Journal of Kerbala University, Vol. 10 No.3 Scientific. 2012

ON WEAKLY λ-CONTINUOUS FUNCTIONS IN BITOPOLOGICAL SPACES

Azal Jaafer Moosa Meera
Babylon University
College of Education
Mathematics department

Nada Mohammed Abbas
Babylon University
College of Education
Mathematics department

Samah Abd Al- hadi Babylon University College of science for girls computer department

Abstract

. As a generalization of λ -continuous functions, we introduce and study several properties of weakly λ -continuous functions in Bitopological spaces and we obtain its several characterizations Keywords and phrases. Bitopological spaces, λ -open sets ,weakly λ -continuous function.

ألخلاصه

ان موضوع continuous في فضاء ثنائي التبولوجي الذي تم تعريفه في [1] قد تم استخدامة في البحث لتعريف انواع اضعف في الاستمرارية وهي weakly λ -continuous و almost λ -continuous مع بعض النظريات و الأمثلة

1. Introduction

The notion of λ -open sets due to al-talkany[1], semi-preopen sets due to Andrijević [2] plays a significant role in general topology. In [3] the concept of λ -continuous functions is introduced and further Popa and Noiri[5] studied the concept of weakly λ -continuous functions. In this paper,we introduce and study the notion of weakly λ -continuous functions in bitopological spaces further and investigate the properties of these functions.

Throughout the present paper, (X,T,T^{α}) (resp.(X,τ))) denotes a bitopological (resp.topological) space.Let (X,τ) be a topological space and A be a subset of X.The closure and interior of A are denoted by Cl(A) and Int(A) respectively.

Let $,(X,T,T^{\alpha})$ be a bitopological space and let A be a subset of X.The closure and interior of A with respect to T or T^{α} are denoted by $Cl_{T}(A)$, $int_{T}(A)$ or $Cl_{T}^{\alpha}(A)$ and $Int_{T}^{\alpha}(A)$, respectively.

2. basic definition

In this section we give all basic definition and some theorems and lemma we needs in this paper.

Definition 2.1 [1]. A subset A of a bitopological space (X,T,T^{α}) is said to be

- (i)regular open if $A=Int_T((Cl_T^{\alpha}(A)))$.
- (ii).regular closed if $A=Cl_T((Int_T^{\alpha}(A)))$.
- (iii).preopen if $A \subseteq Int_T((Cl_T^{\alpha}(A)))$.

Remark 2.1:

- 1. λ -interior mean that the interior w.r.t. λ -open set.
- 2. λ -cl mean clouser w.r.t. λ -open set.

Definition 2.2.[1] A subset A of a bitopological space (X,T,T^{α}) is said to be λ -open if there exist T^{α} -open set U such that $A \subseteq U$, $A \subseteq Cl_T(U)$.

Lemma 2.1.[1]Let $(X,\tau 1,\tau 2)$ be a bitopological space and A be a subset of X.Then

- (i). A is λ -open if and only if $A = \lambda Int(A)$.
- (ii). A is λ -closed if and only if $A = \lambda Cl(A)$.

Journal of Kerbala University, Vol. 10 No.3 Scientific . 2012

Lemma 2.2. For any subset A of a bitopological space $(X,T,T^{\alpha}), x \in \lambda Cl(A)$ if and only if $U \cap A \neq \emptyset$ for every λ -open set U containing x.

Definition 2.3.[4]A function $f(X,T,T^{\alpha}) \rightarrow (Y,K,K^{\alpha})$ is said to be λ -continuous if $f^{-1}(V)$ is λ -open in X for each K-open set V of Y.

3. Weakly λ- continuous

In this section we define weakly λ –continuous with some theorems

Definition 3.1.(i). A function $f_{\cdot}(X,T,T^{\alpha}) \rightarrow (Y,K,K^{\alpha})$ is said to be weakly precontinuous if for each $x \in X$ and each K-open set V of Y containing f(x), there exists preopen set U containing x such that $f(U) \subseteq \operatorname{Cl}_T^{\alpha}(V)$.

(ii). A function $f:(X,T,T^{\alpha}) \to (Y,K,K^{\alpha})$ is said to be weakly- λ -continuous if for each $x \in X$ and each K-open set V of Y containing f(x), there exists λ -open set U containing x such that $f(U) \subseteq \operatorname{Cl}_T^{\alpha}(V)$. A function $f,(X,T,T^{\alpha}) \to (Y,K,K^{\alpha})$ is said to be pairwise weakly precontinuous (resp. pairwise weakly λ -continuous) if f is weakly precontinuous and weakly -precontinuous (resp. if f is weakly λ -continuous)

Example 3.1 . Let $X = \{a,b,c,d\}, T = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}, T = T^{\alpha}$ $\lambda - open(X) = 0$

 $Y=\{1,2,3\},K=\{Y, \phi,\{1\}\},K^{\alpha}=\{X, \phi,\{1\},\{1,2\},\{2,3\}\}$

let $f:(X,T,T^{\alpha}) \to (Y,K,K^{\alpha})$ defined by f(a)=1,f(b)=f(c)=2 then f is weakly λ - continuous.

Remark 3.1 :The composition of two weakly λ - continuous is not necessary weakly λ -continuous

Theorem 3.2. For a function $f:(X,T,T^{\alpha}) \rightarrow (Y,K,K^{\alpha})$, the following properties are equivalent:

- (i). f is weakly λ -continuous.
- (ii). $\lambda Cl(f^1(Int_T^{\alpha}(Cl_T(B))))) \subseteq f^1(Cl_T(B))$ for every subset B of Y.
- (iii). $\lambda Cl(f^1(Int_T^{\alpha}(F))) \subseteq f^1(F)$ for every regular closed set F of Y.
- (iv). $\lambda Cl(f^1(Cl(V))) \subseteq f^{-1}(Cl_T(V))$ for every K-open set V of Y.
- (v). $f^{-1}(V) \subseteq \lambda Int(f^{-1}(Cl_T^{\alpha}(V)))$ for every K-open set V of Y.

Proof. (i) \rightarrow (ii). Let B be any subset of Y. Assume that $x \in X \sim f^1$ (Cl_T (B)). Then $f(x) \in Y \sim Cl_T$ (B) and so there exists a K-open set V of Y containing f(x) such that $V \cap B = \emptyset$, so $V \cap Int_T^{\alpha}$ (Cl_T (B)))= \emptyset and hence Cl_T^{α} (V) $\cap Int_T^{\alpha}$ (Cl_T (B)))= \emptyset . Therefore, there exists λ -open set U containing x such that $f(U) \subseteq Cl_T^{\alpha}$ (V).

Hence we have $U \cap f^1(\operatorname{Int}_T^{\alpha}(\operatorname{Cl}_T(B))) = \emptyset$ and $x \in X \sim \lambda \operatorname{Cl}(f^1(((\operatorname{Int}_T^{\alpha}(\operatorname{Cl}_T(B))))))$ by Lemma 2.3. Thus we obtain $\lambda \operatorname{Cl}(f^1(((\operatorname{Int}_T^{\alpha}(\operatorname{Cl}_T(B)))))) \subseteq f^1(\operatorname{Cl}_T(B))$.

- (ii) \rightarrow (iii).Let F be any regular closed set of Y.Then F= Cl_T (Int_T^{α} (F) and we have λ Cl(f^1 ((Int_T^{α} (F)))= λ Cl(f^1 ((Int_T^{α} (Cl_T (Int_T^{α} t(F))))) $\subseteq f^1$ (Cl_T (Int_T^{α} (F))) = f^1 (F).
- (iii) \rightarrow (iv) . For any K-open set Vof X Cl_T (V) is regular closed .then λ Cl(f⁻¹(V)) $\subseteq \lambda$ Cl(f⁻¹ (Int_T $^{\alpha}$ (Cl_T(V)) \subseteq f⁻¹(Cl_T(V))
- (iv) \to (v) Let V be an K-open set of Y . the Y/ $\text{Cl}_T{}^\alpha(V)$ is K-open set in Y and we have $\lambda \text{Cl}(f^1(Y/\text{Cl}_T{}^\alpha(V)) \subseteq f^1(\text{Cl}_T(Y/\text{Cl}_T{}^\alpha(V)))$ and hence X/ $\lambda \text{Int}(f^1(\text{Cl}_T{}^\alpha(V)) \subseteq X/\text{f}^1(\text{Int}_T(Cl_T{}^\alpha(V))) \subseteq X/\text{f}^1(V)$. therefore we obtain $f^1(V) \subseteq \lambda \text{Int}(f^1(\text{Cl}_T{}^\alpha(V)))$.

4. Weakly*- quasi continuous

Now we define the regular in the topological space (X,T,T^{α}) with some theorems **Definition 4.1**.A bitopological space (X,T,T^{α}) is said to be regular if for each $x \in X$ and each T-open set U containing x, there exists a T-open set V such that $x \in V \subseteq \operatorname{Cl}_T^{\alpha}(V) \subseteq U$.

Definition 4.2. A function $f:(X,T,T^{\alpha}) \to (Y,K,K^{\alpha})$ is said to be weakly*- quasi continuous(briefly.w*.q.c) if for every K -open set V of Y, $f^{-1}(Cl_{T}^{\alpha}(V) \sim V)$ is biclosed in X.

Journal of Kerbala University, Vol. 10 No.3 Scientific . 2012

Theorem 4.3.If a function $f:(X,T,T^{\alpha}) \to (Y,K,K^{\alpha})$ is weakly- λ -continuous and w*.q.c, then f is λ -continuous.

Proof .Let $x \in X$ and V be any K-open set of Y containing f(x).Since f is weakly- λ -continuous, there exists an λ -open set U of X containing x such that $f(U) \subseteq \operatorname{Cl}_T^{\alpha}(V)$. Hence $x \notin f^1$ ($\operatorname{Cl}_T^{\alpha}(V) \sim V$). Therefore, $x \in U \sim f^1$ ($\operatorname{Cl}_T^{\alpha}(V) \sim V$) = $U \cap (X \sim (f^1 (\operatorname{Cl}_T^{\alpha}(V) \sim V))$. Since U is λ -open and $X \sim (f^1 (\operatorname{Cl}_T^{\alpha}(V) \sim V))$ is biopen, $G = U \cap (X \sim (f^1 (\operatorname{Cl}_T^{\alpha}(V) \sim V))$ is λ -open. Then $X \in G$ and $f(G) \subseteq V$. For if $Y \in G$, then $f(Y) \notin (\operatorname{Cl}_T^{\alpha}(V) \sim V)$ and hence $f(Y) \in V$. Therefore, f is λ -continuous.

5. Almost λ –continuous

In this section we define almost λ –continuous with some theorems

Definition 5.1. A function $f: (X,T,T^{\alpha}) \rightarrow (Y,K,K^{\alpha})$ is said to have a λ interiority condition if $\lambda \operatorname{Int}(f^{1}(\operatorname{Cl}_{T}^{\alpha}(V))) \subseteq f^{1}(V)$ for every K-open set V of Y.

Definition 5.2.A function $f:(X,T,T^{\alpha}) \to (Y,K,K^{\alpha})$ is said to be almost λ -continuous if for each $x \in X$ and each K-open set V containing f(x), there exists an λ -open set U of X containing x such that $f(U) \subseteq Int_T(Cl_T^{\alpha}(V))$.

Lemma 5.1. A function $f:(X,T,T^{\alpha}) \to (Y,K,K^{\alpha})$ is almost λ -continuous if and only if $f^{-1}(V)$ is λ -open for each regular open set V of Y.

Definition 5.3.A bitopological space (X,T,T^{α}) is said to be almost regular if for each $x \in X$ and each regular open set U containing x,there exists an regular open set V of X such that $x \in V \subseteq Cl_T^{\alpha}(V) \subseteq U$.

Theorem 5.4. Let a bitopological space (Y,K,K^{α}) be almost regular. Then a function $f:(X,T,T^{\alpha}) \to (Y,K,K^{\alpha})$ is almost λ -continuous if and only if it is weakly- λ -continuous.

Proof . Necessity this is obvious

Sufficiency . Suppose that f is weakly- λ -continuous. Let V be any regular open set of Υ and

 $x \in f^{-1}(V)$. Then we have $f(x) \in V$. By the almost -regularity of Y, there exists an regular open set V0 of Y

such that $f(x) \in V0 \subseteq \operatorname{Cl}_T^{\alpha}(V0) \subseteq V$. Since f is weakly- λ -continuous, there exists an λ -open set U of X containing x such that $f(U) \subseteq \operatorname{Cl}_T^{\alpha}(V0) \subseteq V$. This implies that $x \in U \subseteq f^1(V)$. Therefore we have $f^1(V) \subseteq \lambda \operatorname{Int}(f^1(V))$ and hence $f^1(V) = \lambda \operatorname{Int}(f^1(V))$. By Lemma 2.2, $f^1(V)$ is λ -open and by Lemma 5.1, f is almost λ -continuous.

References

- 1- Altalkany .Y.K., "study special case of bitopological spaces", 2005
- 2. D.Andrijević, Semi-preopen sets, Mat. Vesnik., 38 (1) (1986) 24-32.
- 3- Sajda kadham and hassna hassan ,"on λ -continuous function" ,Babylon university , vol.13, No.3,2009.
- 4. S.Bose and D.Sinha, Pairwise almost continuous map and weakly continuous maps in bitopological spaces, Bull. Cal. Math. Soc., 74 (1982), 195-206.
- 5. V.Popa and T.Noiri,Some properties of weakly quasi-continuous functions in bitopological spaces,Mathematica (Cluj) **46** (69) (2004),105-112.(1967),369-372.
- 6. A.R.Singal and S.P.Arya, On pairwise almost regular spaces, Glasnik Mat.Ser III, 6 (26) (1971), 335-343.