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Abstract  In this paper, we provides two propositions that give a direct computing of the Elliptic Curve Discrete Logarithm 

problem (ECDLP) and propose a method  for the computation of discrete logarithms in the Elliptic Curve (EC) defined over 

finite fields pF .This propositions and propose method provides a new approach to the field of attacking methods of the 

Elliptic Curve Cryptosystems. In addition, we give a program to implement the proposed method by using MATLAB. 
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Introduction 

       Several researches were available about 

ECDLP related to them. For good survey one 

can turn to[4]. The security of modren public 

key cryptosystems is based in the difficulty for 

solving efficiently some kind of mathematical 

problems. Since the invention of the public key 

cryptography by Diffie and Hellman in 1976[1], 

many public key crypto sysytems have been 

proposed, of these some have been broken and 

others have been demonstrated to be 

impractical. Tody, only three type of systems 

are considered enough secure and efficient. 

Such systems are based in one of the following 

mathematical problems: 

Integer factorization problem ( IFP). 

Discrete logarithm problem (DLP). 

Elliptic Curve Discrete Logarithm problem 

(ECDLP). 

       Although  non  of these problems have been 

proved to be intractable, are 

 considered as intractable because years of study 

has failed to yield efficient algorithms to solve 

them. The Elliptic Curve Discrete Logarithm 

problem can be defined as followes: Given an 

elliptic curve E defined over a finite field pF , a 

point P of order n on E, and a point Q a point in 

the group generated by P, determine the integer 

k is called the discrete logarithm of Q to the 

base P, denoted   k = QlogP , between 0 andn–1 

such that Q =[k]P, provided that such an integer 

exists.Based on the statement above we define 

Qto be the public key and kthe private 

one.Based on intractabilityof this problem, Neal 

Koblitz [3] and Victor Miller [5] independently 

proposed using the group of points on an elliptic 

curve defined over a finite field to implement 

the various discrete logarithm cryptosystems. 

Elliptic curves have been applied to modify 

public key cryptosystem, such as the DSA [6]. 
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Background on Elliptic Curves  

       An elliptic curve Eover field pF is defined by 

an equation of the form   

y2 = x3 + ax + b,                      (1) 

where a, b  pF , such that 4a3 + 27b20 in pF . 

The set E ( pF ) consists in all points (x, y)  pF 

pF  which satisfy equation (1), together with a 

special pointO, called the point at the infinity. 

E( pF ) forms an abelian group with the addition 

operation defined as follow: 

O⊕O =O 

(x, y) ⊕O = (x, y), O is the identity 

(x, y) ⊕(x,– y) = O. The inverse of one 

element is obtained changing the sign of the 

second component. 

To add two different elements, which are not 

one inverse of the other, we apply the following 

rule : 

 (x1, y1) ⊕ (x2, y2) = (x3, y3) 

       x3 = 
2 – x1 – x2,    y3 =  (x1 – x3) – y1 

  =  
12

12

xx

yy




 

To add a point with itself, we apply the rule :     

2(x1, y1) = (x3, y3)                       

      x3 = 
2  – 2x1,         y3 =  (x1 – x3) – y1 

  =  
1

1

y2

ax3 2 
 

The last two operations have a straight 

geometric interpretation. As shown inFigure(1), 

if P=(x1, y1) and Q=(x2, y2) are two distinct 

points over the elliptic curve, then the sum of P, 

Q, denoted as R=(x3, y3),defined as follows: 

First draw a line through P and Q. This line 

intersects the EC at the third point R. Tacking 

the reflection of this point about the x-axis. We 

obtain the point R. 

To add a point P =(x1, y1) to itself, a tangent line 

to the curve is drawn at the point P. If y10then 

the tangent line intersects the curve at a second 

point, R. R is reflected to the x-axis to R. This 

operation is called doubling the point P as 

shown in Figure (2).  

If a point P is such that y1=0, then the tangent 

line to the EC at P is vertical and does intersect 

the EC at any other point. By part(5),[2] P=O 

for such a point P as shown in Figure (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If P  E ( pF ) then we denoted as [k]P the result 

of adding k times with himself; 

  
timesk

PPP 

and the order of P is the 

smallest positive integer n such that [n]P = O. 

We denote the order of  P byord (P) [2]. 

 

Inventions for Solving ECDLP   

This section provides two proposition that give 

a direct computing of the ECDLP and anew 

attacking methodto slove ECDLP. 

 

Proposition (1) 

Let E be an EC defined over the finite field pF , 

and P, Q E ( pF ) and ord (P)=n, compute 

R=[A]P  Q where A [2, n – 1] then  

If R=Othen QlogP =(n – A) mod n. 

If R=P  then QlogP =(1 – A) mod n. 

If R=⊖ P then QlogP =(–1 – A) mod n. 

Proof: 

Since R = [A]P  Q then R = [A + k]P and 

since ord (P) = n[n]P = O. So if  R = O 

then [A + k]P  = O A + k = n  

x 
 
P  

R 

 

 
R

Figure 2:  Geometric Doubling of Elliptic 

Curve Points, when y1 0. 

P 

 

 



R' 

 

Figure 1:  Geometric Addition of Elliptic  

Curve Points. 
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   P 

 
Figure 3:  Geometric Doubling of Elliptic 

Curve Points, when y1 = 0. 
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 A + k = n (mod n)  

  k = QlogP
 = (n – A)  mod n. 

 

Since R = [A]P  Q then R = [A + k]P and 

sinceord (P)=n[n]P = O. So if   R = P then 

[A + k]P =P A+k =1  

 A + k=1 (mod n)  

  k= QlogP
=(1 – A)   mod n. 

3) Since R = [A]P  Q then R = [A + k]P 

and since ord (P) = n[n]P = O. So if 

R=⊖ P then[A+k]P= ⊖ P 

 A + k = – 1  

 A + k = – 1 (mod n)  

  k = QlogP  = ( – 1 – A)  mod n. 

 

Example (1) 

Consider the elliptic curve E defined over 131F

by the equation: 

E : y2 = x3 + 102 x + 35. 

Let P = (100, 15) E ( 131F ).We wish to 

determine the discrete logarithm of point      Q = 

(75, 50) to the base P. 

Solution: 

          The order of P is n = 142. 

1) Choose A  [2, n – 1], let A = 93 and then 

compute Z = [A]P  Q =[93](100, 15)  (75, 

50)=(75, 81)  (75, 50) = O, hence by 

Proposition (1.1) then k(n–A) mod n=(142–93) 

mod142 = 49 mod 142 = 49. Then the discrete 

logarithm of Q to the base P is 49. 

 

2) Choose A  [2, n – 1], let A=94 and then 

compute Z=[16]PQ=[94](100,15) 

(75,50)=(99,40) (75,50)=(100,15)=P, hence 

by Proposition (1.1) then k  (1 – A) mod n = 

(1–94) mod 142 = – 93 mod 142 = 49. Then the 

discrete logarithm   of Q to the base P is 49. 

3) Choose A  [2, n – 1], let A = 92 and then 

compute Z=[192]P  Q= [92](100, 15)(75, 

50)= (68, 86) (75, 50) = (100, 116) =⊖P, 

hence by Proposition (1.3) then  k  ( – 1 – A) 

mod n  = ( – 1 – 92) mod 142 = – 93 mod 142 = 

49. Then the discrete logarithm of Q to the base 

P is 49. 

 

 

 

Proposition (2) 

       Let E be an EC defined over the finite field

pF
, and P, Q  E ( pF

) and  or d (P)= n, compute 

R=P  [B]Q where  B[2, n – 1] then  

If R=O and gcd (B, n)=1 then QlogP = B

1n 

 

mod n. 

If R=Q and gcd (1–B, n)=1 then QlogP = B1

1

  

mod n. 

If R=⊖ Q and gcd (–1–B, n)=1 then QlogP = 

B1

1

  mod n. 

Proof: 

Since R=P[B]Q then R=[1+ Bk]P and since 

ord (P)=n[n]P=O. So if  R=O then [ 1+B  

k]P =O 1+Bk=n  

 1+B  k =n (mod n)  

  k= QlogP = B

1n 

 mod n. 

Since R=P [B]Q then R=[1 + Bk]P and since 

ord (P)=n [n]P=O. So if  R=Q then [1+B  

k] P=Q  [1+B  k] P=[k]P 

 1 + B  k = k  

 1 + B  k = k (mod n)  

 1 = k – B  k (mod n)  

 1= k  (1 – B) (mod n)  

  k= QlogP  = B1

1

  mod n. 

Since R=P  [B]Q then R=[1+B k]P and since 

or d (P)=n [n]P=O. So if  R=⊖ 

Qthen[1+Bk]P=⊖Q[1+Bk]P =⊖[k]P 

 1 + B  k = – k  

 1 + B  k = – k (mod n)  

 1 = – k – B  k (mod n)  

 1 = k  (– 1 – B) (mod n)  

  k= QlogP  = B1

1

  mod n. 

Proposed Method 
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Let E( pF
) be an elliptic curve with generator P. 

Suppose that P has order n, and let QE( pF
) 

Suppose that we want find k such that Q=[k]P. 

Calculate R=PQ. Then calculate [d] Q for 

1d n–1 and check these points until found a 

match with point R. When a match is found we 

have solved the ECDLP as following: 

            [d]Q=R hence, 

[d]Q=P  Q 

[d]Q ⊖ Q = P  

[d – 1]Q =P  

Q = 









1d

1

 P. 

Therefore, if  gcd (d–1, n)=1, we get that 

QlogP = k = 1d

1

  mod n. 

Example 3 

Consider the elliptic curve E defined over 641
F

by the equation: 

E :y2 = x3 +3x + 44. 

Let P=(401, 245)E ( 641F
).We wish to 

determine the discrete logarithm of point 

Q=(584, 405) to the base P.  

Solution: 

            The order of P is n=647. Firstly calculate 

R=PQ=(401, 245)(584, 405)=(260, 162) 

Now, calculate [d]Q for1d647 until we find a 

match with point R as following: 

[1]Q=[1](584, 405)=(584, 405) 

[2]Q=[2](584, 405)=(25, 436) 

[3]Q=[3](584, 405)=(180, 240) 

[4]Q=[4](584, 405)=(332, 398) 

  
[163]Q=[163](584,405)=(250, 360) 

[164]Q=[164](584, 405)=(260,162) 

At this point we have a match. Hence we find 

that k 1d

1

  mod n  

Also, a new proposed method for solving the 

ECDLP were suggested. It can be considered as 

a new  approach to tackle the problem of 

attacking the ECDLP. That is provides a 

reduction to mathematical operations. This leads 

to main conclusion that the new proposed 

method is batter than the Exhaustive Search in 

the reduction cost can be offered for complexity 

of calculation. 

 

Appendix  

The Program for computing the discrete 

logarithm k of point Q=(x2, y2) to the base P= 

(x1, y1) from Q=[k]P, where P, Q ∈ E :y2 = x3 

+ ax + b defined over pF
. 

(1)   %  program to find secret key k 

(2)   p  = input ('enter prime no. p ='); 

(3)   a= input('enter integer no.a='); 

(4)   b  = input('enter integer no.b='); 

(5)   x1 = input ('enter integer no. x1='); 

(6) y1   = input ('enter integer no. y1='); 

(7) x2   = input ('enter integer no. x2 ='); 

(8) y2  = input ('enter integer no. y2 ='); 

(9)  m1=mod(y2-y1,p); 

(10)   m2=mod(x2-x1,p); 

(11)   for z=1:p-1 

(12)   w=mod(m2*z,p); 

(13)   if w==1;[z];  

(14)   m=mod(m1*z,p); 

(15)   end,end 

(16)   xR=mod(m^2-x1-x2,p); 

(17)   yR=mod(m*(x1-xR)-y1,p); 

(18)   R=[xR yR]; 

(19)   for k=1:2*p 

(20)   r=dec2bin(k); 

(21)   [row,col]=size(r); 

(22)   xk=x1; 

(23)   yk=y1; 

(24)   for i=2:col 

(25)m1=mod(3*xk^2+a,p); 

(26)m2=mod(2*yk,p); 

(27)   for z=1:p-1 

 (28)w=mod(m2*z,p); 

(29)   if w==1;[z];m=mod(m1*z,p); 

(30)   end,end 

(31)x3=mod(m^2-2*xk,p); 

(32)y3=mod(m*(xk-x3)-yk,p); 

(33)s=[x3 y3]; 

(34)xk=s(1); 

(35)yk=s(2); 

(36)   if r(i)==49 

(37)m1=mod(yk-y1,p); 

(38)m2=mod(xk-x1,p); 

(39)   for z=1:p-1 
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(40)w=mod(m2*z,p); 

(41)   if w==1;[z];mm=mod(m1*z,p); 

(42)   end,end 

 (43)x4=mod(mm^2-x1-xk,p); 

(44)y4=mod(mm*(x1-x4)-y1,p); 

(45)z=[x4 y4] ;  

(46)xk=z(1); 

(47)yk=z(2); 

(48)   end,end 

(49)   if xk==x1 & yk~=y1 

(50)n=[k+1];break 

(51)   end 

(52)R=[xk,yk]; 

(53)   end 

(54)   for d=1:n-1 

(55)r=dec2bin(d); 

(56)[row,col]=size(r); 

(57)xd=x2; 

(58)yd=y2; 

(59)   for i=2:col 

(60)m1=mod(3*xd^2+a,p); 

(61)m2=mod(2*yd,p); 

(62)   for z=1:p-1 

(63)w=mod(m2*z,p); 

(64)   if w==1;[z];m=mod(m1*z,p); 

(65)   end,end 

(66)x3=mod(m^2-2*xd,p); 

(67)y3=mod(m*(xd-x3)-yd,p); 

(68)s=[x3 y3]; 

(69)xd=s(1); 

  

 

 (70)yd=s(2); 

(71)   if r(i)==49 

(72)m1=mod(yd-y2,p); 

 (73)m2=mod(xd-x2,p); 

(74)   for z=1:p-1 

(75)w=mod(m2*z,p); 

(76)   if w==1;[z];mm=mod(m1*z,p); 

(77)   end,end 

(78)x4=mod(mm^2-x2-xd,p); 

(79)y4=mod(mm*(x2-x4)-y2,p); 

(80)z=[x4 y4] ;  

(81)xd=z(1); 

(82)yd=z(2); 

(83)   end,end 

(84)[xd,yd]; 

(85)   if [xd,yd]==[xR,yR] 

(86)di=d; 

(87)   break 

(88)   end,end 

(89)d; r=d-1; 

(90)   for z=1:n-1 

(91)w=mod(r*z,n); 

(92)   if w==1; [z]; r=1*z; inversrer=r; 

(93)   end,end 

(94)k = mod (inversrer,n); 

(95)secretkey = k 

 

Example (2) 

Consider the elliptic curve E defined over 
131

F

by the equation: 

E:y2 = x3 +102 x + 35. 

Let P=(100,15)E( 131F ). We wish to determine 

the discrete logarithm of point         Q=(75, 50) 

to the base P. 

Solution:  

The order of P is n=142. 

Choose B [2, n–1], let B =113 and then 

compute Z=P[B]Q=(100,15) [113] (75, 

50)=(100, 15)(100,116)=O, hence by 

Proposition (2.1) then k
B

1n 
 mod n= 

113

1142 
 

mod142=
113

141
 mod 142=141

1113  

 mod 142=14193 mod 142=13113 mod 

142=49. Then the discrete logarithm of Q to the 

base P is 49. 

Choose B[2, n –1], let B=114 and then 

compute Z=P[B]Q=(100,15)[114] (75, 

50)=(100, 15)(99, 91)=(75, 50)=Q, hence by 

Proposition (2.2) then   

k 
B1

1


 mod n=

1141

1


 mod 142=

113

1


 mod 

142 =
29

1
 mod 142=1

129
 mod 142 =149 mod 

142=49. Then the discrete logarithm of Q to the 

base P is 31. 

Choose B [2, n – 1], let B=112 and then 

compute Z=P[16]Q=(100,15)[112] 

(75,50)=(100,15) (68, 86)=(75,81)=⊖ Q, 

hence by Proposition (2.3) then  k
B1

1


 mod 
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n=
1121

1


 mod 142=

113

1


 mod 142=

29

1
 

mod 142=1 129  mod 142=149 mod 142=49. 

Then the discrete logarithm of Q to the base P is 

49. 

=
1164

1


 mod 647=

163

1
 mod 647= 

(1 1163 ) mod 647=(1389) mod 647=389 

          Thus  k= QlogP
= 389. 

Algorithm 1  

A proposed method algorithm for computing 

ECDLP. 

 

INPUT: a generator P of a cyclic group E( pF ),  

of order n and an point Q ∈E( pF ). 

OUTPUT: the discrete logarithm k= QlogP . 

1. Calculate R=P  Q. 

2. For d from 1 to n–1 do the following : 

2.1 If R=[d]Q then do the following: 

             Set r =d –1 

              If gcd(r , n)=1 

k= 1r  mod n and return k 

 

 

Conclusions 

       In this paper, we get two propositions that 

compute QlogP
in E over the finite field pF  

without method but with some condition. The 

first proposition that starts with initial point 

R=[A]P  Q where A[2, n–1] such that 

discrete logarithm of Q to the base P in E over 

the finite field pF  as follows: 

)An(   mod n      if  R = O QlogP
 =        

)A1(   mod n         if  R = P  

)A1(   mod n         if  R = ⊝P 

 

       The second proposition that starts with 

initial point R=P  [B]Q where B [2, n–1] 

such that discrete logarithm of Q to the base P 

in E over the finite field pF  as follows:  

B

1n 
 mod n                       if  R = O 

QlogP
 =    

B1

1


 mod n      if  R = Q   

B1

1


 mod n                   if  R = ⊝Q  
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