Semi-Small Submodules

Ali S. Mijbass¹, Nada Khalid Abdullah²

¹ Department of mathematics, College of Computers Sciences And Mathematics, University of Tikrit, Tikrit, Iraq. ² Department of mathematics, College of Eduction, University of Tikrit, Tikrit, Iraq.

(**Received:** 22 / 1 / 2009 ---- **Accepted:** 17 / 5 / 2009)

Abstract

Let R be a commutative ring with unity and let M be an unitary R-module. In this work we present semi-small sub-module concept as a generalization of small submodule. Also we generalize some properties of small submodules to semi-small. And we study the relation between small submodules and semi-small submodules.

1 Semi-Small submodules :

In this section, we introduce a generalization for small submodule concept namely semi-small submodule.

Recall that a proper submodule *B* of an *R*-module *M* is called primary if whenever $rm \in B$ for $r \in R$ and $m \in M$, either $m \in B$ or $r^n \in (B:M)$ for some positive integer n, where $(B:M) = \{ r \in R : rM \subseteq B\}$, [5]. And an ideal *E* in a ring *R* is called a primary ideal in *R* if $xy \in E$, where $x, y \in R$, then either $x^n \in E$ or $y^k \in E$ for some positive integers *n* and k [10].

Definition 1.1:

An *R*-submodule *A* of an *R*-module *M* is called a semi-small submodule of *M* if and only if $A+B \neq M$, for each primary *R*-submodule *B* of *M*. And an ideal *I* in a ring *R* is called a semi-small ideal in *R* if and only if $I + E \neq R$, for each primary ideal *E* of *R*.

Remarks and Examples 1.2 :

Recall that a non-zero *R*-submodule *A* of an *R*-module *M* is called a small submodule of *M* if only and only if $A + C \neq M$, for each proper submodule *C* of *M*. And a non-zero ideal *I* in a ring *R* is called a small ideal if and only if $I + E \neq R$, for each proper ideal *E* of *R*[4].

1. Each small submodule is semi-small submodule. We do not know the converse is true or not in general.

2. For each module M , we have (0) is a semi-small submodule of M.

3. If M is a semi-simple module , then (0) is the only semi-small submodule of M.

4. Each finitely generated submodule of Q_Z is semi-small submodule in Q_Z .

Recall that a module M, which satisfies the following conditions:

1. M has a basis.

2. $M = \bigoplus_{i \in I} A_i$ and $\forall i \in I [R_R \approx A_i]$

is called a free module, [4].

5. In a free Z-module , only the trivial submodule (0) is a semi-small submodule.

The following proposition shows that the two concepts semi-small and small submodule are equivalent in the class of finitely generated modules. **Proposition 1.3 :**

Proposition 1.3:

Let M be a finitely generated R-module, and let A be an R-submodule of M. Then A is semi-small if and only if A is small.

Proof:

Suppose that A is a semi-small submodule of M and B is a proper R-submodule of M such that A + B = M.

Since *M* is finitely generated *R*-module, so there exists a maximal ideal *L* such that $B \subseteq L$ [6]. Thus A + L = M. But *L* is a primary *R*-submodule of *M* and *N* is semi-small so L = M, a contradiction. Thus $A + B \neq M$ for each proper *R*-submodule *B* of *M*. Hence *A* is a small *R*-submodule of *M*. The converse is clear.

Proposition 1.4 :

Let M be an R-module such that every proper R-submodule of M is primary, and let A be an R-submodule of M. Then A is semi-small if and only if A is small.

Proposition 1.5 :

Let M be an R-module and let N be a semi-small submodule of M. If A is an R-submodule of N, then A is a semi-small submodule of M.

Proof:

Let A + B = M, for some primary *R*-submodule *B* of *M*. Since *A* is an *R*-submodule of *N*. Thus N + B = M, and because *N* is semi-small *R*-submodule of *M*, B = M a contradiction. Therefore *A* is semi-small submodule of *M*.

The converse of prop.1.5 is not true in general as the following example shows.

Example 1.6

Consider Z_{12} as a Z-module , the only primary submodules of Z_{12} are $(\overline{2})$, $(\overline{3})$ and $(\overline{4})$. It's clear that $(\overline{6})$ is submodule of Z_{12} , so $(\overline{6})$ is a submodule

of $(\overline{3})$. And $(\overline{6})$ is a semi-small submodule of Z_{12} ,

but $(\overline{3})$ is not semi-small submodule of Z_{12} , since $(\overline{3}) + (\overline{4}) = Z_{12}$.

Now, we have the following result.

Corollary 1.7:

The intersection of any two semi-small submodules is also semi-small submodule.

In general, we have the following result

Corollary 1.8 :

Let *N* be an *R*-submodule of an *R*-module *M*. If *A* is a semi-small *R*-submodule of *M*, then $A \cap N$ is a semi-small *R*-submodule of *M*.

Corollary 1.9 :

Let A_i be a semi-small *R*-submodule of an *R*-module

M for each i = 1, 2, ..., n. Then $\bigcap_{i=1}^{n} A_i$ is a semi-small

submodule of *M*. Corollary 1.10 :

Let A_i be a submodule of an *R*-module *M* for each *i*

= 1,2,..., n. If there exists j such that A_i is a semi-

small submodule of *M*, where $1 \le j \le n$, then $\bigcap_{i=1}^{n} A_{i}$

is a semi-small submodule of M.

Proposition 1.11 :

Suppose that A and N are R-submodules of an Rmodule M such that N is small. Then N + A is a semismall R-submodule of M if and only if A is a semismall *R*-submodule of *M*.

Proof:

Suppose N + A is semi-small and B is a primary Rsubmodule of *M*. Thus $(N + A) + B \neq M$, and hence $N + (A + B) \neq M$. From this we get $A + B \neq M$ and consequently, A is semi-small.

Conversely; Assume that A is semi-small and B is a primary R-submodule of M. Then $A + B \neq M$. Because N is small, $N + (A + B) \neq M$. Therefore $(N + B) \neq M$. A) + $B \neq M$, and hence N + A is semi-small.

Furthermore , we introduce in this section a generalization for small homomorphism concept namely semi-small homomor- phism.

Recall that an *R*-homomorphism $f: M \to N$, where M and N are R-modules is called a small homomorphism if f(M) is a small submodule of N , [4].

We introduced the following definition for the semismall homomorphism.

Definition 1.12 :

An *R*-homomorphism $\theta: M \to N$, where *M* and *N* are *R*-modules, is called a semi-small homomorphism, if $\theta(M)$ is a semi-small submodule of N.

Before we give the following proposition we will need the following lemma, which appeared in [11].

Lemma 1.13 :

Let *M* and *N* be *R*-modules with $\theta: M \to N$ is an *R*epimorphism. If B is a primary submodule of M, ker $\theta \subseteq B$, then θ (*B*) is a primary such that submodule of N.

Proposition 1.14 :

Let *M* and *N* be R-modules with $\theta: M \to N$ is an *R*epimorphism such that ker $\theta \subset B$, for each primary sub-module B of M, if A is a semi-small submodule of N, then $\theta^{-1}(A)$ is a semi-small submodule of М.

Proof:

Suppose $\theta^{-1}(A) + B = M$ for some primary submodule B of M, then $A + \theta(B) = \theta(M)$, and since θ is an epimorphism, so $\theta(M) = N$. And since ker $\theta \subset B$, therefore $\theta(B)$ is a primary submodule of N, (Lemma 1.15). Since A is a semi-small submodule of N, thus $\theta(B) = N$, this is a contradiction. Therefore $\theta^{-1}(A) + B + \neq M$ for each primary submodule B of M. Thus θ^{-1} (A) is a semismall submodule of *M*.

The converse of prop.1.14 is not true in general unless we put some conditions:

Next we need the following lemma, which appeared in [11].

Lemma 1.15 :

Let *M* and *N* be *R*-modules with $\theta: M \rightarrow N$ is an *R*homomorphism. If A is a primary submodule of N, such that $A \subseteq Im \ \theta$, then $\theta^{-1}(A)$ is a primary submodule of *M*.

Proposition 1.16 :

Let M and N be R-modules with $\theta: M \to N$ is an Repiomorphism . If A is a semi-small submodule of Msuch that ker $\theta \subseteq A$, then θ (A) is semi-small submodule of N.

Proof:

Let θ (A) + B = N for some primary submodule B of N. Since θ is an epimorphism , then $\theta^{-1}(N) = M$. Thus $\theta^{-1}\theta(A) + \theta^{-1}(B) = M$. Then $\theta^{-1}(B)$ is a primary submodule of M (lemma 1.17). But ker $\theta \subseteq$ A, so $\theta^{-1} \theta(A) = A + \ker \theta = A$. Therefore $A + \theta^{-1}$ (B) = M, a contradiction. Thus $\theta(A) + B \neq M$, for each primary submodule B of N. Hence $\theta(A)$ is a semi-small submodule of M.

Proposition 1.17:

Let M be an R-module, and let be A is an Rsubmodule of *M*. Then *A* is a semi-small submodule of *M* if and only if the inclusion function $i : A \rightarrow M$ is a semi-small monomorphism.

Finally, we give the following proposition.

Proposition 1.18 :

Let A and N are submodules of an R-module M such $A \subseteq N$ and $A \subseteq B$ for each primary submodule that B of M, if A is semi-small in M, then N/A is semismall in M / A if and only if N is semi-small in M. **Proof**:

Suppose that N / A is semi-small in M / A and suppose that N + B = M for some primary submodule B of M. Then (N+B)/A = M/A and N/A + B/A = M/AA. This is a contradiction , since B / A is a primary submodule of M / A and N / A is semi-small in M / A. thus $N + B \neq M$. Therefore N is semi-small submodule of M.

Conversely; Let N be a semi-small R-submodule of M and $\pi: M \to M / A$ is a natural projective function. Let N / A + B = M / A for some primary submodule B of M / A. Then there exists a primary Rsubmodule P in M such that $P = \pi^{-1}$ (B). Thus π (P) = B = P / A is a primary submodule of M / A , hence N / A + P / A = M / A, so (N + P) / A =M / A and consequently, N + P = M a contradiction, since N is a semi-small R-submodule in M.So N/A + $B \neq M / A$. Therefore N / A is a semi-small Rsubmodule of M / A.

2: Semi-Small Submodules and Multiplication **R-modules**

An *R*-module *M* is called a multiplication *R*-module if every submodule N of M is of the form BM, for some ideal B of R[2]. And an R-module M is called a faithful *R*-module if ann(M) = 0, [1].

In the following theorem , we give a condition under which a submodule of a faithful multiplication R-module is semi-small. First , we will need the following lemma , which appeared in [9].

Lemma 2.1 :

If M is a multiplication R-module, and L is a proper submodule of M. Then the following statements are equivalent:

1 - *L* is a primary submodule of *M*.

2 - (L: M) is a primary ideal in the ring R.

3- L = PM for some primary ideal P in the ring R, such that $ann(M) \subseteq P$.

In the following theorem , we put a condition on finitely generated faithful multiplication R-modules to find a relation between semi-small submodule and semi-small ideal.

Theorem 2.2 :

Let *M* be a finitely generated faithful multiplication *R*-module and let A = IM be a proper R-submodule of *M*. Then *I* is a semi-small ideal in *R* if and only if *A* is a semi-small submodule of *M*.

Proof:

Assume *I* is a semi-small ideal in *R*, and let A + B = M for some primary submodule *B* of *M*, since *M* is a multiplication *R*-module, then there exists a primary ideal *E* in *R*, such that B = EM (Lemma 2.1). Thus A + B = IM + EM = M = RM, and so (I + E)M) = RM. But *M* is a multiplication *R*-module, so I + E = R. This is a contradiction. Therefore *A* is a semi-small submodule of *M*.

Conversely; assume A is a semi-small submodule of M, and let I + E = R for some primary ideal E in R. Since M is a multiplication R-module, then IM + EM = RM, and since $ann(M) \subseteq E$ for each primary ideal E in R, then EM is a primary submodule of M (Lemma 2.1). Thus A + EM = RM = M. This is a contradiction, since A is a semi-small. Therefore I is a semi-small ideal in R.

The following corollary follows directly from the previous theorem.

Corollary 2.3 :

Let M be a finitely generated faithful multiplication R-module and let A be a proper submodule of M. Then A is a semi-small R-submodule of M if and only (A : M) is a semi-small ideal in R.

The following proposition shows that the semi-small concept and small concept are equivalent in the class of multiplication module.

Proposition 2.4 :

Let M be a multiplication R-module and let A be an R-submodule of M. Then A is semi-small if and only if A is small.

Proof:

The proof is similar to the proof of proposition 1.3 , hence is omitted.

Furthermore, we study in this section the ascending chain condition (Acc) M is said to be satisfy the ascending chain if each ascending chain of submodule of M terminate. Moreover, M is called Noetherian module if and only if M satisfies Acc.

And M is said to be satisfy the descending chain condition (Dcc) if each descending chain of submodules of *M* terminates [7].

We start by the following definition:

Definition 2.5 :

An *R*-module *M* is said to satisfy the ascending chain condition (Acc) on semi-small submodules if each ascending chain of semi-small submodules $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subseteq \ldots$ is terminates.

We preface the section by the following proposition.

Proposition 2.6:

Let M be a finitely generated faithful multiplication R-module, then R satisfies Acc on semi-small ideal if and only if M satisfies Acc on semi-small submodules.

Proof :

Let *R* satisfies *Acc* on semi-small ideal , and let $A_1 \subseteq A_2$, $\subseteq \ldots \subseteq A_k \subseteq \ldots$ be ascending chain of semi-small submodules of *M*. Since *M* is a multiplication *R*-module ,then $A_i = B_i M$ for some semi-small ideal B_i of *R*, for each *i* (Th.2.2). Hence $B_1 M \subseteq B_2 M \subseteq \ldots \subseteq B_k M \subseteq \ldots$. But *M* is a finitely generated faithful module , then $B_1 \subseteq B_2 \subseteq \ldots \subseteq B_k \subseteq \ldots$ is ascending chain of ideals in *R* [7]. Since *R* satisfies Acc on semi-small ideals , then there exists $k \in N$ such that $B_k = B_{k+j}$, $\forall j \ge 1$, and hence $A_k = A_{k+j}$, $\forall j \ge 1$. Thus *M* satisfies Acc on semi-small submodules.

Conversely ; let *M* satisfies Acc on semi-small submodules and let $B_1 \subseteq B_2 \subseteq ... \subseteq ...$ be ascending chain of semi-small ideals in *R*. Then $B_1 M \subseteq B_2 M \subseteq ... \subseteq B_R M \subseteq ...$ is ascending chain of semi-small submodules of *M*, (Th.2.2). Since *M* satisfies Acc on semi-small submodules, there exists k such that $B_k M = B_{k+j} M$, $\forall j \ge 1$. But *M* is a finitely generated faithful multiplication module , then $B_k = B_{k+j}$, $\forall j \ge 1$ [3]. Thus *R* satisfies Acc on semi-small ideals.

Now , we give the main theorem of this section. **Theorem 2.7 :**

Let M be a finitely generated faithful multiplication R-module, then the following are equivalent:

1. *M* satisfies Acc on semi-small *R*-submodules of *M*. 2. *R* satisfies Acc on semi-small ideals.

3. $S = End_R (M)$ satisfies Acc on semi-small ideals.

4.M satisfies Acc on semi-small submodules as an *S*-modules.

Proof:

 $(1) \Rightarrow (2)$ by Prop.2.5

 $(2) \Rightarrow (3)$ since *M* is a finitely generated faithful multiplication *R*-module, then $R \approx S$ [8]. But *R* satisfies Acc on semi-small ideals, thus *S* satisfies Acc on semi-small ideals.

 $(3) \Rightarrow (4)$ by Prop.2.5

 $(4) \Rightarrow (1)$ by Prop.2.5, *S* satisfies Acc on semi-small ideals , and $R \approx S [8]$, hence *R* satisfies Acc on semi-small submodules as on *R*-module.

Definition 2.8 :

An R-module M is said to satisfy the descending chain condition (Dcc) on semi-small submodules if

each descending chain of semi-small submodules $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_n \supseteq \ldots$ terminates.

Proposition 2.9 :

Let M be a finitely generated faithful multiplication R-module . Then M satisfies Dcc on semi-small submodules if and only if R satisfies Dcc on semi-small ideals.

Finally, we get the following result.

Theorem 2.10 :

Let M be a finitely generated faithful multiplication R-modules . Then the following statements are equivalent :

References

1-Anderson F. w., K. R. Fuller, "Rings and Categories of Modules", Managing Editors P. R. Halmos, (1978).

2-Barnard , A. " Multiplication Modules " J. of Algebra , Vol. 71 (1981) , PP. 174-178.

3-El-Baste , Z. A. and Smith , P. F. " Multiplication Modules " Comm. In Algebra , Vol. 16 , No.4 (1988) , PP. 755-795.

4-Kasch , F. " Modules and Rings " Academic Press , London , New York , (1982).

5-Kirby , D. " Closure Operations on ideal and sub-modules " , J. London Math. Soc., 44(1969) , 283-291.

6-Lu. C. P., " Prime Sub-modules " Comm tent Mathematics, University Spatula, 33 (1981), 61-69.

1. *M* satisfies Dcc on semi-small submodules as an *R*-modules.

2. *R* satisfies Dcc on semi-small ideals.

3. $S = End_R(M)$ satisfies Dcc on semi-small ideals.

4. *M* satisfies Dcc on semi-small submodules as an *S*-modules.

Proof :

The proof is similar to the proof of Th.2.6 , hence is omitted.

7-Naoum , A. G. , Wasan " Modules that satisfy Acc (Dcc) on large Sub-modules " . j. of Iraqi Sciences , University of Baghdad , (2004).

8-Naoum , A. G. " On the Ring of End omorphisms of Finitely Generated Multiplication Modules ", Periodica Mathematica Hungarica 29 (1994), 277-284.

٩- احمد عبد الرحمن عبود ، " موديلات جزئية في موديلات جدائية " رسالة ماجستير ،ا جامعة بغداد ، (١٩٩٢).
١٠- حسن ، منتهى عبد الرزاق ، " الموديلات شبه الأولية والموديلات الجزئية شبه الأولية " رسالة ماجستير ، جامعة بغداد

(١٩٩٩) . ١١- محمد ، لميس ، " في المقاسات الجزئية الأبتدائية " رسالة

دكتوراه ، الجامعة التكنولوجية ، (٢٠٠٥).

المقاسات الجزئية شبه-الصغيرة

على سبع مجباس'، ندى خالد عبد الله '

· كلية علوم الحاسبات والرياضيات ، جامعة تكريت ، تكريت ، العراق

[†] كلية التربية ، جامعة تكريت ، تكريت ، العراق

الملخص

لتكن R حلقة تبادلية ذات عنصر محايد و M مقاس أحادي على R. قدمنا في هذا البحث مفهوم المقاس الجزئي شبه− الصغير بصفته أعماما إلى مفهوم المقاس الجزئي الصغير و عممنا بعض خصيصات المقاسات الجزئية الصغيرة إلى المقاسات الجزئية شبه− الصغيرة وكذلك درسنا العلاقة بينهما.