Original Article # Apolipoprotein (a) as Predictive Factor in Fibromyalgia Syndrome Lubna M. H. Farid* Kismat M. Turki** Mohammad H. Al-Osami*** BSc, MSc BSc, PhD MBChB, MD #### **Summary:** **Background:** Fibromyalgia syndrome (FMS) is characterized by widespread musculoskeletal pain with associated symptoms including stiffness, fatigue, sleep disturbance and functional impairment. FMS is depicted by chronic pain for at least three months and tender points identified by the American Collage of Rheumatology (ACR). Although several hypotheses have been developed; the cause of FMS is currently unknown. This study aims to evaluate the contribution of serum apolipoprotein (a) [Apo (a)], leptin, and serum lipid profile to the pathophysiology of FMS. Subjects & Methods: The study has included 160 patients with FMS with age range (18-72) years and 60 control individuals who were age and sex matching with FMS patients: 29 patients with chronic musculoskeletal complaints but without FMS and 31 healthy controls. Elisa technique was used for the determination of Apo (a) and leptin. Colorimetric method was used to determine serum lipid profile. BMI was measured in all subjects. Results were evaluated using descriptive and inferential statistics; data were expressed as (mean \pm SEM). P value of <0.05 was accepted as significant. **Results:** Serum Apo (a) in FMS patients was significantly higher than healthy control group (P < 0.05). There were no significant differences among the three subject groups in serum lipid profile and leptin levels. **Conclusion:** Apo (a) may play an important role in FMS pathogenesis. Lipid profile and leptin have no role in FMS patients as a cause or result of this syndrome. Key words: Fibromyalgia, Apo (a), leptin, lipid profile. ## Accepted Aug. 2009 Fac Med Baghdad 2010; Vol. 52, No. 2 Received July 2009 #### Introduction: Fibromyalgia syndrome (FMS) is the most common rheumatic cause of diffuse pain and multiple regional musculoskeletal pain and disability. It commonly associated with medically unexplained symptoms in other systems (1). FMS is characterized by strong female predominance with peak incidence at ages (20-60) years old, it has been observed in up to 15% of rheumatology patients and 5% of patients from a general medical practice (2, 3). FMS is characterized by chronic widespread pain for at least three months and tender points identified by the American Collage of Rheumatology with associated symptoms including stiffness, fatigue, sleep disturbance, emotional distress and functional impairment with evidence of pain amplification (4-6). Although several hypotheses have been developed; the cause of FMS is currently unknown (7). Apolipoprotein (a) [Apo (a)] is a glycoprotein rich in neuraminic acid that stains strongly with periodic acid-Schiff and exhibits a high apparent molecular weight upon sodium dodecyl sulfate-gel It belongs to a family of proteins involved in fibrinolysis (11). The physiological function of Apo (a) is still unknown, a function within the coagulation system seems plausible, given the aspect of the high homology between Apo(a) and plasminogen (PLG) (10). The relationship between FMS features and obesity has been demonstrated by epidemic data and experimental pain findings (12, 13). Obesity is associated with increased body fat content that leads to increased serum leptin levels. Leptin is an adipocyte hormone encoded by the obese (ob) gene. It circulates as a 16-kD protein and is transported across the blood-brain barrier (BBB) by a saturable system to exert its central effects. It has a role in the control of energy homeostasis, in which it acts as a negative feedback adiposity signal by interacting with receptors in specific hypothalamic nuclei (14, 15). #### Subjects & Methods: This study was performed during the period from April 2008 to February 2009. The subjects were selected from the people attending the out patient clinic in Medical City - Baghdad Teaching Hospital - Rheumatology & Rehabilitation electrophoresis (SDS-PAGE), it is linked by disulphide bridges to Apo B-100 in the Lp (a) particle (8-10). It belongs to a family of proteins involved in fibrinolysis (11) ^{*}Medical City-the Public Administration ^{**} Department of Physiological Chemistry, College of Medicine, Baghdad University ^{***} Baghdad Teaching Hospital-Rheumatology & Rehabilitation Consultation Unit Consultation Unit, where the anthropometric tests (to evaluate body mass index 'BMI') were performed. The other tests were done in Medical City - Teaching Laboratories and the College of Medicine - Department of Physiological Chemistry. The study has included 122 patients with FMS (101females+21males); with age range (18-72) years (FMS (+) patients group); fulfilled ACR 1990 criteria for the diagnosis of FMS and 60 control individuals (48females+12males), who were age and sex matching with FMS (+) patients: 29 patients (25females+4males) with chronic musculoskeletal complaints but without FMS (RA+ OA + SLE) (FMS (-) patients control group) and 31 healthy volunteers (23females+4males) without musculoskeletal complaints (healthy control (HC) group). Medical and social history was taken from each subject according to special protocol taking in consideration certain epidemic and clinical related variables. Criteria of exclusion have included: Diabetes mellitus (DM), Sleep apnea, Hypercortisolism, Thyroid problems, and other rheumatic disorders. Disposable plastic syringes of (23 G) needles were used to aspirate five milliliters of venous blood from Chi-Square (?2), Student test (t-test), ANOVA & LSD test (F-test), and Person correlation ® were used to accept or reject the statistical hypotheses. All the statistical analyses were done by using Pentium-4 computer through the SPSS program (version-10) and Excel application. P value of < 0.05 was accepted as significant, each patient and control after (12-16) hours fasting from 08.00 a.m. to 12.00 a.m. Serum Apo (a) was determined by DRG Apo (a) ELISA Kit based on the sandwich principle. Kit used was from DRG International, Inc., USA. Serum leptin was determined by DRG Leptin ELISA Kit based on the sandwich principle. Kit used was from DRG International, Inc., USA. Serum total cholesterol (TC) and serum triglycerides (TG) were determined by enzymatic colorimetric test with lipid clearing factor. Kit used was from HUMAN-(CHOLESTEROL liquicolor, CHOD-PAP-Method)-Germany and HUMAN-(TRIGLYERIDES liquicolor mono, CPO-PAP-Method)-Germany respectively. Serum HDL-C was determined by enzymatic colorimetric test after precipitation. Kit used was from HUMAN-(HDL cholesterol)-Germany. BMI assessment was applied on all subjects. Results were evaluated using descriptive and inferential statistics; data were expressed as (mean \pm SEM). #### **Results:** Table-1 has revealed the demographic, clinical and nonclinical features of the study. Table-2 has shown the (mean \pm SEM) for age, duration, and BMI of the three groups in the study. There was no significant difference in all these data among the three groups: FMS (+), FMS (-), and HC (P > 0.05). Table-3 has revealed the (mean \pm SEM) values of lipid profile of the three groups in the study. All of them were within normal values. There was no significant difference in lipid profile among the three groups: FMS (+), FMS (-), and HC (P > 0.05) in all parameters except for HDL-C. In spite of the presence of this significant difference the three values were within normal. Data from table-4 has shown that the (mean \pm SEM) values for Apo (a) and leptin where Apo (a) levels have reached a peak in FMS (-) group. There were significant differences in Apo (a) levels among the three groups: FMS (+), FMS (-), and HC. Although serum leptin in FMS (+) group is around the upper limit of the normal value, there was no significant difference in leptin among the three groups: FMS(+), FMS(-), and HC(P > 0.05) > Table-1: Demographic, clinical and non-clinical features of the Study. | ble-1: Demo | graphic, clinical a | THE (C) (20) - (9/) | HC(n = 31) n (%) | Total (n=182) n (%) | P-value | Sig. | |--|--|--|---|---|---------|------| | Parameters | FMS(+)(n=122)n (%) | FMS(-)(n=29) n (%) | TIC(II - 51) II (70) | | | | | Age (y)
<20
20-40
41-60 | 5 (4.1%)
52 (42.6%)
61 (50%)
4 (3.3%) | -
9 (31%)
16 (55.2%)
4 (13.8%) | -
12 (38.7%)
18 (58.1%)
1 (3.2%) | 5 (2.7%)
73(40.1%)
95 (52.2)
9 (4.9%) | 0.169 | NS | | 61-80
Gender
Female | 101 (82.8%) | 25 (86.2%)
4 (13.8%) | 23 (74.2%)
8 (25.8%) | 149 (81.9%)
33 (18.1%) | 0.434 | NS | | Marital state
Married
Unmarried
Widowed
Divorced | 21 (17.2%)
80 (65.6%)
17 (13.9%)
23 (18.9%)
2 (1.6%) | 19 (65.5%)
4 (13.8%)
6 (20.7%) | 21 (67.7%)
6 (19.4%)
4 (12.9%) | 120 (65.9%)
27
(14.8%)
33
(18.1%)
2 (1.1%) | 0.908 | NS | | Occupation
Employed
Housewife
Student
Others | 27 (22.1%)
75 (61.5%)
4 (3.3%)
16 (13.1%) | 11 (37.9%)
15 (51.7%)
-
3 (10.3%) | 9 (29%)
15 (48.4%)
1 (3.2%)
6 (19.4%) | 47 (25.8%)
105
(57.7%)
5 (2.7%)
25 (13.7%) | 0.506 | NS | | BMI (kg/m²)
Lean
Normal
weight
Overweight | 2 (1.6%)
35 (28.7%)
41 (33.6%)
44 (36.1%) | 8 (27.6%)
11 (37.9%)
10 (34.5%) | 1 (3.2%)
8 (25.8%)
10 (32.2%)
12 (38.7%) | 3 (1.6%)
47 (25.8%)
58 (31.9)
74 (40.7%) | 0.102 | NS | | Obese
Smoking | 34 (27.9) | 5 (17.2%) | 3 (9.7%) | 42 (23.1%) | 0.072 | NS | Table-2: Statistical Data for Age. Duration, and | Email etc.s | 100
100)
100)
100) | * * * * * * * * * * * * * * * * * * * | - PMS (c.)
on 29);
Morris
SEM | HC
(t. 31)
Mean
SIM | P-
vaine | Sig. | |-------------------------------|-----------------------------|---------------------------------------|--|------------------------------|-------------|---------------| | Specify) | 29,9 <u>5</u>
1,10 | - | 40.93 <u> </u> | 42.81 × 2.16 | 0.42 | NS | | Duration (1) | 4,30
6,37 | ÷ | 4 93
1 47 | Volume |), (s) | \ \\\
\\\\ | | toMI
exgrap ² : | 25.53
0.56 | | 29.11 E
1.05 | 27,64 ± 0 | 0.71 | 18 | Table-3: Statistical Data for Lipid Profile | Faunciers
Facult | MS ()
MS ()
Mean
SI M | FMS . For the second se | | one
Software | | |---------------------|----------------------------------|--|-------------------|-----------------|------------| | H. | 176,28 × 2.59 | 180,48 +
5.04 | 176,71 ± 5,97 | 0.819 | NS | | 1 G | 139,53
75,56 | 176.31
8.06 | 130,67 × 123 | Outes? | 58 | | 14[1] | 55,43
1 mg | 63.7%
2.4i | 88.79 .
1 98 | i kata ka | HS. | | 1144 | 104.25 +
2 j š | 00/82 - 1
0/37 | 93.90 = 2
53.7 | 0.2% | | | N.1.(0) 401 | 1.1 | 25.24 ÷ | 76.16 ± 5
2.46 | (| N 8 | Table-4: Statistical Data for Apo (a) and Leptin | | 1318 - 1 | NBC. | in and regul | | | | |--------------------|---------------------|-------------------|----------------------|------------|----|--| | | More
Mark
SIM | Alexander
MAL | e die
Mean
M M | n
Nelsk | | | | Appear
Unit | 904.21
. n5 04 | 633 Th
(64.27 | 237 60 ±
52,64 | 0.029 | ٠, | | | (1:45) | | (n-(S)) | ka itti | | | | | Leptin
ing mili | 103.53 | 139.13 s
21.15 | 93,88 ii
13 of | 0.203 | 15 | | #### Discussion: For our knowledge, this is the first study examining the relationship between FMs and Apo (a). Applical may pray an important role in the pathogeness of FMS, and confirm the occurrence of the inflammatory process in FMS. Apolical may be evenly implicated in the inflammatory process (16), since extravascular congulation and diminished fibrinoissis are processes that contribute to the enology of both inflammation and atherosclerosis (16). The execut mechanism whereav Apolical is atherogenic remains to be effectived. Apolici has a high affinity for lysine-hinding sites on fibrin and may therefore compete with plasminogen at sites of fibrin deposition and thus interfere with the fibrinolytic system (17-19). Apo (a) colocalizes with lipid deposition in the artery walls. This leads to a massive apid deposition in the catery walls. Results may aid the possibility that Apo (a) has emerged as natural antiinflammatory molecule to blunt the deleterious effects associated with excessive neutrophil accumulation at sites of inflammation. Apo (a) can inhibit loukocyte recruitment by a mechanism independent of Plasminogen (20), thus, it could play a beneficial role by suppressing inflammation. In addition, a mechanism for this lovel function of Apo taxwas also identified: its selective regulation of cytokine production. This represents an important contribution to the understanding of the regulation of neutrophil recraitment during the inflammatory response (20). #### Conclusion: FMS patients are more predisposed to have atherogenic ciseases and stroke. Apo (attest can aid in the confirmation of FMS diagnosis. Normal Apocat levels don't rule out FMS occurrence. Lipid profile and lepton nate no rele in FMS patients as a cause cirresult of this syndrome. #### References: - 2. Lodic of M. Lanvon P. Ratston S. Mascaneskeletal Assorator, 1. Boom N. Codogo N. Walker B. Haner J. (Eds.) Parklson proper and praento of medicine. Finh Ch. Convolul environments (2008) 7068-1144. - 2. P. Plann, M. Guerman, M. Conrobi, S. et al. Candened vansk from a Srab et vijnes tonnauero is sereen fibromvakpe, pat ent. San. Ruerm, Dis., 27st FULAK vergjess. Prop. 185, 860. - 3. Maineer Cearn, M. Zopph M. Tails Coard, Presidence of vive-invaluation Hairs, updated a souts, and Rheim Disc 21s. LCL/RC origins \$2000055555. - Saxer A. Burkhuten A. Pharmaeologic Irelation of Euromyalgia. Carrent Pain and Hendaelic Reports 2005, 5/301-306. - 8. Johns M. Masi A. Calabro J. et al. Primary fibromyalgia (fibrar discontinued) study of 50 patients with matched normal controls. Scient Arthreds Rheum 1981, 11 (51) (7). - C. The daom A. Cropley M. Hurspinov K. Exploring the role of short and coping in quality of life in filbreniyalgia. J. Procnosom Res 2007, 62 (43-15). - Geenen R. Jacobs J. Edvontvalgia: diagnosis, pathogeneses, and treatment Curr Opin Anesthesiol 2001; 14,533.9. - 8. Einhelm C. Garoff H. Renkonen O. et al. Pretein and carpohedrate composition of Lyan lipoprotein from human plasma. Biochemistre, 1972; 11:3229-3232 - 9. Freemann G. Weber W. Protein composition of Ip (a) Epoprotein from human plasma, FEBS Lett 1983, 154-357... gerbee, soo gartani. artin gan e : Gr. 9 , 1 co 361. - 10. Wiegandt H, Lipp K, Wendt G. Identifizierung eines lipoproteins mit Antigenwirksamkeit im Lp-System. Hoppe-Seyler's Z Physiol Chem 1968; 349:489-494. - 11. Rifai N, Bachorik P, Albers J. Lipids, Lipoproteins, and Apolipoproteins. In: Burtis C, Ashwood E. Tietz textbook of clinical chemistry. 3rd ed. Vol.2 Sec.V. USA, W.B. Saunders Company, 1999; ch.25: p.809-856. - 12. Pae C, Luyten P, Marks D, et al. "The relationship between fibromyalgia and major depressive disorder: a comprehensive review." Curr Med Res Opin 2008; 24: 8: 2359-71. - 13. Laylander J. "A Nutrient/Toxin Interaction Theory of the Etiology and Pathogenesis of Chronic Pain-Fatigue Syndromes: Part I". J Chronic Fatigue Synd 1999; 5: 1: 67-91. - 14. Widjaja A, Stratton I, Horn R, et al. UKPDS 20: plasma leptin, obesity, and plasma insulin in type 2 diabetic subjects. J Clin Endocrinol Metab 1997; 82:2:654-7. - 15. Banks W, Kastin A, Huang W, et al. Leptin enters the brain by a saturable system independent of insulin. Peptides 1996; 17: 305-311. - 16. Busso N, Dudler J, Salvi R, et al. Plasma Apolipoprotein(a) Co-Deposits with Fibrin in Inflammatory Arthritic Joints. Am J Pathol 2001; 159:4: 1445-1453. - 17. Sangrar W, Koschinsky M. Characterization of the interaction of recombinant apolipoprotein (a) with modified fibrinogen surfaces and fibrin clots. Biochem Cell Biol 2000, 78:519-525. - 18. Klose R, Fresser F, K?chl S, et al. Mapping of a minimal apolipoprotein(a) interaction motif conserved in fibrin(ogen) ?- and-chains. J Biol Chem 2000; 275:38206-38212. - 19. Soulat T, Loyau S, Baudouin V, et al. Effect of individual plasma lipoprotein (a) variations in vivo on its competition with plasminogen for fibrin and cell binding. An in vitro study using plasma from children with idiopathic nephrotic syndrome. Arterioscler Thromb Vasc Biol 2000; 20:575-584. 20. Hoover-Plow J, Hart E, Gong Y, et al. A Physiological Function for Apolipoprotein (a): A Natural Regulator of the Inflammatory Response. Exper Biol Med 2009; 234:28-34.