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Abstract: An analytical procedure has been carried out to measure the charge that may trapped in an insulator sample and 

related electrostatic surface potential in sense of mirror effect phenomenon. In fact, scanning electron microscope mirror 

method (SEMME), sometimes called electron mirror method (EME) and/or magnification factor method (MFM), has been 

used to accomplished that purpose. However, this work has been carried out concerning the theoretical point of view, the 

mirror plot curve has been adopted as an evaluation scale for the quality of the mirror image. Therefore, this procedure had 

been used to investigates the experimental mirror plot curves for PMMA material with different accelerating potential and 

studying the most important parameters that affects in these curves. Results have clearly shows that the radius of irradiated 

area play an important rule in the shape of mirror plot figure and then the quality of the image.  
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1. Introduction  

Many investigations have been 

accomplished concerns with electron trapping 

in insulators due to its own importance when a 

dielectric material is inspected by means of 

scanning electron microscope (SEM). The most 

critical issue regarding the observation of 

insulating material by (SEM) is charging due to 

electron-beam irradiation. Such charging 

causes deflection of the incident and emitted 

electrons, resulting in various phenomena such 

as image contrast variation, magnification 

variation, and image drift [1; 2]. These effects 

have been observed particularly by textile 

microscopists, and are frequently referred to in 

the literature as “charging” effects [3; 4]. The 

study of insulator charging effect in a (SEM) 

has led to several interesting observations. For 

instance Clark et al. observed a distorted image 

of the electron collector grid instead of the 

specimen surface, while tilting the certain 

uncoated insulating specimen [5; 6]. However, 

this distorted image as to be seen of the 

observation inside SEM chamber so called later 

mirror effect. Mirror effects occur when a 

primary electron beam scans an insulating 

sample and the charges on its surface 

accumulate to a high density. When the energy 

of the electrical field becomes higher than the 

primary beam one it prevents the charged 

particles from reaching the sample surface, 

reflecting them somewhere else in the vacuum 

chamber whose walls act as a mirror. The inner 

part of the specimen chamber can be therefore 

imaged. The phenomenon was explained in 

terms of something very close to what happens 

to photons interacting with an optical mirror [7; 

8]. Actually, the inspection process behind 

insulator irradiation by a charged beam is a 

very complicated problem. This complication 

arises from several physical and geometrical 

situations for the sample to being. Where, the 

sample may be coated by a metallic material or 

not, grounded with the stage or not, separated 

from the stage by special distance or not… etc 

[9]. Consequently, various experimental 

techniques had been presented for measuring 

the trapped charges that suitable for specific 

situation. Most of the experimental techniques, 

including the thermal pulse method, the 

pressure wave propagation method, the Kerr 

electro-optic method, and the mirror image 

method, measure the total trapped charge and 

its distribution in the insulator [10].  

Concerning with mirror image method one can 

be mention several literatures which adopted 
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this method to investigating the charging 

process and so the trapped charges. For 

example this technique is employed for the 

investigation of charging in different cuts of a 

α-SiO2 [11]. Furthermore, the scanning electron 

microscope copper-detector technique is 

employed for the investigation of charging on 

different faces of single-crystalline α-quartz. 

However, these results are confirmed by the 

well-established mirror-image method [12]. 

Another authors developed this method to 

measure the charge distribution volume in 

insulators [13]. Where an electrostatic potential 

expression is derived by assuming the dipolar 

approximation and hemispheroid distribution. 

Dielectric samples with different relative 

permittivities are employed in charging 

experiments to justify this approach. The 

charging ability of insulator under electron 

beam irradiation have been investigated using a 

time-resolved current method. They derived a 

formula which related the measured current to 

the sample irradiation condition and the 

material properties. They found that measured 

current decreases with time exponentially at the 

initial stage and maintains a constant value 

when the saturation charge trapped in the 

sample is reached [10]. An electrostatic model 

has been developed to describe the mirror 

image formation in the scanning electron 

microscope mirror method and to calculate the 

trapping ability by using a semi-infinite sample 

[14]. In addition to that, observation of Pseudo–

Mirror Effect had been reported and given an 

explanation concerning the factors that could 

be influence [15]. Other authors had been 

presented a reviewed investigation for the 

charging effects occurring when an insulating 

material is subjected to electron irradiation by 

means of SEM. However, they proposed a 

method to deduce the trapped charge inside the 

insulator (wither it is coated or not) and so the 

corresponding internal or external electric field 

[16]. The Electron Mirror Effect, (EME), 

images was discussed by using the passive 

Solid State Backscattered Detector (SSBSD). 

Where a non conductive PET sample irradiated 

by high energy electrons [17]. 

On the other hand a basic model to calculate 

the inversion point of electrons of the primary 

beam launched against the dielectric in 

connection with simple measurements is 

presented [8]. This investigation had been 

showed the importance of the analytical 

properties of EME (and IME) associates with 

the investigation of insulator charged surfaces, 

the whole family of experiments can be played 

a relevant role in the understanding of the basic 

features of electrodynamics of charged particles 

in a simple and controllable way. The electric 

charging phenomenon i.e. trapping-detrapping 

is studied by Scanning Electron Microscope 

Mirror Effect (SEMME) coupled with the 

Induced Current Method (ICM). The two 

complementary techniques were developed for 

insulator characterization for the study of 

charging properties of ceramics. It is shown 

that SEMME characterization can regarded to 

be a good method for study of residual stress 

and changes in properties of material developed 

in metal\ceramic joint [18]. The behavior of an 

accelerated probing electron that orientated 

towards a charged insulator sample and hence 

producing mirror images is investigated 

analytically [19]. Where, the distribution of the 

trapped charges at the sample surface is 

approximated as a point charge. Hence, 

analytical derivation for the path equation of 

this electron has been introduced. Thereafter a 

comprehensive investigation is curried out to 

inspect the influence of trapped charge, 

scanning potential, working distance and 

dielectric constant on the images by means of 

this model [6].  

The forward line of this article is to explore the 

results that could be achieved from this 

experimental method to simulate the potential 

distribution due to the trapped charge. 

Eventually, detect the real profile that in 

accordance trapped charge extends over a 

volume of an insulator sample. Therefore the 

essential goal of this manuscript is to 

investigate the influence of trapped charge on 

the properties of the mirror images. So, 

attention will be focused on the mechanism by 
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which charges accumulates on the sample surface where the chamber of SEM involves. 

 

2. Theory 

Determination of trapped charge, and 

hence its related potential, within an insulator 

material may consider to be an ambition goal 

for many scientists, researchers, engineers and 

designers. Recently, such a task get additional 

interest in the field of electron microscopy and 

micro analysis due to the effect of electron 

mirror. Because trapped charge is the most 

effective parameters that controls the 

characteristics of an electron mirror image.  

Accordingly, when an insulator sample 

material of permittivity d  is irradiated be 

means of electron beam, one may regards that 

an arbitrary charge distribution )r(

 be 

embedded in infinitesimal volume 
'V within 

the bulk of this sample. Indeed, any point 

within this volume can be located at a point r 


 

which is in the neighborhood of the origin.  

Such assumption definitely indicate that the 

considered real volume V of the insulator 

material has infinite extend over the 

infinitesimal volume 
'V , and hence no 

confliction should be arises. Strictly speaking, 

the charge distribution can regards to be of a 

dimension less point in comparison with the 

dimension of the sample, and hence such a 

point has a charge amount ( tQ
) equivalent to 

 
11 Vd)r(




. Therefore, the Poisson's 

equation is given by [20; 21; 22];  

      2   Ud                                                                    …………(1) 

Since, the quantity of charge tQ  is embedded 

inside dielectric material, the associated 

potential in the vacuum is equivalent to that of 

a quantity of charge tKQ  at the same position, 

where K is equal to; ( 12 r ) and r  is the 

relative permeability ( od  ). Then the 

solution of equation (1) can takes the following 

expression; 

 





Vo

Vd
rr

)r(K
)r(U 


 

4
                                                     . .………(2) 

Actually, an expansion for the potential in 

equation (2) may be carried out by means of 

several ways. In this work the binomial 

theorem has been adopted to do that concerning 

the spherical coordinates. In fact, the charge 

distribution of )r(

  will assumed to be look 

like a sphere of radius r  which is small 

compared with the distance r


, where the 

potential needs to be calculates.  Accordingly, 

the denominator of equation (2) can be written 

as follows; 

  21221
2

/
)r(rrrrr





                                          …………(3) 

Using the definition of scalar product and make assuming the angle between the observation distance (

r


) and distribution point distance ( r 


) is  , equation (3) convert to the following form;    
21

2

11
21

/

cos
r

r

r

r
rrr


























 








 
 


                            …………(4) 

The using of binomial expansion for the right hand side of equation (4) leads to the following 

expression; 
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




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





 
 ..../)coscos(

r

r
235 3

3

                                    …………(5) 

The careful inspection of equation (5) reveals that the polynomial inside the parentheses is simple the 

Legendre functions. So, such a formula can be written as follows; 

 







0
1

1 1

n
n

n

n
Vd)r()(cosP)r(

r
rr


                              …………(6) 

Now, the substitution of equation (6) in equation (2) leads ultimately to the following relation; 

  





0
1

1

4 n
V n

n

n
o

Vd)r()(cosP)r(
r

K
)r(U





                    …………(7) 

Indeed, the nth term in the last equation represent the nth order multipole moment of the charge 

distribution of )r( 1
 . Strictly speaking, the terms of n=0, 1, 2, 3, 4,…etc. are respectively monopole, 

dipole, quadrupole, octopole, …etc. moment of the charge distribution.  

Regarding the charges being uniformly distributed within the spherical volume 
'V  and extended 

equation (7) for n=0,1,2 and 3, then performing the integrations, the following formula could be 

obtain; 

4

3

2 6432

3

4 r

r
.

KQ

r

r
.

KQ

r

KQ
)r(U

o

t

o

t

o

t 








                                  …………(8) 

Indeed, equation (8) shows the electrostatic potential, at any point ( r


) in the space of SEM chamber, 

due to a volumetric spherical distribution of Qt charges embedded in the bulk material of the sample.  

The main task of this article is to find a relationship between 1/r as a function of scanning potential in 

which what so called "Mirror plot Figure". Therefore, the point charge approximation i.e. the first term 

in equation (8) can be written as follows; 

RKQ

V

r t

sco 141



                                                                      …………(9) 

Where the sample ( )r(U


) and scanning (Vsc) 

potentials have been equated at this coordinate 

point r


. i.e. at such a point the potential of 

incoming electrons become equivalents to the 

sample potential and hence they are reflected 

back toward the inner walls of the chamber 

producing mirror image. Actually, R in 

equation (9) represent the radius of an 

equipotential surface of a potential Vsc due to a 

trapped charge Qt in a dielectric sample of 

permittivity r , which in this case equal to the 

actual Gaussian surface radius r. 

 

The using of equation (9) in equation (8), considering only the first two terms, the following formula 

can be set up; 








 


28

314

R

r

RKQ

V

t

sco
                                                   …………(10) 
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The right hand side of the last equation refer to the reciprocal of the actual radius of the Gaussian 

surface, i.e.1/r. However, it is being corrected now by an amount equal to 
283 Rr  considering the 

dipole term.  So this equation may be written as follows; 








 


28

311

R

r

Rr
                                                                 …………(11) 

Equation (11) reveal the correction of mirror 

plot equation up to the first order. Anyway, the 

above manipulation in principle provide a 

correction approach for mirror plot formula up 

to any required order. Therefore, the mirror plot 

correction up to the nth order, in sense of 

equation (8) remembering the  uniform 

distribution of charges through the volume 
'V , 

can be expressed as follows; 












 






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  114

3

2

1

168

311
V n

n

n
Vd)(cosP)r(

RV
...

R

r

R

r

Rr
   

                                                                                                        ….……(12) 

3. Results and Discussion 

Actually one may summarize the ideas 

presented in the previous section by two 

different forms for the distribution profile of 

the specimen’s surface potential. Indeed these 

forms are included in  equations (12). For 

simplicity these models, that present work is 

mainly concerned with, can be extracted 

individually, to be as follows; 

scaV
r


1
                                                                                         …………(13) 

    43422 1683
1

scscsc V/raV/raaV
r

                                            …………(14) 

Where a  refers to the expression; 

eo KQ/4 . Indeed, such distributions could 

simulates the accumulation  of the charges over 

the surface of the sample and its related 

potential of course. These models, however, 

needs to be verified, regarding experimental 

data, to determine the appropriate format for 

each of these formulas at a specific 

circumstance. Therefore, some of the 

experimental data that published in appropriate 

literatures have been adopted to attained that.  

Therefore, according to the literature [13] a 

sample of Poly Methyl Methacrylate (PMMA), 

with the dielectric constant 2.6, is irradiated by 

an electron beam of different accelerating 

potentials namely (25, 30, 35 and 39 kV) for a 

same period of time. The accumulation of 

charge is assumed to extent over a 

hemispheroid profile of radius r . The 

experimentally measured trapped charges and 

their corresponding penetration depths are 

recorded to be as shown in Table-I. 

Table-I: Trapped charge and penetration depth for various irradiation potential [13]. 

Vi (kV) 25 30 35 39 

Qt (nC) 0.064 0.082 0.108 0.126 

r  (μm) 13.7 17.7 23.1 29.3 

 

Figure (1) represents a typical mirror plot of this circumstance as it reported by the mentioned 

reference.  Actually, curves in this figure represent an experimental points that fitted by means of the 

following equation [13]; 

232

2

4 r

r
.

Q)(

r

QK
)r(V

ro

er

o

eexp

sc









                                            …………(15) 
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For the case when Kexp=0.656 for PMMA in this experiment. 

 
Fig. (1): Experimental mirror plot for different accelerated potentials [13]. 

 

Figure (2) describe a simulation for 

these curves of mirror plot using equations 

(13). It is quite obvious that equation (13) does 

matches with the experimental data, except for 

the values of Vsc˂5 kV. Such result apparently 

indicate that the approximation, which suggest 

the trapped charge accumulated as charged-

point at the sample surface, being fails as long 

as the scanning potential increases. In other 

word, the dimensional distribution of the 

trapped charge can never being neglected when 

a higher scanning potential is used to receive 

the electron mirror image. Indeed, this result 

become in parallel with those may be found in 

[23; 24; 25 and 19]. Alternatively, terms of 

higher orders, must be take into account in 

order to get a real simulation for the trapped 

charges distribution.

 

Fig. (2a): Variation of 1/r as a function of the scanning potential for the irradiation 

potential 25 kV. 
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Fig. (2b): Variation of 1/r as a function of the scanning potential for the irradiation 

potential a) 30 kV, b) 35 kV and c) 39 kV. 

 

The mirror plot curve shown in figure 

(1) is simulated again by means of equation 

(14), for this case instead of  equation (13), and 

the result presented in figure (3), where r in 

which represents the radius of irradiated area 

and takes approximate values 10.6, 14.4, 18.6 

and 22.3 μm, respectively, for each irradiated 

potential. Concerning with equation (14) it is 

seen that this sort of models reveals excellent 

matching with the experimental points for all of 

the values of the  scanning potential and all of 

the considered irradiated potential. Therefore, 

the uses of potential expansion up to third 

order, gives raise to well approximation for the 

sample potential.  Indeed, such announcement 

lay with the framework by means the 

experimental point being outcome.  

 

Fig. (3a): A simulated mirror plot by means of equations (13) and (14) for a PMMA 

material irradiated by a potential 25 kV. 
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Fig. (3b): A simulated mirror plot by means of equations (13 and 14) for a PMMA 

material irradiated by a potential a) 30 kV, b) 35 kV and c) 39 kV. 
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4. Conclusion  

It can be considered that the experimental mirror plot curves as an evaluation scale for the 

quality of the mirror image. Therefore, it had been used the suggested model of this work (i.e. 

multipolar expansion) to obtain an excellent matching for any experimental curve. However, the 

contributing of higher order poles term to the total potential will be decreased as the increases of poles 

number. Hence, it can be said that the higher order poles than octopole does not valid anymore, 

because the effect like this on the potential becomes not perceptible. Actually, the divergence of the 

experimental points from the linear behavior will be increased whenever the radius of the irradiated 

area and verse versa. Therefore, this parameter can be the most important rule which control to the 

shape of mirror plot. 
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