Pn1 be the partation of unity

defined by propsition (1.10) . Then SH, (~ f) = SH, (1-f) = ( sup {Px(X) —f(x)}):_z vV e [01]
| -

xe[0,1

proof :-
Since ([0,1], ®,0,~,0, 1) is the standard MV-algebra ,then ~ f = 1-f .

From theorem (3.3), we have SH, ((~ f) = SH, (1- ) = ( sup {1- f(x) + Px(x) —1}):_2
xe[0,1] =

= ( sup {Px(x) _f(x)}):: "

xe[0,1]

Theorem (3.6):-
Let ([0,1], ®,0,~,0, 1) be the standard MV — algebra , Po,P1,...,Pn.1 be the partation of unity

defined by proposition (1.10) , f e [0,1]°, SH(f) = (Vk): and S A ,, be the residual map of the
standard Lukasiewicz transformed SH,,..

n— n-1
Then SA,( (Vk)k z )=1- sup{ max { 0, Pi(x)-vi}} for all xe [0,1] .

= k=0

Proof:-
From theorem (1.15) , we have

n-1

SAn( (i) )=~ ( v (%OR))

Now, let x € [0,1] .

By proposition (3.1) ,we have

n-1 n-1

~( v (~VkOPk))(X):1-(k\—/o (~ Vi O Pi(x)))

n-1
=1-sup{max {0,1-vx + Pc(x)-1}}
k=0

= 1- sufo {max{0,Pc()-Vk P m.

218



Journal of Kerbala University , Vol. 10 No.4 Scientific . 2012

corollary (3.7):-
Let ([0,1], ®, O, ~,0, 1) be the standard MV — algebra , Pgo,Ps,...,Pr1 be the partation of

unity
defined by proposition (1.10) , fe [0,1]°Y then SA , (SHa(~f)) =S A 1 (SHa(1-f))

n-1
=sup {max {0, Px(X) - vk }
k=0

Proof:-
S A (SHy(1-f)) = SA(SHn (1) - SHy (f) )
=SAn(SHn (1)) - SAn (SHy ()

n-1
=1-(1- sup {max {0, Px(x)— vk ) (By Theorem (3.6))
k=0

n-1
=sup {max{0,Px(X)-vk } m.
k=0

We call our algorithm “ Complement of fuzzy image vector Standard Lukasiewicz Transform
Based”, denoted by (CSLTB) . Since the standard Lukasiewicz Transform SH, which we define in
theorem (3.3)and defintion (3.4) to compress the fuzzy image complement vector ~ f =(1-f) .

Now we describe the (CSLTB) algorithm .

Step 1 :-
Fzzyfy the image matrix by dividing each element of image matrix by 256 , because the gray

level
is ranging between (0 — 255 ). Each gray image is treated a fuzzy matrix and the (RGB) colour

image as three fuzzy matrix .

Step 2 :-
Rewrite the fuzzy image matrix X=(x;;) as (mn) vector as in the (step 2) in (LTB) algorithm.

Step 3 :-
Define the function f as in the (step 3) in (LTB) algorithm .

Step 4 :-
Find Py,...,Pn1 the partition of unity defined by proposition (1.10).

Step 5 :-
Apply the standard Lukasiewicz transformed SH,(1-f) by using corollary (3.5) to compress the
image .
Step 6 :-
To decompress the image apply the residual map of the standard Lukasiewicz Transform
S A (SHp(1-f)) by using corollary (3.7).

Step 7 :-
Rewrite S A » (SH(1-f)) as ordinary ( m x n ) matrix by multiplying each element by 256 to get the

ordinary decompression image matrix .

Example (3.8):-
In this example we Take a square block of (4 x 4) to explain (CSLTB) algorithm (our method)
as in the following steps:-

110 110 118 118
108 111 125 122
106 119 129 127
110 126 130 133

M =
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Step 1:-
Now we fuzzfying the matrix M by dividing each element of M by 256 to get the following matrix:-

042 042 046 046
042 043 048 047
041 046 05 049
0.42 049 05 051

Step 2 :-
Now we rewrite the fuzzy matrix X as a matrix of one row of dimension (1 x 16 ) or as the vector

of 16 components as follow :-

[0.42 0.42 0.46 0.46 0.42 0.43 0.48 0.47 0.41 0.46 0.50.49 0.42 0.49 0.50.51]

Step 3 :-
Set the following:-

k
DX:{{mn]_lzk =0,1,...., (mxn) — 1}

Dx=f—— 1k =0,1,.., (4x4) — 1}

(4x4)—1

Dx={0,0.06,0.13,0.2,0.26,0.33,0.4,0.46,0.53,0.6,0.66,0.73,0.8,0.86 ,0.93,1}

and define
f= k S Dx _»(\k
(mxn) -1

f(0) = 0.42 , f(0.06) = 0.42, f(0.13) =0.46 ,... f(1)=0.51

Step 4 :-
Now we find Py, P1, P2, Pz by using proposition (1.10)
. 1
— - = =
PO(X):{ 3x+1  if 0= x<-
otherwise
[ 3x if 0< x < g
PL=9  -3x+2 if lex<tl
3 3
\ 0 otherwise
[ 3x—1 if e xs?
3 3
P209=Y -3x+3  if 2 x=1
3
\ 0 otherwise
. 2
_ = =
PS(X):{ 3x—2 if < x<1
0 otherwise
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Step 5 :-
Compress the complement of image vector (1- f) by using SH,, (1-f) (corollary (3.5))

SHn (1-f) = (sup (Po(x) —f(x)) , sup (P1(x) — (X)), sup (Pz(x)—f(x)), Sl[JOFi] (P3(x) - f(x)))

xe[0,1] xe[0,1] xe[0,1]

X 0 0.06 0.13 0.2 0.26 0.33

Po(X) 1 0.82 0.61 0.4 0.22 0.01

f(x) 0.42 0.42 0.46 0.46 0.42 0.43

Po(X) — f(X) 0.58 0.4 0.15 - 0.06 -0.2 -0.42

Table (1) How we find Py(x) — f(x) to get vo

sup (Po(x) —f(x)) =sup {0.58,0.4,0.15,-0.06,-0.2,-0.42}=058=v,
xe[0,1]
X 0 0.06 0.13 | 0.2 0.26 |0.33 |04 046 | 053 | 0.6 0.66
P1(x) 0 0.18 0.39 | 0.6 0.78 [ 0.99 | 0.8 0.62 | 041 |0.2 0.02
f(X) 0.42 0.42 046 |046 |042 (043 (048 (047 | 041 |046 |05
P,(x)—f(x) |-0.42 |-0.24 |-0.07 |0.14 | 0.36 056 |0.32 |0.15 |0 -0.26 | -0.48

Table (2) How we find P;(x) — f(x) to getv;

sup (Pi(x) — f(x)) = sup { - 0.42 , - 0.24 , - 0.07, 0.14, 0.36, 0.56,0.32,0.15,0, - 0.26 ,-

xe[0,1]

0.48}

vy = 0.56

X 033 |04 [046 |053 |06 |0.66 |0.73 |08 |086 |093 |1
P(X) 00102 [038 [059 [08 [098 081 [06 [042 [0.21 |0
f(x) 0.43 | 0.48 |0.47 | 041 |046 |05 |049 |0.42 | 049 |05 |051
P,(X)—f(x) | -0.44 | -0.28 | -0.09 | 0.18 | 0.34 | 0.48 | 0.32 | 0.18 | -0.07 | -0.29 | -0.51

Table (3) How we find P,(x) — f(x) to get v,

sup (Pa(x) — f(x)) = sup{-0.44 , -0.28 , -0.09 , 0.18 , 0.34, 0.48 , 0.32, 0.18 , - 0.07 , - 0.29 , -

xe[0,1]

0.51}

Vo = 0.48
X 0.66 0.73 0.8 0.86 0.93 1
P3(X) -0.02 0.19 0.4 0.58 0.79 1
f(x) 0.5 0.49 0.42 0.49 0.5 0.51
P3(x) — f(X) -0.52 -0.3 -0.02 0.09 0.29 0.49

Table (4) How we find P3(x) — f(x) to get vs
sup (Ps(x) —f(x)) =sup {-0.52,-0.3,-0.02,0.09,0.29,0.49 } =0.49 =v3

xe[0,1]

Then SHy (= f) = (Vo,v1,V2,V3) = (0.58,0.56,0.48,0.49)

In this step we use SH4 to compress the (4x4) fuzzy matrix to (2x2) matrix or we compress the
fuzzy image vector of (16) components to the vector of (4) components .

Step 6 :-

To decompress the compression vector , we apply the residual map of standard Lukasiewicz
transform by using corollary (3.7)as follow :-
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SA 4 (SHy(1-F) = Sljp{ max {0, Px(X) - vk }

Now we complete the above example as follow :-

X Po-Vo MaX{O,Po- Pi-V1 MaX{O,Pl- P>-V> MaX{O,Pz- P3-V3 MaX{O,Pg- 3
Po- Vo} Pl- V]_} Pz- Vz} P3-049 V3} Skli([)) (Pk_
0.58 0.56 0.48 Vi)
0 0.42 0.42 -0.56 0 -0.48 0 -0.49 0 0.42
0.06 |0.24 0.24 -0.38 0 -0.48 0 -0.49 0 0.24
0.13 | 0.03 0.03 -0.17 0 -048 |0 -0.49 0 0.03
0.2 -0.18 |0 0.04 0.04 -0.48 0 -0.49 0 0.04
026 |-036 |0 0.22 0.22 -0.48 0 -0.49 0 0.22
0.33 |-057 |0 0.43 0.43 -0.49 0 -0.49 0 0.43
0.4 -0.58 |0 0.24 0.24 -0.28 0 -0.49 0 0.24
046 |-058 |0 0.06 0.06 -0.1 0 -0.49 0 0.06
053 |-058 |0 -0.15 0 0.11 0.11 -0.49 0 0.11
0.6 -0.58 |0 -0.36 0 0.32 0.32 -0.49 0 0.32
0.66 |-058 |0 -0.54 0 0.5 0.5 -0.51 0 0.5
0.73 |-058 |0 -0.56 0 0.33 0.33 -0.3 0 0.33
0.8 -0.58 |0 -0.56 0 0.12 0.12 -0.09 0 0.12
0.86 |-058 |0 -0.56 0 -006 |0 0.09 0.09 0.09
093 |-058 |0 -0.56 0 -0.27 |0 0.3 0.3 0.3
1 -0.58 |0 -0.56 0 -0.48 0 0.51 0.51 0.51

S A 4(SH4(1-f(x))) =[0.42,0.24,0.03,0.04,0.22,0.43,0.24,0.06,0.11,0.32,0.5,0.33,0.12,0.09,0.3,0.51]
Now we rewrite this vector as ordinary vector such that we multiply each element in this vector by

256 to get

The decompress image vector = [ 108, 61,8, 10,56, 110,61, 15,28,82,128,85,31, 23,

77,131]

Decompression ordinary image matrix DM =

Table (5) How we apply S A , to find the decompression matrix

108

31

222

61 8 10
56 110 61
28 82 128 85
23 77 131
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Original Image Our Method, 2x2, LTB method, 2x2, JPEG method,2x2,
P =05 P =05

Rmse = 1.2162 Rmse = 58.4469 Rmse = 2.4985
Psnr = 46.4309 Psnr =12.7956 Psnr=40.1773

Our Method, 4x4, LTB method, 4x4, JPEG method, 4x4,
2 =0.25 £ =025 £=0.25

Rmse = 6.0652 Rmse = 68.3310 Rmse =6.1120
Psnr = 32.4739 Psnr=11.4384 Psnr = 32.4071

Table (6) Comparison between our method image ,(LTB algorithm and JPEG algorithm) image,
(gray image )
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Fig (1) Bridge original image Fig 2 our method (8x8)
(360 x 360) (360 x 360)
T '., v = % r_vg*/ P

Fig (5) Mandrlllorlglnal |mage . Flg (6) our method (8x8)
(512 x 512) (512 x 512)

Fig (5) Lena original image Fig (6) our method (8x8)
(512 x 512) (512 x 512)
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Original Image Our Method, 2x2 LTB method, 2x2 JPEG method, 2x2
P =05 £ =05 P=05

Rmse = 1.6650 Rmse = 55.8967 Rmse = 6.4739
Psnr =43.7023 Psnr=13.1831 Psnr = 31.9075

Our Method, 4x4, LTB method, 4x4, JPEG method, 4x4
P =025 P =025 £=0.25

Rmse = 6.7813 Rmse = 65.7072 Rmse = 7.1230
Psnr = 31.5045 Psnr=11.7785 Psnr=31.0775

Table (7) Comparison between our method image ,(LTB algorithm and JPEG algorithm) image,
(color image )
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L RS

ig (1) original image
(360 x 360)

i

¢ 1/‘ IR L e “ i
Fig (2) our method (360 x 360), Fig (3) (LTB) algorithm (360 x 360),
(8x8) blocks (p=0.39) (8x8) blocks , (p =0.39)

Fig 1) Lena original image (512 x 512) | Fig (2) our method (512 x 512)
(8x8) blocks , (p=0.39)
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IMAGE [ JPEG [ LTB OUR METHOD [ JPEG LTB OUR METHOD
RMSE |RMSE | RMSE PSNR PSNR PSNR
Bridge | 3.6168 |56.3420 | 2.7965 36.9643 | 13.1141 | 39.1984
Gray
Mandril | 6.5917 |53.5997 | 2.2150 31.7509 | 13.5476 | 41.2232
| RGB

Table (8) Comparison between our method and (LTB algorithm, JPEG algorithm)

Conclusions:-

We deduce from this paper which contains the new method to compress images (gray and color)
as a modified of (LTB) algorithm we created it to get a result better than the (LTB) algorithm and
we get our goal from this method and so, we observe that the result of our methods which we call it
(NSLTB) is batter than JPEG and (LTB) algorithms, results in (gray and color) images by objective
and subjective as we viewed in the above tables and figures .

Since the JPEG algorithm still the standard algorithm for image compression then the important
thing in (CSLTB) is that its result batter than the JPEG algorithm result and so we observe that in
the gray image the difference between (CSLTB) and JPEG algorithm results is small but still
(CSLTB) result better than JPEG algorithm result and in color image we saw the large difference
between them and we think the reason of this difference between gray and color images “of
(CSLTB) results and JPEG algorithm results” because there exist one matrix corresponding the gray
image and there are three matrix for color image one matrix for each color of (RGB) i.e.(red , green
, blue) respectively, such that we compress one matrix for gray image and compress three matrix for
color image.
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