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 The Bergman model is one of the most commonly used models applied to 
the representation of the artificial pancreas (AP). It is important to study 
the effects of the insulin infusion on blood glucose concentration. This 
work includes a case study for the design of a robust controller for an AP. 
Robustness is a structured control that improves a system's ability to keep 
its stability and performance under various conditions. The proposed H∞ 
loop shaping HLS method will fulfill the design requirements of robust 
control and performance. The results of the simulation prove the 
superiority of the intended approach in terms of simple structure, robust 
performance, and stability with the least control effort 
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1. INTRODUCTION 
 Diabetes mellitus (DM) is a category of heterogeneous chronic disorders because relative or 

absolute insulin lack characterized by hyperglycemia. There are twin major classifications of diabetes 
which known as type1 and type2 diabetes based on etiology and clinical appearance. Type 2 diabetes 
(T2D) accounts for more than 90% of diabetes [1]. Type1diabetes (T1D) is known as childish 
diabetes because it typically occurs in teenagers and children. This happens because of the 
destruction of progressive autoimmune in β cells. Due to the wide difference between autoimmunity 
onset and diabetes onset, more than 80-90 % of β cells were destroyed by diagnosis. Recent studies, 
however, have shown that in some known T1D patients they never hit zero [2]. T1D principal is 
symptoms are elevated thirst, exhaustion, and frequent urination. Exogenous insulin therapy is the 
main treatment. The AP is a close loop delivery system consisting of three parts: an infusion pump, 
glucose sensor, and a controller that controls concentrations of glucose via automated hormonal 
distribution adjustments depended on the measurement of glucose. Two AP configurations were 
suggested: a single-hormone AP that delivers insulin alone, and a dual-hormone AP that delivers 
both glucagon and insulin. Upon designing a wearable infusion pump, Arnold Kadish [3] developed 
the first AP in the early 1960s and linked it to a glucose analyzer. The AP stay a discuss tool and 
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wasn’t implemented in clinical practice due to a lack of compact, non-invasive pumps and sensors 
[4,5]. The modern development (the mid-2000s) of the continuous glucose sensors has resurrected 
the field and made it possible to create a portable AP for the first time [6]. 

 The Minimal model is also referred to as the model of Bergman. In the past physiological, this 
model was popular work on the metabolism of glucose in the early 1980s, that used to describe the 
concentrations of insulin/glucose plasma behind the intravenous glucose allocation study [7,8]. In 
terms of mathematics, the insulin and glucose mathematical model of the human with complex 
interaction could be explained and represented, and then the control problem of glucose is a 
mathematical problem that could be solved by different mathematical strategies. The mathematical 
model makes it possible to simulate or check the control algorithm without needing a real patient. 
Many mathematical models can be explained the insulin/glucose regulatory system like Ackerman’s 
Linear Model[9], Bolie’s Model[10], Cobelli’s Model[11], Hovorka’s Model [12], Sorensen’s Model 
[13] and others, in this work, we used Bergman Mathematical Model it is commonly used because it 
is a simple mathematical model [14]. 

   Many controllers used to regulate the insulin-glucose system, Fisher [7], suggested a 
mathematical optimization strategy to obtain insulin infusion programs to regulate blood levels in 
diabetes. The algorithm encountered the same difficulties that previous algorithms faced in that it 
relies on fixed values for model parameters. That justifies the need to design a robust glucose-insulin 
regulatory system controller. Coman et al. [15], proposed an adaptive controller fractional in order to 
control the insulin and glucose systems that regulates its parameters along with a fractional-order 
model of the insulin and glucose system. In the case study, the amount of glucose meditation became 
extremely high, especially when taking meal and blood glucose, which had negative and dangerous 
impacts on patient life. These impacts increase depending on the rate of absorption, while removal of 
the meal intake effect may help to avoid critical situations which suggest an observer based on 
Lyapunov stability, capable of estimating disturbance input (meal). E. D. Lehmann & T. Deutsch, 
Suggested a clinical model for glucose and insulin interaction in insulin-dependent diabetes mellitus 
(DM) has been developed for the patient and medical staff training [16]. L. Kovács et al. applied two 
robust control methods on the minimal model of Bergman for blood glucose control of T1D patients. 
Firstly, the mini/max control is introduced, and it is shown to have drawbacks in reality. However, it 
is possible to approximate the theoretical solution obtained by using the reduced Gröbner method 
based on a rational field and thus get a better solution than Linear Quadratic (LQ) dose. Secondly, the 
authors then presented H∞ control concepts that describe a graphic design procedure for fitting the 
complementary sensitivity function. The first control method has drawbacks in practice since the use 
of insulin from remote compartments is a slow variable. So, the second model equation which 
reduces the system equation and makes the system linear can be removed. This means some form of 
negative glucose injection into the body as the control input which is not physically possible. In fact, 
this means the minima control has limitations. Use H∞ control as a controller on the glucose system 
would also reduce the effect of disturbance I/P by adding a proper disk inequality restriction for 
disturbance rejection [17].  

  HLS is dependent on the weighting of corresponding nominal plant outputs and inputs, where it 
has many advantages with regard to the classical methods. First of all, there is no iteration process in 
HLS. Second, it blends the advantages of the classical loop shaping with the robust characteristics of 
the optimization of HLS. And it is also a simple approach that has many fields of applications [18].  

  In this work, we have implemented H∞ Loop Shaping control in order to provide robust stability 
and performance even in presence of uncertainties. The Bergman mathematical model is used to 
simulate the regulation of the concentration of blood glucose. 

2. BERGMAN MATHEMATICAL MODEL 
 To design a suitable system, an adequate model is required. One of the most widely employed 

measures of the effect of insulin infusion and glucose inputs on blood glucose production is regarded 
as Bergman's model or called three state minimal model. The following differential equations 
describe this model [14,19] 

dG
dt

=  −p1G − X(G + Gb) +
Gmeal

V1
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  dX
dt

= −P2X + P3I    (1) 

dI
dt

= −n(I + Ib) +
U
V1

 

The physical meanings of the variables in Eq. (1) are given in Table 1. For the design of the 
control system, a linear state -pace model can be built [19]: 

�
X1̇
X2̇
X3̇
�=�

−P1 −Gb 0
0 −P2 P3
0 0 −n

� �
X1
X2
X3
�+�

0 1
V1

0 0
1
V1

0
� �ud�                                         (2) 

Y=[1 0 0] �
X1
X2
X3
� + [0 0] �ud� 

where d = Gmeal  , y = G, X1 = G,X2 = X, X3 = I, u=U-Ub. 

                                 TABLE 1: The Physical meanings of the variables in Equation (1). 

  Variable Physical meaning  
  G deviation in blood glucose  
  I the deviation in insulin concentrations  
  X proportional for the insulin concentration in a remote compartment  
  Gmeal meal disturbance input of glucose  
  U manipulated insulin infusion rate  
  P1,P2,P3,n,V1 the volume of blood  
  Gb the “basal” base line or steady state value of blood glucose  
  Ib The insulin concentration  

 
  In Eq. (1), the rate of absorption of glucose from the blood is indicated by  

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 which is a standard meal intake (disturbance input). The disturbance meal have described by 
many authors as [20]: 

Gmeal =(kt/b2) e
−t2

2b2    (3) 

where: Gmeal is in (g/mmol/min),t is in min , b is constant value=80, k denotes carbohydrates 
quantity in meal  = 180 (g/mol).  

It is important to note that the states, input and output variables are described in deviation form. 
The set of parameters that are used for the modeled diabetic in (2) are given in Table (2) below. Since 
the concentrations are in mmol/L, and the glucose disturbance has units of grams, the conversion 
factor of 5.5556 mmol/g must be applied to the Gmeal  in addition, it is more common to work with 
glucose concentration units of mg/deciliter rather than mmol/L. Since the molecular weight of 
glucose is 180 g/mol, we should multiply the glucose state (mmol/L) by 18 to obtain the measured 
glucose output in (mg/deciliter). 

Figure 1 shows the frequency response of the AP system open-loop (According to the first input 
(Insulin)). It shows that the system is unstable because the phase and gain margin are negative. 

 
 
 
 
 

                                                      TABLE 2: Diabetic model parameters [19]. 

Parameter Values 
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Gb(mmol/L) 4.5 
Ib(mU/L) 4.5 

V1(L) 12 
P1(min−1) 0.000001 
P2(min−1) 0.02 

P3(mU/liter) 0.000013 
n(min−1) 5/54 

 
Figure 1: Bode Plot of the AP System. 

3. H∞ LOOP SHAPING CONTROL DESIGN 
McFarlane and Glover proposed the HLS approach in 1992 [21]. It can be summarized as 

follows:  

GS = W1G0W2     (4) 

                                                                    GS=�A B
C D�   (4) 

                                                    GS = (Ns+∆NS) (Ms + ∆MS)−1  (5) 

where GS  is the shaped plant and  G0 is the nominal system, A, B, C, and D form the plant. GS is in 
the form of state space. W1, W2  are Pre and Post-compensators respectively. 

In this configuration, W1, W2 are selected to obtain the desired form in an open-loop reaction for 
the singular values. Using the loop shaping design technique, robust stable performance is obtained 
against the uncertainty of the co-prime factor. By using HLS, it is possible for a closed-loop system 
to compromise robustness, performance, and stability.  Consequently, a specific shaped plant is 
designed as a normalized coprime factor in this method, in order to disperse the plant GS into the 
normalized denominator and nominator coprime factors (Ms and Ns), and ∆MS, ∆NS are transfer 
functions of uncertainty.  

In order to attain the normalized coprime factors, the following equation is used [21]: 

                                       [Ns Ms]=�A + HC B + HD H
R−1/2C R−1/2 D R−1/2�     (6) 

where: 

                                                             H=-(BDT + ZCT)R−1   (7) 
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                                                                      R=1+DDT   (8) 

while Matrix Z ≥ 0 considered as an individual +ve definite settlement to the algebraic Riccate 
equation as below: 

              (A − BS−1DTC)Z + Z(A − BS−1 DT C)T − 𝑍𝑍𝐶𝐶𝑇𝑇𝑅𝑅−1𝐶𝐶𝑍𝑍 + 𝐵𝐵𝑆𝑆−1𝐵𝐵𝑇𝑇 =0  (9) 

where S=1+DTD                                                                                                                   
Therefore, when the desired loop shaping is achieved then ∞-norm of the specified transfer 

function from disturbance w to states z is turned to be minimized over the stabilizing controller C as 
shown in Figure 2. 

C∞ W1 G0 W2
y

G(s)
r

+
-

 
Figure 2: H∞ Loop Shaping control design. 

By considering the precept HLS controller, the plant the following steps should be pursued [22]: 
1) For the nominal plant G0, the desired loop shape GS is found by shaping the singular values 

using the pre and post compensators (W1and/or W2). Choosing W1 and W2 is extremely 
important. 𝑊𝑊1,𝑊𝑊2 can be chosen by trial and error. W1 is chosen to fulfill tracking 
performance, attenuation of disturbance, while W2 is applied to reduce the noise of the 
sensor. Accordingly, weighting function W1 has been selected as((s+0.1)

s+0.12
) whereas W2 can be 

neglected. However, it is very necessary to bear in mind that the life of a patient is very 
valuable even when using a high-performance sensor. So, W2 is chosen to be 
(5∗(s+0.01)

s+1
)to ensure controller reliability. 

2) To obtain the optimal cost yOptimal. Then, the transfer matrix Tzw norm ∞ (provided by Eq. 
(13)) should be minimized:  

                                           yOptimal = ɛ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚−1 =  ∞��1C�  (1 + GsC)−1Ms
−1�

∞
   (10) 

where the demanded loop shape robustness is indicated to be  ɛOptimal. In addition, it elucidate the 
compatibilities of the computed weighing functions W1 and W2. 

 yOptimal ≤ 1 showed that W1  or  W2, as formulated in step 1, is inconsistent with the desired 
robust stability. Therefore, it should be returning to step 1 and recalculating W1 or W2 using the 
unique method (HLS controller) [22]. 

                                                         yOptimal=ɛoptimal−1 =(1 + λmax(XZ))1/2                                            (11) 

where K and Z represent the Reccati’s equations solutions [23-25] and the maximum Eigenvalue is 
considered to be λmax. 

                       (A–BS−1 DT C)T K + K(A–B S−1 DTC) – K B S−1 BTK – CT R−1C = 0               (12) 

3) Select ɛ<  ɛOptimal , then synthesize controller C to achieve [22].  

‖𝑇𝑇𝑧𝑧𝑧𝑧‖∞ = ��
1
𝐶𝐶∞ �  (1 + 𝐺𝐺𝑠𝑠𝐶𝐶∞ )−1𝑀𝑀𝑠𝑠

−1�
∞
ɛ−1 = ��

1
𝐶𝐶∞ �  (1 + 𝐺𝐺𝑠𝑠𝐶𝐶∞ )−1[1   𝐺𝐺𝑆𝑆]�

∞  
≤ ɛ−1          (13)                                                    
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Then the controller C∞ is performed by solving the optimal control problem in (13) where ɛ is the 
stability of margin (i.e. boundary of uncertainty). 

4)  The resulted controller (C) is: 

 C = W1C∞ W2    (14) 

Find GS by Eq. (4)

 obtained the 
optimum cost y 

optimal by Eq. (10)

Select ɛ< ɛ Optimal

returning to step 1 and 
recalculating W

1 orW
2

 find the controller 
(C) by Eq. (14)

Find G0, 
initial 

(W1,W2) 

No

Yes

If y optimal ≤ 1

 
Figure 3: Steps of precept H∞ loop-shaping for the plant. 

4. SIMULATION RESULTS 
In order to authenticate the HLS procedure, the AP system as presented in Eq.2 is taken into 

consideration while the robust controller HLS design work was developed. In order to speculate the 
efficiency and robustness of the proposed argument, system responses without controllers and 
systems using HLS controllers are achieved. The algorithm and controller are coded in Matlab. PID 
controller is also used for comparison.  

Equation (15) represents the transfer function of the obtained nominal plant (G0) According to 
the first input (Insulin). 

                             Transfer Function (G0,1) =  −4.875∗10−6

 S3+0.1126S2+0.001852S+1.852∗10−9
      (15) 

And, Eq. (16) represents the transfer function of the obtained nominal plant (G0) According to 
the second input (Disturbance meal). 

                                        Transfer Function (G0,2)=0.08333
s+ 10−6

    (16) 

The weights W1 and W2 are chosen by trial and error in the HLS method. The stability margin is 
obtained to be 0.7107. Actually, the value of stability margin ensures that the weights chosen are 
consistent with robust stability specifications. By using these weighting functions, the shaped plant 
system in Eq. (4) is shown in Figure 4 below.  
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Figure 4: The Frequency Responses of the Nominal System and the Shaped plant where  𝑮𝑮𝟎𝟎 is the 

nominal system and 𝑮𝑮𝒔𝒔 is the shaped plant. 

The controller C is built for the AP system using the HLS technique can be assessed as shown: 

         (C) = C1+C2=  5.938 S2+0.6801 S+0.005092
S2+0.12 S−5.709∗10−8

 + −0.001297 S2−0.0002176 S+2.065∗10−6

S2+0.12 s−5.709∗10−8
                   (17)  

where C1 represents the controller according to the first input (Insulin) and C2 is the controller 
according to the second input (Disturbance meal). 

The effectiveness of applying the robust controller to the AP system is investigated by two 
principal requirements: analysis of stability and analysis of performance. 

I. Stability Analysis 
      This is an important analysis to ensure that the AP system operates in a stable manner under 

all circumstances. Figure 5 displays the closed-loop of the sensitivity function for the AP controlled 
system with the inverse weight function of the pre/compensator W1. 

 
Figure 5: The Closed Loop of Sensitivity Function for the AP system. 

Figure 6 shows the characteristics of H∞ Loop Shaping. And, Table 3 are Shown the 
characteristics of the suggested controller, it is clear that the system is stable. 

 

Singular Values

Frequency (rad/s)

S
in

gu
la

r V
al

ue
s 

(d
B

)

10
-8

10
-6

10
-4

10
-2

10
0

0

50

100

150

200

250

 

 
G0
GS

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Closed loop Sensetivity function

Frequency (rad/s)

M
ag

ni
tu

de
 (d

b)

 

 

inverse weight function (1/W1)
Sensitivity Function



Engineering and Technology Journal                     Vol. 39, Part A (2021), No. 02, Pages 268-279 
 

275 
 
 

 
Figure 6: Bode Plot of the AP System with H∞ loop shaping. 

TABLE 3: characteristics of H∞ Loop Shaping 

Characteristic Value 
Phase Margin (deg.) 172̊ 
Gain Margin (dB) Infinity 

PM frequency 0.0651 

II. Performance Analysis 
 To test the performance of the suggested HLS the response of the AP before and after applying 

the robust controller will be analyzed. Figure 7 shows the response of the uncontrolled system. It’s 
clear that it needs to improve stability and steady-state error.  

 
Figure 7: Glucose response for the uncontrolled system. 

  Figure 8 shows the deviation glucose level under meal disturbance with HLS controller. HLS 
controller gives performance of maximum glucose level does not exceed 1.4 (mmol/L). 
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Figure 8: Deviation glucose response with HLS controller. 

    Figure 9 the characteristics of the AP system with HLS after the inclusion of 60⁒ uncertainty has 
appeared. It is clear that the results of the AP system with the HLS controller after considering the 
uncertainty still deals robustly.  

 
Figure 9: Response of the AP robustly deviation controlled System with uncertainty. 

5. PROPOTIONAL INTEGRAL DERIVATIVE (PID) CONTROLLER 
In order to validate the performance of the proposec HLS controller, a comparison with a well-

known controller as the PID has been accomplished. The parameters of PID controller has been 
selected for the best possible performance as: 

                                        𝐾𝐾𝑜𝑜𝑜𝑜𝑝𝑝1(𝑠𝑠) =  0.1 𝑆𝑆2 +0.06 𝑆𝑆 +1
𝑆𝑆

   (18) 

                                        𝐾𝐾𝑜𝑜𝑜𝑜𝑝𝑝2(𝑠𝑠) =  0.5 𝑆𝑆2 +0.01 𝑆𝑆 +0.4
𝑆𝑆

    (19) 

      Figure (10) shows the deviation glucose level under meal disturbance with PID controller. PID 
controller gives performance of maximum glucose level does not exceed 1.6 (mmol/L). 
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Figure 10: Deviation glucose response of the AP system with a PID controller. 

From Figure 11 it is clear that the system is stable with the two controllers but by using the HLS 
controller the AP system can achieve better stability than the PID controller because the phase 
margin in the HLS controller is more than the PID controller. So the closed-loop system is clearly 
improved by the HLS controller. And, Table 4 shows the comparison result of characteristics 
between HLS, PID controller. 

 
Figure 11: Bode plot of the AP system with HLS and PID controllers 

TABLE 4: Comparison result of characteristics between HLS, PID controller 

Characteristic HLS PID 
Phase Margin  (deg.) 172̊  131° 

Gain Margin (dB) Infinity Infinity 
PM frequency(rad\sec) 0.0651 0.0393 

6. CONCLUSIONS 
  In this work, a specific Bergman model insulin-glucose control system to artificial pancreas is 

researched and thoroughly assessed. HLS controller has been proposed and the PID controller is used 
for comparison.  It has been clearly shown that the HLS controller results are better than that with the 
PID controller in regulating blood glucose concentration. The results display many good advantages 
as compared with the PID controller. And, the effectiveness of suggested parameters for the AP 
system is investigated by applied uncertainty on robust control to present the robustness of the 
controlled system. 
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