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Abstract:- 

  
In this paper we give some definitions and basic concepts related with 3-normed space like we give 

definitions of closed subset, closure subset, bounded subset and equivalent norms. Moreover, we prove every 

Cauchy sequence in 3-normed space is bounded and a Cauchy sequence is convergent in an 3-normed space if 

and only if it has a convergent subsequence. Thereafter, we generalize this facts to fuzzy 3-normed space. 

 الوعٍبزٌت -3  الوعٍبزٌت و الفضبءاث الضبببٍت-3الفضبءاث   عيبعض الٌخبئج 

 الخلاصت :-
ٌئٍت الوغلمت , اًغلاق الوعٍبزي هثلا لدهٌب حعبز ٌف الوجووعت الجز-3 فً هرا البحث لدهٌب بعض الخعبزٌف والحمبئك الأسبسٍت الوخعلمت بفضبء 

الوعٍبزي حكوى همٍدة  -3مٍدة وحكبفؤ الوعبٌٍس.  أكثس هي هرا فلمد حن إثببث كل هخخببعت كوشٍت فً فضبء الوجووعت الجزٌئٍت , والوجووعت الجزٌئٍت الو

الفضبء الضبببً  على الحمبئك  هرٍ بأعوبمهخخببعت جزئٍت هخمبزبت. بعد ذلك لوٌب  اهخلكج الوعٍبزي حكوى هخمبزبت إذا -3وكل هخخببعت كوشٍت فً الفضبء 

    الوعٍبزي. -3

1. Introduction:- 
In 1964, the theory of 2-normed space was investigated by Gahler [8]. While the theory of an n-normed spaces 

can be found in [4]. Different authors introduced different definitions of fuzzy normed space (see 

[2],[3],[5],[7],[11]). The notation of fuzzy n-normed linear space is introduced in [1], [9]. Since fuzzy 3-normed 

space can be applied in fuzzy operations research specific on fuzzy scheduling then in this paper we give some 

properties for 3-normed and then generalized to fuzzy 3-normed this properties important in the future work 

in fuzzy operations research. 

Throughout this work, we assume X to be a real linear space of dimension 3d  .        

2. Preliminaries:- 
 In this section, we give some basic concepts that we needed then later.  

Definition (2.1), [4]:- 

 Let X be a real linear space of dimension 3d  . A function  }0{RXXX:.,.,.   

which satisfy the following axioms: 

(N1) 0x,x,x 321   if and only if 321 x,x,x  are linearly dependent. 

(N2) 321 x,x,x  is an  invariant under any permutation of 321 x,x,x . 

(N3) 321321 x,x,xccx,x,x   for any Rc , 

(N4) z,x,xy,x,xzy,x,x 212121  , 

is said to be a 3-norm on X and the pair ).,.,.,X(  is called an 3-normed space. 

Definition (2.2), [4]:- 
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 Let ).,.,.,X( be an 3-normed space. A sequence { nx } in X is said to be convergent if there exists an 

element Xx such that 0xx,x,xlim n21
n




for all Xx,x 21  . In this case x is said to be the limit 

of the sequence { nx } and we denote it by lim nx . Otherwise the sequence is divergent. 

Definition (2.3), [4]:- 

 Let ).,.,.,X( be an 3-normed space. A sequence { nx } of X is said to be Cauchy sequence in 

case 0xx,x,xlim npn21
n




for all Xx,x 21  and p=1,2,… 

Definition (2.4), [1]:- 

  A fuzzy subset N of RX3  is said to be a fuzzy 3-norm on the real linear space X in case the following 

axioms hold:  

(FN1) 0)t,x,x,x(N 321   for each 0t  . 

(FN2) 1)t,x,x,x(N 321   for each t>0 if and only if 321 x,x,x are linearly dependent. 

(FN3) )t,x,x,x(N 321 is an  invariant under any permutation of 321 x,x,x . 

(FN4) If thenRc0  0teachfor)
c

t
,x,x,x(N)t,cx,x,x(N 321321  . 

(FN5)  )t,y,x,x(N),s,x,x,x(Nmin)ts,yx,x,x(N 212121   for each Rt,s  . 

(FN6) ,.)x,x,x(N 321 is a nondecreasing function of R and 1)t,x,x,x(Nlim 321
t




. 

The pair (X,N) will be referred to as a fuzzy 3-normed linear space. 

Now, the question arises: can one generate an 3-norm from a fuzzy 3-norm ?. 

To answer this question, see the following theorem.  

Theorem (2.5), [1]:- 
 Let (X,N) be a fuzzy 3-normed linear space. Assume further that  

for each t>0, 0)t,x,x,x(N 321   implies 321 x,x,x are linearly dependent. For each Xx,x,x 321  , 

define   )1,0(,)t,x,x,x(N:tinfx,x,x 321321 


. 

Then for each 


 .,.,.),1,0(  is an 3-norm on X and  )1,0(.,.,. 


 is an ascending family of 3-norms 

on X.  

 

Theorem (2.6), [10]:- 
Let (X,N) be a fuzzy 3-normed space satisfying the following conditions 

(1) For each t>0, 0)t,x,x,x(N 321   implies 321 x,x,x are linearly dependent. 

(2)For 321 x,x,x  are linearly independent, )t,x,x,x(N 321 is a continuous of Rt and strictly increasing 

in the subset  1)t,x,x,x(N0:t 321   of R. 

Let   )1,0(,)t,x,x,x(N:tinfxx,x 3213,21 


 and ]1,0[RX:N 3   is defined by  

 







 






Otherwise0

0t,tindependenlinearlyare
3

x,
2

x,
1

xwhent
3

x,
2

x,
1

x:)1,0(sup

)t,3x,2x,1x(N

 

Then 

(a)  )1,0(.,.,. 


 is an ascending family of   -3-norms corresponding  to the  fuzzy 3-     
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       normed space (X,N). 

(b) (X, N ) is a fuzzy 3-normed space. 

(c) N=N. 

Definition (2.7), [9]:- 

Let (X,N) be a fuzzy 3-normed linear space, a sequence { nx } in  X is said to be convergent if there 

exists an element Xx such that 1)t,xx,x,x(Nlim n21
n




for each Xx,x 21   and for each  t>0. In 

this case x is said to be the limit of the sequence { nx }. Otherwise the sequence is divergent. 

Definition (2.8), [9]:- 

Let (X,N) be a fuzzy 3-normed linear space, a sequence { nx } of X is said to be Cauchy sequence in 

case 1)t,xx,x,x(Nlim npn21
n




 for each Xx,x 21  , t>0 and p=1,2,…. 

3. Some Results in 3-Normed Spaces:- 
 In this section we give some results in 3-normed spaces. We start with the following theorem. This 

theorem shows that the limit of a convergent sequence in an 3-normed space is unique. This theorem is used in 

[4] without proof, here we give its proof for the sake of completeness. 

Theorem (3.1):- 

Let  ).,.,.,X(  be an 3-normed space and { nx } be a sequence in X. If  lim xxn  and lim yxn   

then x=y. 

Proof:- 

 For each Xx,x 21   

yx,x,xlimxx,x,xlim

yx,x,xlimxx,x,xlim

yxxx,x,xlimyx,x,x

n21
n

n21
n

n21
n

n21
n

nn21
n

21













 

                     =0 

Hence 0yx,x,x 21   for each Xx,x 21  . Then x=y. 

 

 Next, the following proposition illustrates that every subsequence of a convergent sequence converges. 

Proposition (3.2):- 

 Let  ).,.,.,X(  be an 3-normed space and lim xxn  . Then lim xx
kn   for every 

subsequence }x{
kn  of  the sequence { nx }.  

Proof:- 

  Since lim xxn  , then 0xx,x,xlim n21
n




 for each Xx,x 21  . 

Fixed Xx,x 21  , Then 0xx,x,xlim n21
n




. Hence 0xx,x,xlim
kn21

k



. Therefore, for 

each Xx,x 21   

0xx,x,xlim
kn21

k



. Then xxlim

kn  . 

Proposition (3.3):- 
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 Let  ).,.,.,X(  be an 3-normed space and lim xxn  , lim yyn  . Then 

yx)yx(lim nn  , R,  . 

Proof:- 

 Since lim xxn   and lim yyn   then 0xx,x,xlim n21
n




 

 0yy,x,xlim n21
n




for each Xx,x 21  . Hence,  

yy,x,xlimxx,x,xlim

yyxx,x,xlim)yx()yx(,x,xlim

n21
n

n21
n

nn21
n

nn21
n








 

Therefore, yx)yx(lim nn  . 

Next, the following theorem illustrates that every convergent sequence is Cauchy sequence. This is used 

in [4] without proof, here we give its proof for the sake of completeness. 

Theorem (3.4):- 

 In an 3-normed space ).,.,.,X( , every convergent sequence is Cauchy sequence. 

Proof:- 

 Suppose that for each Xx,x 21  , .0xx,x,xlim n21
n




 

Then , for p=1,2,…, one can have  

xx,x,xlimxx,x,xlim

xxxx,x,xlimxx,x,xlim

n21
n

pn21
n

npn21
n

npn21
n
















 

 

By using proposition (3.2) one can get 0xx,x,xlim pn21
n




. Thus  

0xx,x,xlim npn21
n




 for each Xx,x 21  and p=1,2,…. Therefore {
nx } is a Cauchy sequence in 

).,.,.,X( . 

 The question now arises: does every Cauchy sequence in an 3-normed space is convergent?. The 

following example gives an answer. 

Example (3.5):- 
Let X be a real linear space of finitely nonzero sequences. Let  

2
1

1i

2
i

1i

*
ii

1i

*
ii

1i

*
ii

1i

2
i

1i

*
ii

1i

*
ii

1i

*
ii

1i

2

i

S

zyzxz

zyyxy

zxyxx

z,y,x




















































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

  

Then, ).,.,.,X(
S

 is an 3-normed space. There exist a sequence { nx } defined by 

,...}0,
n

1
,...,

3

1
,

2

1
,1{xn    
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such that nx  is Cauchy but not converges in X. 

Next, in [6] gave the definitions of closed subset, closure subset, bounded subset and compact subset in 

2-normed space. Here we give the same definitions, but for the an 3-normed space due to [4]. 

Definition (3.6):- 

Let  ).,.,.,X(  be an 3-normed space. A subset U of X is said to be closed in case for any sequence 

{ nx } in U such that 0xx,x,xlim n21
n




 for each Xx,x 21  , implies  Ux . 

Definition (3.7):- 

Let  ).,.,.,X(  be an 3-normed space. A subset V of X is said to be the closure of a subset U of X in 

case for any Vx , there exists a sequence { nx } in U such that 0xx,x,xlim n21
n




 for each 

Xx,x 21  . We denote the set V by U . 

Definition (3.8):- 

 Let  ).,.,.,X(  be an 3-normed space. A subset U of X is said to be bounded in case there exists two 

independent vectors 21 z,z  in X and M>0 such that Mx,z,z 21   for each Ux    

Definition (3.9):- 

 Let  ).,.,.,X(  be an 3-normed space. A subset U of X is said to be compact in case every sequence 

{ nx } in U has subsequence {
knx } such that there exists Ux and 0xx,x,xlim

kn21
k




 for each 

Xx,x 21  . 

Proposition (3.10):- 

 Every compact subset U of an 3-normed space ).,.,.,X( is closed and bounded. 

Proof:- 

 Suppose U is compact subset of an 3-normed space and { nx } be a sequence in U such that 

0xx,x,xlim n21
n




 for each Xx,x 21  .  Since U is compact  then  there exists subsequence 

}x{
kn of sequence { nx } converges to  a point in U. Again lim xxn  and lim xx

kn   by proposition (3.2) 

then x U . If U is not bounded, then would contain a sequence { ny } such that ,ny,z,z n21   for any 

fixed independent vectors 21 zandz . Now this sequence could not have a convergent subsequence because if 

{
kny } were a convergent subsequence to y then 

aexistwouldthereforand0yy,z,zlim
kn21

k



positive integer N such that 

Nkeachforyy,z,zy,z,zy,z,z
kk n2121n21   which is a contradiction. 

 

The following example shows that  the converse of proposition (3.10) is not true. 

  

Example (3.11):- 

Let  ).,.,.,R(
E

3
 be an 3-normed space where an 3-norm defined as follows: 
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333231

232221

131211

E321

xxx

xxx

xxx

absx,x,x  .  The set  1x),0,1,0(),0,0,1(RxU
E

3    

is not compact set.  Because the sequence  )0,0,n(  has no convergent subsequence.  Suppose on the contrary 

that )c,b,a(convergent)}0,0,n{( k  then we have 0)c,b,a()0,0,n(),1,0,0(),0,1,0(lim
Ek

k



 

That is 0ank   which is a contradiction. 

Proposition (3.12):- 

 Every Cauchy sequence in an 3-normed space ).,.,.,X(  is bounded.  

Proof:- 

 Let { nx } be Cauchy sequence in an 3-normed space ).,.,.,X( . Then 

0xx,x,xlim npn21
n




for each Xx,x 21  , p=1,2,…. Let 21 z,z  be independent vectors in X. 

Then 0xx,z,zlim npn21
n




p=1,2,…. Let 0  then there exists  N>0 such that 

,...2,1p,Nneachforxx,z,z npn21  . In particular,  

.Nneachforxx,z,z n21 N
  Let  

 
1NNNN

xx,z,z,...,xx,z,z,xx,z,z,maxr 21221121 
  

 Therefore for all ,...2,1n  , rxx,z,z n21 N
 . Hence,  

rx,z,z

xx,z,zx,z,z

)xx(,z,zx,z,zxxx,z,zx,z,z

N

NN

NNNN

21

n2121

n2121n21n21







 

Replacing r by r* > r. Then  

neachfor*rx,z,zx,z,z
N21n21   

Therefore { nx } is bounded. 

 

Proposition (3.13):- 

 Let ).,.,.,X(  an 3-normed space. A Cauchy sequence is convergent in an 3-normed space ).,.,.,X(  

if and only if it has a convergent subsequence 

Proof:- 

 Suppose { nx } is a Cauchy sequence in ).,.,.,X(  which is also convergent in it. Then, every 

subsequence of it will be convergent in X by proposition (3.2).  

For the converse, assume that {
knx } is a subsequence of { nx } which converges to x X.  Then 

0xx,x,xlim
kn21

n



 for each Xx,x 21  .  Since { nx } 

is Cauchy sequence  then 0xx,x,xlim npn21
n




 for each Xx,x 21  , p=1,2,…. 
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Hence for each Xx,x 21  , 

xx,x,xxx,x,x

xxxx,x,xxx,x,x

kk

kk

n21nn21

nnn21n21




 

Hence, 0xx,x,xlim n21
n




 for each Xx,x 21  . Therefore { nx } is convergent. 

Definition (3.14):- 

 An 3-norm 
1

.,.,.  on a linear space X is said to be equivalent to an 3-norm 
2

.,.,.  on X (denoted by 

1
.,.,. ~ 

2
.,.,. ) if there exist positive numbers a and b such that  

232113212321 x,x,xbx,x,xx,x,xa  , for each Xx,x,x 321   

Proposition (3.15):- 
  The relation ~ defined as above is an equivalence relation. 

Proof:- 
(1) The relation ~ is reflexive, since  

132113211321 x,x,x1x,x,xx,x,x1   

(2) To  prove  ~ symmetric, we assume that 

232113212321 x,x,xbx,x,xx,x,xa   

hold and we have to show that there exist two positive number c and d such that  

132123211321 x,x,xdx,x,xx,x,xc   

Since 
13212321 x,x,xx,x,xa  and

23211321 x,x,xbx,x,x   then 

 
13212321 x,x,x

a

1
x,x,x  and

23211321 x,x,xx,x,x
b

1
  

Hence
23211321 x,x,xx,x,x

b

1


1321 x,x,x
a

1
  

Let c=
b

1
 and d=

a

1
 then 

23211321 x,x,xx,x,xc 
1321 x,x,xd  

(3) To prove ~ is transitive, we assume 
03213210321 x,x,xbx,x,xx,x,xa   

  and 
132103211321 x,x,xdx,x,xx,x,xc   

then we have to show there exist two positive number e and f such that  

13213211321 x,x,xfx,x,xx,x,xe   

Since 3210321 x,x,xx,x,xa  and
03211321 x,x,xx,x,xc   

then 3210321 x,x,x
a

1
x,x,x  and 3211321 x,x,x

a

1
x,x,xc   

Hence, 3211321 x,x,xx,x,xac    

On the other hand,  

0321321 x,x,xbx,x,x  and 
13210321 x,x,xdx,x,x   

Then, 
0321321 x,x,xx,x,x

b

1
 and

1321321 x,x,xdx,x,x
b

1
  
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1321321 x,x,xbdx,x,x   

Therefore, 
1321 x,x,xac

1321321 x,x,xbdx,x,x   

Let ac=e and bd=f 


1321 x,x,xe

1321321 x,x,xfx,x,x  . 

4. Some Results in fuzzy 3-normed spaces:- 
In this section we give some results in fuzzy 3-normed spaces. We start with the following theorem. This 

theorem shows that the limit of a convergent sequence in a fuzzy-3-normed space is unique. This theorem is 

used in [1] without proof, here we give its proof for the sake of completeness. 

Theorem (4.1):- 

Let  )N,X(  be a fuzzy 3-normed space and { nx } be a sequence in X. If  lim xxn  and lim yxn   

then x=y. 

Proof:- 

For each Xx,x 21  and for each s, t >0 one can have 

 

 

 )t,yx,x,x(N),s,xx,x,x(Nmin

)t,yx,x,x(N),s,xx,x,x(Nmin

)ts,yxxx,x,x(N)ts,yx,x,x(N

n21n21

n21n21

nn2121







 

Therefore,  

 1)}t,yx,x,x(Nlim),s,xx,x,x(Nlimmin{)ts,yx,x,x(N n21
n

n21
n

21 


                              

Hence,  for each Xx,x 21   

1)ts,yx,x,x(N 21  ,  for each s,t >0 

Hence, one can get x=y. 

Next, the following proposition illustrates that every subsequence of a convergent sequence converges in 

fuzzy 3-normed space. 

 

Proposition (4.2):- 

 Let  )N,X(  be a fuzzy 3-normed space and lim xxn  . Then xxlim
kn   for every 

subsequence }x{
kn of sequence { nx }.  

Proof:- 

  Suppose lim xxn   

Then 1)t,xx,x,x(Nlim n21
n




 for each Xx,x 21  and for each t>0. 

Fixed Xx,x 21  and t>0. Then, 1)t,xx,x,x(Nlim n21
n




.  

Hence, 1)t,xx,x,x(Nlim
kn21

k



. Therefore, for each Xx,x 21  and for each t>0, 

1)t,xx,x,x(Nlim
kn21

k



 

Then, xxlim
kn  . 

Proposition (4.3):- 
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 Let  )N,X(  be a fuzzy 3-normed space and lim xxn   and lim yyn  . Then 

yx)yx(lim nn  , R,  . 

Proof:- 

 Since lim xxn   and lim yyn   

 Then 1)s,xx,x,x(Nlim n21
n




, 1)t,yy,x,x(Nlim n21
n




 for each 

 Xx,x 21  and for each s,t>0 

Hence, for each Xx,x 21   and for each s,t>0 

 

 )t,yy,x,x(N),s,xx,x,x(Nmin

)ts),yy()xx(,x,x(N)ts),yx()yx(,x,x(N

n21n21

nn21nn21





 

Then, 1)ts),yx()yx(,x,x(Nlim nn21
n




 for each Xx,x 21  and for each s, t>0 

Therefore, yx)yx(lim nn  . 

Next, in [9] proved that every convergent sequence is Cauchy sequence in special types of fuzzy 3-

normed space. Here we prove the same result, but for the fuzzy 3-normed due to [1]. 

Theorem (4.4):- 

 Let  )N,X(  be a fuzzy 3-normed space, every convergent sequence is Cauchy sequence. 

Proof:- 

 Suppose { nx } be a sequence in X and 1)t,xx,x,x(Nlim n21
n




 for each Xx,x 21  and for 

each t>0. 

For Xx,x 21  , s, t>0 and p=1,2,… we have 

 )t,xx,x,x(Nlim),s,xx,x,x(Nlimmin

)ts,xxxx,x,x(Nlim)ts,xx,x,x(Nlim

n21
n

pn21
n

npn21
n

npn21
n
















 

By using proposition (4.2) we have 1)s,xx,x,x(Nlim pn21
n




. Thus 

 1)ts,xx,x,x(Nlim npn21
n




 for each Xx,x 21  , s,t>0 and p=1,2,…. Therefore { nx } is a 

Cauchy sequence in )N,X( . 

 The question now arises: does every Cauchy sequence convergent in a fuzzy 3-normed linear space?. 

The following example gives an answer. 

 

Example (4.5):- 
 Let X be a real linear space of finitely nonzero sequences. Let  




















0tfor0

0tfor
z,y,xt

t

)t,z,y,x(N S
f
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where 
S

.,.,.  standard an 3-norm defined in example (3.5),  then )N,X( f is a fuzzy 3-normed linear space 

which has Cauchy sequence not converges. 

 

Next, in [2] gave the definitions of closed subset, closure subset, bounded subset and compact subset in 

fuzzy 1-normed space. Here we give the same definitions, but for the fuzzy 3-normed space due to [1]. 

Definition (4.6):- 

Let   )N,X(  be a fuzzy 3-normed space. A subset U of X is said to be closed in case for any sequence 

{ nx } in U such that 1)t,xx,x,x(Nlim n21
n




 for each Xx,x 21   and for each t>0, implies Ux . 

Definition (4.7):- 

Let )N,X(  be a fuzzy 3-normed space. A subset V of X is said to be the closure of a subset U of X in 

case for any Vx , there exists a sequence { nx } in U such that 1)t,xx,x,x(Nlim n21
n




 for each 

Xx,x 21   and for each t>0. We denote the set V by U . 

Definition (4.8):- 

 Let )N,X(  be a fuzzy 3-normed space. A subset U of X is said to be bounded in case there exists 

independent two vectors 21 z,z  in X, t>0 and 0<r<1 such that r1)t,x,z,z(N 21  , for each .Ux  

  

Definition (4.9):- 

 Let )N,X(  be a fuzzy 3-normed space. A subset U of X is said to be compact in case every sequence 

{ nx } in U has subsequence {
knx } such that there exists Ux and 1)t,xx,x,x(Nlim

kn21
k




 for 

each Xx,x 21  and for each t>0. 

Proposition (4.10):- 

 Every compact subset U of a fuzzy 3-normed space )N,X(  is closed and bounded. 

Proof:- 

 Suppose U is compact of a fuzzy 3-normed space )N,X( and { nx } be a sequence in U such that 

1)t,xx,x,x(Nlim n21
n




 for each Xx,x 21   and t>0, since U is compact  then  there exists 

subsequence }x{
kn of sequence { nx } converges to  a point in U. Again lim xxn  and lim xx

kn   by 

proposition (4.2) then Ux . Then U is close. Now, we show that U is bounded. If U were not bounded, it 

would contain a sequence { ny } such that r1)n,y,z,z(N n21  for any fixed independent vectors 21 z,z  

and for any fixed r  where 1r0   . Since U is compact, there exist a subsequence }y{
in  of { ny } 

converging to element  Uy , therefore 

r1)n,y,z,z(NAlso

0teachfor1)t,yy,z,z(Nlim

in21

n21
i

i

i






 

Now,  
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 

ioncontradictaiswhich0rthatimpliesThis

)}tn,y,z,z(Nlim),t,yy,z,z(Nlimmin{

)tn,y,z,z(N),t,yy,z,z(Nmin

0twhere)ttn,yyy,z,z(N)n,y,z,z(Nr1

i21
i

n21
i

i21n21

in21in21

i

i

ii















 

Hence, U is bounded. 
The following example shows that  the converse of proposition (4.10) is not true. 

Example (4.11):- 

Let ).,.,.,R(
E

3
be an 3-normed space. For each 

3
321 Rx,x,x  . Define  




















00

0
,,

),,,( 321

321

tfor

tfor
xxxt

t

txxxN E
f

  

Let U be the set defined by  5.0)1,x),0,1,0(),0,0,1((NRxU f
3   . It is easy to check U= U" where 

 1x),0,1,0(),0,0,1(Rx"U
E

3   

Assume U is a compact set. Then each sequence { nx } in U has a convergent subsequence {
k

nx }. Say 

Thus.Uxwherexx
kn   

1
xx,x,xt

t
lim)t,xx,x,x(Nlim

E
n21

k
n21f

k
k

k






 

for each 0teachforandRx,x 3
21  . This implies that  

0xx,x,xlim
E

n21
k k




 for each 
3

21 Rx,x  . Therefore U" is a compact set which is a contradiction 

for example (3.11) 

Proposition (4.12):- 

 Every Cauchy sequence in a  fuzzy  3-normed space ),( NX  is bounded.  

Proof:- 

 Let { nx }  be a Cauchy sequence in a fuzzy 3-normed space. Then  

1)t,xx,x,x(Nlim npn21
n




for each Xx,x 21   ,t>0 and  p=1,2,…. Let 21 zandz  be independent 

vectors in X. Then 1)t,xx,z,z(Nlim npn21
n




, for p=1,2,… and t>0. Choose a fixed 10,   . 

Then we have 


1)t,xx,z,z(Nlim npn21
n

. For t'>0, There exists n  such that 

,....2,1p,nneachfor)'t,xx,z,z(N npn21    
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









n,...,2,1neachfor)t,x,z,z(NThen

}t,...,t,tmax{'ttlet

n,...2,1i,tteachfor

)t,x,z,z(Nthatsuchtexistthere,1)t,x,z,z(NlimSince

n21

n21

i

ii21i21
t










 

 

.}{

)1,0(

),,,(,

,...,2,1),,,(),,,(

},{),,,(,

),,,(),',,,(min

)',,,(

)',,,(),,,(

11

21

2121

21

2121

21

2121

boundedisxTherefore

thatsuchexistthereThen

eachfortxzzNHence

nneachfortxzzNtxzzNAlso

nneachfortxzzNTherefore

txzzNtxxzzN

ttxxxzzN

ttxzzNtxzzN

n

n

nnn

n

nnnn

nnnn

nnn







































 

 

Next, in [9] proved that every Cauchy sequence is convergent sequence in special types of a fuzzy 3-

normed space iff it has a convergent subsequence. Here we prove the same result, but for the  fuzzy 3-normed 

due to [1]. 

Proposition (4.13):- 

 Let )N,X(  be a fuzzy 3-normed space. A Cauchy sequence is convergent in a fuzzy 3-normed 

space )N,X( if and only if it has a convergent subsequence. 

Proof:- 

 Suppose { nx } is a Cauchy sequence in  )N,X(  which is also convergent in it. Then, by using  

proposition (4.2)every subsequence of it will be convergent in X.  

conversely, assume that {
knx } is a subsequence of { nx } which converges to x X. Then 

1)t,xx,x,x(Nlim
kn21

k



 for each Xx,x 21  and t>0. Since { nx } 

is Cauchy sequence  then 1)s,xx,x,x(Nlim npn21
n




 for each Xx,x 21  , s>0 and p=1,2,…. 

Hence for each Xx,x 21   

 

 )t,xx,x,x(N),s,xx,x,x(Nmin

)ts,xxxx,x,x(N)ts,xx,x,x(N

kk

kk

n21nn21

nnn21n21




 

Hence, 1)ts,xx,x,x(Nlim n21
n




 for each Xx,x 21   and s>0,t>0 

Therefore { nx } is convergent. 

Definition (4.14):- 

 A fuzzy 3-norm 1N  on a linear space X is said to be equivalent to a fuzzy 3-norm 2N  on X (denoted 

by 1N ~ 2N ) if there exist positive numbers a and b such that  

)t,bx,x,x(N)t,x,x,x(N)t,ax,x,x(N 321232113212  ,  for each Rt .  

Proposition (4.15):- 
 The relation ~ defined as above is an equivalent relation. 
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Proof:- 
(1) The relation ~ is reflexive, since  

)t,x.1,x,x(N)t,x,x,x(N)t,x.1,x,x(N 321132113211   

(2) To prove ~ is symmetric, we assuming that  

)t,bx,x,x(N)t,x,x,x(N)t,ax,x,x(N 321232113212   

holds and we have to show that there are two positive integer c and  d such that 

 

therefore

s,x
a

1
,x,xN

)as,x,x,x(N)s,x,x,x(Ngetwe,tas
a

t
sputting

)t,x,x,x(N)
a

t
,x,x,x(N

)t,x,x,x(N)t,ax,x,x(Nhavewe

)t,dx,x,x(N)t,x,x,x(N)t,cx,x,x(N

3211

32113212

32113212

32113212

321132123211











 

 s,x
a

1
,x,xN)s,x,x,x(N 32113212  ……………………………………...………………(4.1) 

Again,  )t,bx,x,x(N)t,x,x,x(N 32123211   

                                          
b

t
,x,x,xN 3212  

putting tfor
a

bt
, we get  )

a

t
,x,x,xN)

a

bt
,x,x,x(N 32123211   

)2.4.........(............................................................).........s,x,x,x(N)s,x
b

1
,x,x(Nor

)s,x,x,x(N)bs,x,x,x(Nor

32123211

32123211





 

Combing ineq. (4.1) and ineq.(4.2)  we get  

)s,x
a

1
,x,x(N)s,x,x,x(N)s,x

b

1
,x,x(N 321132123211   

a

1
dand

b

1
cwhere

)s,dx,x,x(N)s,x,x,x(N)s,cx,x,x(Nthen 321132123211





 

(3)To prove ~ transitive, let )t,bx,x,x(N)t,x,x,x(N)t,ax,x,x(N 32103213210   

)t,dx,x,x(N)t,x,x,x(N)t,cx,x,x(N 321132103211   

Then we have to show that there exist positive numbers e  and  f  such that  

Rteachfor)t,fx,x,x(N)t,x,x,x(N)t,ex,x,x(N 32113213211   
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)t,ax,x,x(N)
c

t
,ax,x,x(N

)t,x,x,x(N)
c

t
,x,x,x(N

)t,x,x,x(N)t,cx,x,x(NNow

32103211

32103211

32103211







 

thenfbdandeacchooseweIf

)t,bdx,x,x(N)t,x,x,x(N)t,acx,x,x(NSo

)t,bdx,x,x(N)t,bx,x,x(N

)t,dx,x,x(N)t,x,x,x(NAgain

)t,bx,x,x(N)t,x,x,x(N)t,acx,x,x(Nthus

)t,ax,x,x(N)t,acx,x,x(N

32113213211

32113210

32113210

32103213211

32103211













 

)t,fx,x,x(N)t,x,x,x(N)t,ex,x,x(N 32113213211   

 The following proposition  shows the relation between convergent sequence in (X,N) and(X,


.,.,. ) for 

each )1,0( . 

Proposition (4.16):- 
Let (X,N) be a fuzzy 3-normed space satisfying the following conditions 

(1) For each t>0, 0)t,x,x,x(N 321   implies 321 x,x,x are linearly dependent 

(2)For 321 x,x,x  are linearly independent, )t,x,x,x(N 321 is a continuous of Rt and strictly increasing 

in the subset  1)t,x,x,x(N0:t 321   of R. 

and }x{ n be sequence in X. Then 1)t,xx,x,x(Nlim n21
n




 for each Xx,x 21   and for each t>0 if 

and only if )1,0(eachfor,0xx,x,xlim n21
n




 and for each Xx,x 21  . 

Proof:- 

Suppose 1)t,xx,x,x(Nlim n21
n




 for each Xx,x 21   and for each t>0. 

Choose 0tandXx,x,10 21  , Then exists K such that 

 .Knallfor,1)t,xx,x,x(N n21   It follows that  

Kneachfor,txx,x,x
1n21 


. Thus .0xx,x,xlim
1n21

n



 

 Conversely, choose  Xx,x 21  . Let )1,0(eachfor,0xx,x,xlim n21
n




. Fix )1,0(  

and t>0. Then exists K such that  

  Knallfor,t1)r,xx,x,x(N:rinfxx,x,x n211n21 


 

.Knallfor,1)t,xx,x,x(N n21   that is xxn   in (X,N). 

Theorem (4.17):- 

 Let 21 NandN be two a fuzzy 3-norms on a linear space X, satisfying the following conditions 

(1) For each t>0, 0)t,x,x,x(N 321   implies 321 x,x,x are linearly dependent 
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(2)For 321 x,x,x  are linearly independent, )t,x,x,x(N 321 is a continuous of Rt and strictly increasing 

in the subset  1)t,x,x,x(N0:t 321   of R. 

Then the two fuzzy 3-norm 21 NandN  are equivalent if and only if their corresponding  -3-norms are 

equivalent for all )1,0( . 

Proof:- 

First we suppose that 21 NandN are two equivalent fuzzy 3-norms in X. Thus there exist two positive 

constants a and b such that 

 )t,bx,x,x(N)t,x,x,x(N)t,ax,x,x(N 321232113212   for each  Rt . Let 
1

.,.,.


and 
1

.,.,.


 

where )1,0( are the corresponding  -3-norms of 21 NandN  respectively. First we have that 

Rtallfor)t,x,x,x(N)t,ax,x,x(N 32113212   

iff 
2

321
1

321 ax,x,xx,x,x


  for all )1,0( . 

Suppose Rteachforholds)t,x,x,x(N)t,ax,x,x(N 32113212   

Now,  

 

)3.4.......(..........................................................................................ax,x,xx,x,x

tsx,x,x

)1,0(andts,)s,x,x,x(N

)s,ax,x,x(Nthatsuchts

t)s,ax,x,x(N:sinf,then,tax,x,x

2
321

1
321

0
1

321

003211

032120

3212
2

321

















Next, we suppose that 
2

321
1

321 ax,x,xx,x,x


  holds  for each )1,0( . Now 

 
tax,x,xandrthatsuch)1,0(

tax,x,x)1,0(supr

)t,ax,x,x(Nr

2
32100

2
321

3212

0









 

)t,x,x,x(Nr

tx,x,x

3211

1
321

0




  

So, 

)t,x,x,x(N)t,ax,x,x(N 32113212  ……………………………………………………..(4.4) 

From (4. 3) and (4.4), it follows  that 

Rtallfor)t,x,x,x(N)t,ax,x,x(N 32113212   

iff 
2

321
1

321 ax,x,xx,x,x


  for all )1,0(  

In similarly way we can verify that  

Rtallfor)t,bx,x,x(N)t,x,x,x(N 32123211   

iff 
1

321
2

321 x,x,xbx,x,x


  for all )1,0( . 

Suppose Rteachforholds)t,x,x,x(N)t,ax,x,x(N 32113212   
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Now,  

 

)5.4.......(..........................................................................................x,x,xbx,x,x

tsbx,x,x

)1,0(andts,)s,bx,x,x(N

)s,x,x,x(Nthatsuchts

t)s,x,x,x(N:sinf,then,tx,x,x

1
321

2
321

0
2

321

003212

032110

3211
1

321

















Next, we suppose that 
1

321
2

321 x,x,xbx,x,x


  holds for each )1,0( . Now 

 
tx,x,xandrthatsuch)1,0(

tx,x,x)1,0(Supr,then),t,x,x,x(Nr

1
32100

1
3213211

0







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


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From (4.5) and (4.6), it follows  that 

Rtallfor)t,bx,x,x(N)t,x,x,x(N 32123211   

iff 
1

321
2

321 x,x,xbx,x,x


  for all )1,0( . 

By combining the above results we have 

)t,ax,x,x(N 3212 )t,bx,x,x(N)t,x,x,x(N 32123211  Rteachfor   

if and only if 
1

321
2

321 x,x,xbx,x,x



2

321 ax,x,x


  for all )1,0(   
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