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Abstract
In this paper, we introduce the notions of a completely closed ideal and a completely
closed ideal with respect to an element of a BH-algebra .Also we study these notions on a BG-
algebra and B-algebra, We stated and proved some theorems which determine the relationship
between these notions and some other types of ideals of a BH-algebra and a BG-algebra.
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INTRODUCTION

The notion of a BCK-algebras and a BCl-algebras was formulated first in 1966 [6] by (Y.Imai)
and (K.lIseki). In 1983, Hu and Li introduced the wide class of abstract algebras: BCH-algebras[8].
In 1996, (J.Neggers) introduced the notion of d-algebra[5]. In 1998, Y.B.Jun, E.H.Roh and
H.S.Kim introduced a new notion, called a BH-algebra[10]. In 2002 ,J.Neggers and H.S.Kim
introduced the notion of B-algebra, which is a generalization of a BCK-algebra [4]. In 2008,
C.B.Kim and H.S.kim introdeced the notion of BG-algebras, which is a generalization of a B-
algebras[2]. In 2011, H.H.Abass and H.M.A.Saeed introduced the notion of a closed ideal with
respect to an element of a BCH-algebra[3].
In this paper, we introduced the notions as we mentioned in the abstract.

1.PRELIMINARIES

In this section we give some basic concepts about a B-algebra , a BG-algebra , a BH-algebra, ,
ideal of a BH-algebra , closed ideal of a BH-algebra, a closed ideal with respect to an element of a
BH-algebra , a normal set , with some theorems, propositions and examples which we needed in our
work.
Definition (1.1) [4] :

A B-algebra is a non-empty set with a constant 0 and a binary operation "*" satisfying the

following axioms:
Dx*x=0 ,
2)X*0=x ,
(x*y)*z=x*(z*(0*y)),forall x,y,zin X.
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Definition (1.2) [2] :
A BG-algebra is a non-empty set X with a constant 0 and a binary
operation “ * ” satisfying the following axioms:
1) x *x =0,
2)x = 0=x,
(x*y)*(0*y)=x,forall x,y € X.
Theorem (1.3) [2]:
If (X, *, 0) is a B-algebra, then (X, *, 0) is a BG-algebra.
Definition ( 1.4) [10] :
A BH-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the
following conditions:
D x*x=0,Vxe X
2)x*y=0andy*x=0implyx =y, V x,ye X.
3)x*0=x, Vxe X.
Proposition (1.5) [2]:
Every BG-algebra is a BH-algebra.
Definition ( 1.6) [7] :
A nonempty subset S of a BH-algebra X is called a BH-Subalgebra or Subalgebra of X if x *y e
Sforall X,y e S.
Lemma (1.7) [2]:
Let (X; *, 0) be a BG-algebra. Then
1) the right cancellation law holds in X, i.e., x*y = z*y implies X = z,
2)0*(0*x)=xforall x e X,
3)ifx*y=0,thenx=yforany x,y € X,
4)if0*x=0*y,thenx =y forany x,y € X,
5 x*(0*x))*x=xforallx € X.
Definition (1.8) [10] :
Let I be a nonempty subset of a BH-algebra X. Then | is called an ideal of X if it satisfies:
1)0el.
2)x*yelandy el imply xel
Definition (1.9) [3] :
An ideal | of a BH-algebra X is called a closed ideal of X if :for every xel, we have 0*xel.
Definition (1.10) [2] :
A non-empty subset N of a BG-algebra X is said to be normal of X if (x * a) *(y * b) € N for
anyx*y,a*b e N.
Definition (1.11) [8] :
Let X be a BH-algebra ,a non-empty subset N of X is said to be normal of X if
(x*a)*(y*b)e Nforanyx*y,a*b e N.
Theorem (1.12) [2].
Every normal subset N of a BG-algebra X is a subalgebra of X.
We generalize this theorem to a BH-algebra
Theorem ((1.13):
Every normal subset N of a BH-algebra X is a subalgebra of X.

proof:

Let X be a BH-algebra and N be a normal in X,

let x,yeN,

=x*0,y*0eN [Since x*0=x and y*0=y]

=x*y=(x*y)*(0*0)eN [Since N is a normal]
N is a subalgebra of X.
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Definition (1.14) [3]:
Let X be a BH-algebra and | be an ideal of X . Then I is called a Closed Ideal with respect to an
element be X (denoted b-closed ideal) if b*(0*x)el, for all
x el
Remark (1.15) [3]:
In a BH-algebra X, the ideal | = {0} is O-closed ideal. Also , the ideal | = X is b-closed ideal,
VbeX.
Definition ((1.16) [3] :
Let X be a BH-algebra . Then the set X, ={x € X:0*x =0 } is called the BCA-part of X.
Definition (1.17) [9]:
Let X and Y be a BH-algebra.A mapping f: X—Y of a BG-algebra is called a homomorphism if
f(x*y) =f(x)*f(y) for any x ,y eX
Remark (1.18) [9]:
The set {xeX:f(x)=0} is called the kernel of the f, denote it by Ker(f).
Remark (11.19):
If f: X— Y is a homomorphism of BH-algebra, then f(0) = 0.
Definition ('1.20) [1]:
A BCHe-algebra X is called an associative BCH-algebra if:
(x*y)*z=x* (y*z),forallx,y,z eX.
We generalize the concept of associative to a BH-algebra
Definition (1.21):
A BH-algebra X is called an associative BH-algebra if:
(x*y)*z=x* (y*z),forallx,y,z eX.
2.THE MAIN RESULTS
In this section we define the notions of completely closed ideal and a completely closed ideal
with respect to an element of a BH-algebra . For our discussion , we shall link these notions with
other notions which mentioned in preliminaries.
Definition (2.1):
An ideal | of a BH-algebras is called a completely closed ideal ifx+*y €1, ¥xy €L
Remark (2.2):
In any BH-algebra ,the ideals I={0} and I=X are completely closed ideals.
Example (2.3):
Let X={0, 1,2, 3} be a BH-algebras ,with binary operation defined by:

* 0 1 2 3
0 0 1 0 2
1 1 0 3 0
2 2 2 0 3
3 3 3 3 0

The ideal 1={0, 1} is a completely closed ideal since:

0:0=0¢€l ,0x1=1€I

1*0=1€l , 1*1=0¢€1

but the ideal 1={0, 1,2} is not a completely closed ideal since 1,Z €1 but 12 =3 ¢1

Remark (2.4):
Every completely closed ideal is a closed ideal but the converse is not be true, In example(2.3),
the ideal 1={0, 1,2} is a closed ideal but it is not a completely closed ideal.

Theorem (2.5):
If X be an associative BH-algebra ,then X is a BG-algebra .
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Proof:
Let X be associative BH-algebra, then
1)x*x=0 [Definition(1.6)(1)]
2)x*0=x [Definition(1.6)(3)]
3) (x*y)*(0*y)=((x*y)*0)*y [Since X is an associative]
=(x*y)*y
=xX*(y*y) [Since X is an associative]
=x*0
=X

Then X is a BG-algebra.

Remark (2.6) :

the converse of above theorem is not be true, as in the following example.
Example (2.7):

Consider the BG-algebra (X,*,0) where X={0,1,2} and * defined by

* 0 1 2
0 0 1 2
1 1 0 1
2 2 2 0

is not associative Since 1*(2*1)=1£0=(1*2)*1
Proposition (2.8):

Let X be a BG-algebra and ye X , them x* y are distinct vx € X,
Proof:

Suppose %,z € X such that
XK¥Yy=Z*Y,
2>x=2z [Lemma(1.7)(1)]
Proposition (2.9):

Let X be a BG-algebra then the elements 0*x are distinct ¥x € X .

Proof:
Suppose 3 X,z € X suchthat 0*x=0*z
Sy =z [By lemma(1.7)(4)]

Theorem (2.10):
Let X be an associative BH-algebra, then every normal subalgebra is a completely closed ideal of
X.
Proof:
Let X be associative a BH-algebra, and let N be a normal subalgebra
To prove N is an ideal
1)Since N is a non empty,
=3 xeN
=X*xeN [Since N is a normal subalgebra. Theorem(1.13)]
=0eN
2) let x*yeN and yeN
=(x*y)*yeN [Since N is a normal subalgebra. Theorem(1.13)]
=>x*(y*y)eN [Since X is associative BH-algebra. Theorem(1.13)]
=x*0eN
=xeN
~.Nis an ideal.
3)let x,yeN
= x*yeN [Since N is a normal subalgebra. Theorem(1.13)]
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.N is a completely closed ideal.
Theorem (2.11):
Let X be a BH-algebras, then every completely closed ideal in X with the same binary operation
on X and the constant 0, is a BH-algebra.
Proof:
Let X be a BH-algebra ,and let | be a completely closed ideal
letxel=>x€X=>x*x=0 [Since X is a BH-algebra definition(1.4)(1)]
2Q)let xEI=x€EX=2>x*0=x [Since X is a BH-algebra definition(1.4)(3)]
lLetx,yEl,andx*y=0 A y*x=0

>x,yEX,andx*y=0,y*x=0
> X=y [Since X is a BH-algebra]
Then I is a BH-algebra
Remark (2.12):
If I is not a completely closed ideal then | may be not a BH-algebra, as in the following example.
Example (2.13):
Consider the BH-algebra (X,*,0) where X = {0, 1, 2, 3}. Define * as follows:

* 0 1 2 3
0 0 3 0 2
1 1 0 0 0
2 2 2 0 3
3 3 3 1 0

;then the ideal I={0, 1]} is not a BH-algebra, since 0*1=3¢ |
= | is not closed under "x".
Theorem ( 2.14):
Let X be a BG-algebras, then every ideal in X with the same binary operation on X and the
constant 0, is a BG-algebra.
Proof:
Let X be a BG-algebra ,and let | be an ideal
DletxelI=x€X=>x*x=0 [Since X is a BG-algebra]
2Q)let xeI=x€X=x*0=x  [Since X is a BG-algebra]
3)Letx, ¥y €1,
=>x,vEX,
=2 (x*xy)*(0*y)=x [Since X is a BG-algebra]
Then I is a BG-algebra
Remark ( 2.15):
1)Every ideal in BG-algebra is a BH-algebra.
2)Every ideal in B-algebra is a BH-algebra.
Theorem ((2.16):
Let X be a BG-algebra then every ideal in X is a completely closed ideal.
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Proof:

Let X be a BG-algebra and let | be an ideal of X
suppose | is not a completely closed ideal,
= 3x, yel suchthat x*y¢|I
= Jz ¢ | suchthatz*y € 1 [By lemma (2.8)]
and this contradiction [Since I 'is an ideal]
Remark ( 2.17):

Let X be a B-algebra then every ideal in X is a completely closed ideal.
Theorem ((2.18):

Let f:X—Y be a BH-homomorphism ,then ker(f) is a completely closed ideal.
Proof:
1-Since f(0)=0,then 0 € ker(f)
2-Let x * y € ker(f)and y € ker(f)

=f(x*y)=0 and f(y)=0,

=0=f(x*y)=f(x)*f(y)=f(x)*0=f(x)

=x € ker(f)
~ ker(f) is an ideal .
3- Let %, ¥ € ker(f)
= f(x) =0 and f(y) =10
=f(x*y)=F(x)*£(y)=0*0=0
=x*yeker(f)
= ker(f) is a completely closed ideal .
Proposition (2.19) :

Let { I;, ieA} be a family of an ideals of a BH-algebra X, then ﬂ I, is an_ideal .

ied

Proof:
1)Since@ ELVier=>0¢€(l,
iel
2)Letx*y € nfi,yE nf!.
i=d i=A

=x*y€l; and y€I, Vi€ek

=x€L Vi€l [since I; is an ideal Vi€ 4]
=X E nfi

i= ]

then [)¢; is an ideal.

=l

Proposition (2.20) :
Let { I;, ieA} be a family of a completely closed ideals of a BH-algebra X, then ﬂ I, isa

ied

completely closed ideal .

Proof:

Since |; is a completely closed ideal ¥i€ &

~lj isanideal ¥i€ A [By definition (2.1)]
then [)Z; isan ideal [By theorem (2.19)]

i=d
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Now,
Letx,y € nfi

=l
=>x,yELVick
> x*yELVIEL [Since i is a completely closed ideal ¥i € 4]
> xX*yE nfﬁ

=
Therefore ﬂ I, is a completely closed ideal.

iel
Proposition (2.21):
Let { I;, ieL} be a chain of an ideals of a BH-algebra X. then UIi is an ideal of X.

ied

Proof:
1) Oel;, Vieh [Since each I is an ideal of X, Vie\]

= 0e I,

ied

2) letx*y e [ JI; and yel I,

ied iel

=3I, Ik € { i }iek, such that x*ye ljand y € I,

=either licly or lkcl; [ Since {li}ieA isachain]
|f Iiglk

= x*yelg and yelg

=X el [ Since I is an ideal]
=>Xe U l;

iel

Similarity,

If licli,

Therefore | J1; is an ideal.
ied
Proposition (2.22):
Let { i, ieL} be a chain of a completely closed ideals of a BH-algebra X. then U I, isa

ied

completely closed ideal of X.
Proof:
Since l; is a completely closed ideal of X, VieA
= ljis anideal of X, VieA [By definition (2.1)]
Therefore UIi is an ideal. [By theorem (2.21)]
ied
Now,
letxy e [ I,
ied
=3I, |k€{|i}i€7\,,SUChthatX € |i,y€ I
—either lic Iy or lkc | [ Since {li}ieA isachain]
If Iig |k
= X,y €lk
= X*y e Iy [ Since Ixis acompletely closed ideals]
Similarity ,
if Ll
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= x*y eI

ied
ThereforeU I, isa completely closed ideal.
ied

Definition (2.23):

Let | be an ideal of a BH-algebra X and b £X then | is called a completely closed ideal with
respect to b(denoted b-completely closed ideal )if b * (x*y)
eElvxyel
Example ( 2.24):

Consider the BH-algebra X in example(2.13),then the ideal 1={0, 1} is the 1-completely closed
ideal. Since
1=(0=0)=1€1 ,
1=(0=1)=0€1
1=(1*0)=0€1l
1=(1=x1)=1€1I
But it is not 0-completely closed ideal since 0= (0=1) = 0=3 =2 & IProposition ( 2.25):
Every ideal in BH-algebra is not b-completely closed ideal , VbgI.
Proof:
Let bgl = Bx(0+0)=hb=0 =be |
Remark (12.26)

In a BH-algebra every b-completely closed ideal is a b-closed ideal.
Proposition (2.27):

Let { Ii, ieA} be a family of a b-completely closed ideals of a BH-algebra X Then ﬂ I, isab-

ied

completely closed ideal .

Proof:
let X be a BH-algebra, and let I; be a b-completely closed ideal ¥i € &
= ljisan ideal ¥i € 4 [By definition (2.23)]
= ﬂli is an ideal [By proposition (2.19)]
ied
Now,
letx, v € nf!-

=

=x,vEL ViEL

=b=+(x=y)eEl; Yi€ld [Since ljisab-completely closed ideal ¥i € 4]

b x*y)e ),

=
Therefore ﬂ I, is a b-completely closed ideal.
ied

Proposition (2.28):

Let { I;, ieA} be a chain of a b-completely closed ideals of a BH-algebra X. then Ufi isab-

i=d

completely closed ideal of X.

Proof:
Since each I;is a b-completely closed ideal of X, Vie\
= ljis an ideal of X, Vie\ [By definition (2.23)]
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:>UIi is an ideal [By proposition (2.21)]

iel
Now,
letx,y e[ JI,
iel

=3, lke {lj}ieh,suchthatx € Ij, y € I,

=either lic Ik or lkc |; [ Since {li}ieA isachain ]
|f Iig Ik

= X*y el

=either b*(x*y) e I; or b*(x*y) € Ik [Since I; and Iy are a b-completely
closed ideals]
=b*(x*y) eI,
ield
ThereforeU I, is a b-completely closed ideal.
iel
Theorem (2.29):
Let X be a BH-algebra and 1 is a completely closed ideal . Then | is a b-completely closed ideal

vbel.

Proof:
Let x,ye1I,

Then b* (xxy) €1 [Since I is a completely closed ideal]

Theorem (2.30):
Let f:X—Y be a BH-epimorphism and 1 is an ideal in X, Then f(I)is a an ideal in Y.
Proof:
let | be an ideal in X
1)Since 0el=f(0)=0&f(1).
2)Let x*yef(l) and yef(l)
—=3Ja,bel such that f(a)=x, f(b)=y,
=f(a)*f(b) f(l) and f(b) ef(l),
=f(a*b) f(l) and f(b) f(l),
—=a*bel and bel,
—ael [Since I is an ideal]
=f(a)ef(l)
=xef(l).
- f(1) is an ideal
Theorem (2.31):
Let f:X—Y be a BH-epimorphism and 1 is a closed ideal in X. Then f(l)is a closed ideal in Y.
Proof:
Let | be a closed ideal in X,
Since | is an ideal then f(I) is an ideal [Theorem (2.30)]
Now,
Let x ef(l)
—3Ja el such that f(a)=x
=0*x=0*f(a)=f(0)*f(a)
=f(0*a)ef(l) [Since O*ael]
~.f(1) is a closed ideal
Theorem (2.32):
Let f:X—Y be a BH-epimorphism and let | be a completely closed ideal in X.Then f(l)is a
completely closed ideal in Y.
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Proof:
Let I be a completely closed ideal in X,
Since | is an ideal then f(I) is an ideal [Theorem (2.30)]
Let x,yef(l)
=da,bel such that f(a)=x, f(b)=y,
=x*y=f(a)*f(b)=f(a*b) ef(l) [Since a*b el]

.. (1) is a completely closed ideal

Proposition (2.33):

Let f:X—Y be a BH-epimorphism and let I be a b- closed ideal in X. Then f(1)is a f(b)- closed
ideal in Y.

Proof:
Let | be a b-closed ideal in X,
Since | is an ideal then f(I) is an ideal [Theorem (2.30)]

Letx€f(I) = Jacls.t f(a)=x
£(b) = (0= x) = £(b) = (£(0) * £(a))
=f(b+(0=+a)) € f(I) [Since (b= (0 = a))€l]
. f(1) is a f(b)-closed ideal
Proposition (2.34):

Let f:X—Y is a BH-epimorphism, if I is a b-completely closed ideal in X, then f(l)is a f(b)-
completely closed ideal inY.

Proof:
Let | be a b- completely closed ideal in X ,then b+ (a*c)€1Va,cel
Since | is an ideal then f(I) is an ideal [Theorem (2.30)]

Letx,yef(I)=3dgh €ls.tf(g) =xf(h)=vy
f(b)* (x*y) = f(b)* (f(g) * f(h)) = f(b) = f(g+ h)
=f(b*(g=h)) € f(1) [Since b+ (g*h) €1]
. f(1) is a f(b)-completely closed ideal
Proposition (2.35):
Let X be a BG-algebra. Then every ideal is a b-completely closed ideal ¥b € L
Proof:

Since every ideal in BG-algebra is a completely closed ideal [Theorem (2.16)]
Thenb* (x*y)El¥xyELbeEI

Remark (2.36):
Let X be a B-algebra, then every ideal is a b-completely closed ideal ¥b € L
Proposition ( 2.37):
Let X be a BG-algebra, then X.={0}.
Proof:
Suppose x € X, such thatx #= 0

20=x=0=0*xx=0=0
=2>x=0 [Lemma(1.7)(4)]
Proposition ( 2.38):
Let X be a BH-algebra and | be an ideal such that I < X,. Then | is a b-closed ideal ¥b € L.

Proof:
Letbeland I < X, Then

b*(0*x)=b=0 [sincel = X,]
=b €1
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