Tikrit Journal of Pure Science 16 (4) 2011

ISSN: 1813 - 1662

J — Class composition operators

Laith k. shaakir
Department of mathematics, College of computer and mathematical science, University of Tikrit. Tikrit-lraq
(Received: 27 /412010 ---- Accepted: 13 /12/2010)

Abstract

Let X be a separable Banach space. For every X e X, L(x),J(X),

J™X(x) are denoted to the limit set

.extended limit set , extended mixing limit set of X under the operator T respectively. In this paper we give
several properties about these sets and we study these sets for the composition operators Cw ,also we give

some conditions on ¢ to make C(p is J — class operator.

1. Introduction:
We see in the last years that the dynamics of linear
operators on infinite dimensional spaces has been

extensively studied [5], [6]. Recall that if X is
separable Banach space and T : X — X is bounded
linear operator then T is said to be hypercyclic
provided there exists a vector X & X such that its
orbit under T ,Orb(T, x) = {T”X: n =0,1,2,...} is
dense in X, in this case the vector X is called
hypercyclic vector [1] .On the other hand if there
exists X € X such that Orb(T,X) has dense linear

span in X then T is said to be cyclic operator and
the vector X is called cyclic vector . If X is Banach
space (possibly non — separable) and T : X — X is

a bounded linear operator then T is said to be
topologically transitive (topologically mixing) if for
every pair of non — empty open subsets U, V of
X there exists a positive integer n such that
TUNV =2 (T"UNV 22 for everym=>n
respectively) [2]. One can prove easily that if T is a
bounded linear operator acting on separable Banach

space X then T is hypercyclic if and only if T is
topologically transitive [2]. Let us assume from now
and so on that X is a separable complex Banach
space. If Xis a vector in Xand T:X — Xiis
bounded linear operator then define

J(X) = {y e X : there exist a strictly increasing
sequence of positive integers {kn} and a sequence
{Xn}c X such that {Xn}—> X and
{Tknxn}—> y }, and J™(x)={yeX: there
exists a sequence {Xn}c X such that {Xn}—> Xand
{T"Xn}—) y} denote the extended limit sets and

extended mixing limit set of X under T respectively,
see [2] for more details . We study the dynamics of
operators by replacing the orbit of a vector with its
extended limit set and extended mixing limit set.
George Costakis and Antonios Manoussos proved
that the operator T : X — X is hypercyclic if and

only ifJ(X)=X for every Xe X [2]. An

operator T : X — X will be call a J — class ( J™ —
class ) operator provided there exists a non — zero
vector X e X so that the extended limit set of
Xunder T (the extended mixing limit set of X under
T) is the whole space ie. J(X)=X

(J™(x) = X ). Itis clear from the above discussion

that every hypercyclic operator is J — class operator,
but the converse is not necessarily true [2].

Suppose that U is the unit ball of the complex
numbers and H (U) is the set of all holomorphic
functions on U, it is well known that every function f
belongs to H (U) can be written

as f(z) = Z f(n)z",(z eU) . If the sequence of

n=0

the coefficients {f(n)} is a square - summable

A 2
f (n)‘ < o0, then we say that the

o0
sequence, i.e. Z
n=0

belongs to H? or HXU).

f (n)\2 < oo}.

H? is called the Hardy space [3], [7]. If ¢ is a
holomorphic self map of U (i.e. o(U) cU) then the

operator C(p : H? — H?defined by C(pf = fop

function f

Therefore H 2 :{f € H(U):Z
n=0

for every f e H?is bounded linear operator on
H?[3], this operator is called the composition
operator. The mapping ¢ is called linear fractional

az+b
P(z) =
cz+d
z €U ,wherea,b,c,d are complex numbers. We

denote LFT(U) to the set of all linear fractional
transformations that take U into itself i.e. LFT(U)

= {(p @ is linear fractional transformation
andp(U) cU}.

If @ eLFT(U) then ¢ has either one or two fixed
point [3]. If @ is holomarphic self map of U then

transformation  if for every

Yvy
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1- @, =@o@o...op where o s the
e —
composition of functions
2- o —X>pmeans ¢ (z) - pon every
compact subset of U.

This paper organized as follows: In section 2 we
discuss the definitions of J — sets and study some
basic properties of these sets ,also we introduce some
information of the composition operators that we
needs in the next section. In section 3 we study the J
— sets of the composition operators and we give some

conditions to make C(p is J — class operator.
2. Preliminaries:

In this section we introduce some definitions and
basic information about the J — sets and J — class

operators, Let us assume that X is a separable
complex Banach space, we begin with the following
definition

Definition (2.1):

Let T : X — X be a bounded linear operator. For
every X € X the sets

L(X)={ye X :there exists a strictly increasing
sequence of positive integers {kn}such that

{TK" (X)}—) y}and
J(X) = {y € X :there exists a strictly increasing
sequence of positive integers {kn}and a sequence

{Xn } < Xsuch that {Xn } — Xand

x>y }

are denoting the limit set and the extended limit set of
Xunder T respectively.

Remark (2.2) [2]:

It is clear that an equivalent definition of J(X) is the
following

J(X) = {y € X :for every pair of neighborhoods

U,V of X, Yrespectively, there exists a positive

integer nsuchthat T"U NV =& }
Observe now from the above remark and the

definition of topologically transitive operator that T
is topologically transitive if and only if

J(X)=X WvxeX.

Definition (2.3):

Let T : X — X be a bounded linear operator. For
every X € X the set

J™(x) ={y € X :there sequence
{X,} = X such that {x,}—> xand {T"X, }—> y}is

denote the extended mixing limit set of X under T .
Remark (2.4) [2]:

exists a

YV¢
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An equivalent definition of J™*(x) is the following

J™(x) = {y € X :for every pair of neighborhoods
U,V of X,y respectively, there exists a positive

integer N such that TUNV %2 for
everyn> N }

Observe from remark (2.4) and the definition of
topologically mixing operator that T is topologically
mixing if and only if J™(x) = X VX e X .
Remark (2.5):
We can  prove

easily  that L(X) < J(X)

and J™(x) = J(X) foreveryxe X .

The following lemma appears in [2].
Lemma (2.6):

Let T: X — X be a bounded linear operator and
{Xn }, {yn}are two sequences in X such that
{x,}— xand{y, }—y forsomex,y e X .
(i) Ify,eJ(X,) for every n=1, 2,..., then
y e J(x).
@iy If y, e JmiX(Xn)for every n=1,2,...,then
y e J™(X).
The following proposition consequence immediate

from the above lemma.
Proposition (2.7) [2]:

For every X e X the sets L(x), J(X) and J ™™ (x)
,are closed and T — invariant moreover, the set
J™X(x) is convex and especially J™™(0) s a
(closed) linear subspace of X .

Recall that the operator T is called power bounded if
there exists a positive number M  such

that ”T "

Proposition (2.8) [2]:
Let T : X — X be a bounded linear operator. If T
is power bounded then J(X) = L(X) Vxe X.

We prove the following lemmas
Lemma (2.9):

<M for every positive integers n.

If T:X—>Xis power bounded and
XtoxAy.}=>y. 1fy, eL(x,)then
y € L(X).

Proof:

It is clear from proposition (2.8) that
L(x,)=J(x,) W¥n, therefore y, € J(X,)Vn.
Lemma (2.6) shows that Yy e J(X).Since
J(X) = L(x) Vxe X theny € L(X).

Lemma (2.10):

Let T : X — X be a bounded linear operator then

forevery X e X, L(X) = L(T"X), n=0,1,2,...
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Proof :
Suppose that Z € L(X) and r is non — negative
integer then there exists a strictly increasing sequence

T )}>z,
hence{Tk"*r(TrX)}—> Z.Thus Ze L(T'X)

Conversely: suppose that Z € L(T pX) for some non
— negative integer P, then there exists a strictly

of positive integers {kn}such that

increasing sequence of positive integers {kn}such

that {I’K”(Tpx)}—>z, that is fI'K”p(x)}—)z.
Thus Z € L(X).

We prove the following results .

Theorem (2.11):

Let T: X — X be a bounded linear operator and
X,y e X .If yeL(x)thenL(y) < L(X)

Proof :

Since Y € L(X) then there exist a strictly increasing

sequence of positive integers {kn}such that
{TK” (X)}—) y. If zeL(y) then there exist a
strictly increasing sequence of positive integers {Fn}

such that {TF” (y)}—>z. Lete >0, then there
exists a positive integer m such that

”‘I’F”y—zu<g vn>m.

Since {T Kn (X)}—) y then

{TK””:”‘ (X)}—)TFm (y) as n—> o0, therefore
there exists a positive integer (  such

that”T Kn+Fm (x) — T Fm (y)H <§ vn>q.

So that
T =z < [T g T ()«

”TFm (Y)—ZHS%ngJrg ¥Yn>q. This implies

that {r Kn+Fm (x)}—> Zas N —> o0,
Thus Z € L(X).

Corollary (2.12):

If T:X—>Xis  power
y € L(X)then L(y)=L(X).
Proof :

We see in theorem (2.11) that L(y) < L(X).

Since Y € L(X)then there exist a strictly increasing

bounded and

sequence of positive integers {kn}such that
{TK” (X)}—) y. If zeL(x) then
ze L(T*X) vn (lemma(2.10)), so that Z € L(y)
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(lemma (2.9)), so
L(y) = L(x).

Corollary (2.13):
If T:X —> Xis power

that L(X) < L(y). Thus

bounded then either

L(y)=L(X) orL(y)NL(X)=2 for every
x,yeX.
Proof:

IfL(y)NL(x) =D then there exists z e L(y) N L(X)
that is zel(y) and zel(X), so that
L(y)=L(z)=L(x) (corollary (2.12)).

Definition (2.14) [4]:

Suppose that (X,d) , (Y,d") are metric spaces then the
mapping T :X —Y is contraction mapping if
there

exists 8,0 < @ <1 such that

d(T(x),T(y)) <&'(x,y) forevery X,y € X
Contraction mapping theorem (2.15) [4]:

Suppose that X is complete metric space and
T : X — X is contraction mapping then there exist
a unique point X, € X such that T(X,) =X,, X,is
called fixed point for T .

Corollary (2.16):

If T : X — X is contraction linear operator then 0 is

the only fixed point for T .
Proof:

Since T s linear operator then 0 is fixed point for T
and hence from the contraction mapping theorem that

0 is the only fixed point for T .
We prove the following theorem
Theorem (2.17):

Suppose that X is Banach space and d is the metric
on X induced by its norm i.e.

d(x,y)= ||X - y|| VX, Y € X, then the operator
T :(X,d) — (X,d) s contraction mapping if and
only if ||T|| <1.

Proof:
We know (see [8] p.95) that

T = supﬂ|T(x)|| :x e X satisfies ||| =1}.

If T is contraction then by definition there exist €,
0<6<1 such that [T(x)—T(y)|<6|x—y]|for
every X,y e X . If we take y = 0 then for every
X € X with ||X|| =1we have "T (X)” <@, thus

<6 <1.
Conversely: if ||T|| <1 then take 6 :“T” and hence

d(T (). T(Y) =T) =T =[T(x-)|

Yve
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<[Tlx-y[=ed(xy) VxyeX. Thus T is
contraction.

Corollary (2.18):

If T:X — Xis contraction operator then
L(x)=J™(x)=J(x) = {O}for every X e X and
hence T is not J — class operator.

Proof:

Since T is contraction operator then ||T||<1

(theorem (2.17)) that is ”T” < "'I'”n <1 for every n

so that T is power bounded. If y € J(X) then there
exists a strictly increasing sequence of positive
integers {kn}and a sequence {Xn}g X such that

{Xn}—> X and {Tk" (Xn)}—>y. On the other
hand [T (x,)]| <[[T* [}, < [T
[T||<Lthen [T

this implies that {Tk" (Xn)}—> 0,s0 that y = 0. Thus
J(x)={0} for xeX.
L(x),J™(x) = J(X) for everyxe X (remark
(2.5)) and by definitions
0eL(x),J™(x) ¥xe X then
L(x) = 3™ (x) = J(x) = {0}for every x € X
Definition (2.19) [3]:

Let ¢ be a holomorphic self map of U (U is the unit
ball of the complex numbers) then ¢ is said to be
automorphism if it is one — to — one and onto.

Recall that if pis fixed point for ¢@ (i.e.
o(p) = p) then pis called interior fixed point if
peUand

pedU ={z e¢:|z|=1}.

Remark (2.20):

Let ¢ be a linear fractional self map of U then

1- ¢ is called elliptic if it is automorphisim with
interior fixed point in U.

2- @ is called parabolic if it has only one fixed
point see [3], [7] for more details.

Lemma (2.21) [7]:

Let ¢ be a holomorphic self map of U, then ¢ is

automorphism with interior fixed point (i.e. @ is

<|

Xn||. Since

“ 5 0and hence ”’I’k“xn —0,

every Since

boundary fixed point if

elliptic) if and only if there existar € OU such that
¢(2) = azforeveryz €U .
Remark (2.22):

We can prove easily thatC£=C for every

on
positive integer n, where C; =C,0C,0---oC, .
%/—J

n-th time

Theorem (Dejoy — Wolff) (2.23) [3]:

Yva
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Suppose that ¢ is holomarphic self map of U that is
not an elliptic automorphism.

(@ If @ has a fixed point peU then

o, —X s pand |(p’( p)| <1.
(b) If @ has no fixed point in U, then there is a

point pedUsuch that @ ——>p.
Furthermore :
e pisaboundary fixed point of ¢ .
e O0<g(p)<l.
(c) Conversely, if @ has a boundary fixed point
p at which ¢'(p) <1 then ¢ has no fixed
points in U, and ¢, ——>p.
The fixed point P to which the iterates of ¢
converge is called the Denjoy — Wolff point of ¢ .

Remark (2.24):
Let @ be a holomarphic self map of U and

Cq, :H? — H?is the composition operator then

every constant function is fixed point for C(p .

The following proposition consequence from the
contraction mapping theorem and the above remark.
Proposition (2.25):

The composition operator on H %js not contraction
mapping.

Theorem (2.26) [3]:

Let ¢ be a holomarphic self mapping of U then Cq,

is bounded operator on H ?and HC(/JH < M .

1-9(0)
From the above theorem and theorem (2.17),
proposition (2.25) we have the following proposition.
Proposition (2.27):
Let ¢ be a holomarphic self mapping on U then
1+ ¢(0
1<c,|< (229
1-¢(0)
The following theorem appeared in [2].
Theorem (2.28):
Let T : X — X be an operator acting on a separable
Banach space X . The following are equivalent.
(i) T is hypercyclic .
(i) Forevery X € X it holds that J (X) = X
(iii) The set A= {X eX:J(X)= X}is dence
in X.
(iv) The set A= {X e X:J(x)= X}has non
— empty interior.
3. The limit and extended limit set for the

composition operators.
In this section we study the limit set and the extended

limit set for the composition operators C(p where @
is holomorphic self map on U.
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Theorem (3.1) [7]:
If ¢ is automorphism with no interior fixed point in

U then C,, is hypercyclic operator.

The following proposition consequence from theorem
(3.1) and theorem (2.28)

Proposition (3.2):

Let @ be a linear fractional self map of U. If ¢ is
automorphism with no interior fixed point then

ch(f)=H2f0r every f eH?, ie. C, isJ-

class operator.
We prove the following theorem.
Theorem (3.3):

Suppose that «is complex number such that

|05|S1then the sequence {a”} has a converge

subsequence.
Proof:
We know from Hiene-Borel theorem that the unit

disk D,(0) = {X et: |X| Sl} is compact set. Since

{a”} is sequence inD;(0) then {a”} has a
converge subsequence (every infinite subset of
compact set has limit point).

The following corollary consequence from theorem
(3.3).

Corollary (3.4):

For every complex number ¢ such that |a| <1the

set Ma ={r e¢: there exists a subsequence of

{a” }that converge to I’} is non — empty.

Lemma (3.5):
Let @ be a holomorphic self map of U. If ¢ has
interior fixed point peU then

L%(f):.]cq)(f) vf e H?, where Lc(/,(f)v
Jc(/,(f) are the limit set and the extended limit set

of f under C,, respectively.

Proof:

We  know from  Theorem  (2.26) that
1+¢,(0)

HCQHZHC%HS 11an(0) '

If @ is automorphism then 0 is fixed point ~ for ¢
lemma (2.21), hence HC;H <1 foralln.If ¢ isnot

automorphism then {qon(O)}—) p (theorem(2.23))

and hence {\/1+¢”(0)}—>\/1+ P
1-¢,(0) 1-p

so that the

ISSN: 1813 - 1662

1+¢ (0
sequence L() is bounded , this implies
1_¢n(0)
that there exist M >0 such that HC; <M V¥vnso
that C(p is power bounded , therefore
proposition(2.8) shows that

— 2
L, (F)=13c, (f) vfeH?”
We prove the following theorem.
Theorem (3.6):

If @(z)=azVzeU
Lc(p(f)zJC(p(f):{f(rz):reMa}Vf eH?

Proof:
Since @(z) =z Vz €U then ¢ has interior fixed

point and hence Lc(/,(f) = JC¢(f) vf e H?
(lemma (3.5)).
Suppose that g € Lc(p(f) where f,g e H?

where |a|£1 then

ie. T(2) =3, +312+8.222 +---and
9(z)=b, +bz+ b,z° +--- then there exist a
strictly increasing sequence of positive integers {kn}

such that HC;” f - g” — 0 that is

HC;" f _gHZ :|ao —b0|2 +‘a1ak" —bl‘z +---50

vlaa® b <[l f—gf >0 =12
i=12---
We know from theorem (3.3) that {ak"} has a

then a.™" — b,

converge subsequence ,say {akh }which converge to
r, hence reM, , ie {aiaikﬁ}—> ar' as
n—oo, i=1,2,... , but from (1) {aia"‘h}—>b,
i=1,2,... , therefore b, = airi Vi
~g(2)=by+bz+---=a,+arz+---= f(rz)
ThusLC(p(f)g{f(rz):r eM, Vi eH?,
Conversely: suppose that ' € M_ we must prove
that the function g define by g(z) = f(rz) vz is

belong to L% ()

Case (1): fis non — constant function.
ie. f(2)=a,+az+a,z*+--- so that
9(z)=a, +arz+a,r’z’ +---, suppose that

f (2)=a,+az+a,z°+---+a,z"and

Yvv
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0,(2)=a,+arz+a,r’z*+---+ar"z",
m=1,2,... .We claimthat g, € LC(p(fm) vm

“*reM, then there exist a strictly increasing

sequence  of  positive  integers {kn}such

that {ak" }—> r
therefore

ek o= gaf =]n(@,) - 0] =lafle ] +

...+|am|2‘amk" - rm‘z —0 as N— oo, so that
g, € LC¢(fm) m=012,... .

Since C(p is power bounded (see the prove of
lemma (3.5)) and {gm}—>g, {fm}—> f then
lemma (2.9) shows that g € L%(f).

Case (2): fis function  i.e.
f(z)=a, Vzthen it is clear  that
C, )2 =f(p,(2))=a,=f(2) VZ, that is
et fele, (f). Ths

{f(ra):reM,}c L, (f) i eH?

constant

hence

Corollary (3.7):
If ¢(2) = az Vz €U where |a| <1 then

Le, (1) =3¢, () ={f (O} ¥feH’

Proof:
Since |a|<1then M_ ={0}and hence from
theorem (3.6) that

Le, (1) =3¢, () ={f (O} vfeH”

The following corollary consequence from lemma
(2.21) and theorem (3.6)

Corollary (3.8):

If @ iselliptic (i.e. ¢ is automorphism with interior
fixed point)

then

ch)(f):JC(p(f):{f(rz):reMa} vf e H?

Lemma (3.9) [3]:
Foreach f e H?,

|f(Z)|Sﬂ foreach zeU .

1/1—|z|2

We prove the following theorem.
Theorem (3.10):
Suppose that ¢ is non — elliptic. If ¢ has interior

YVA
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fixed point P then
L, (F) =3¢, (F)cif(p)} VfeH?

Proof:
Since ¢ has interior fixed point P then theorem

(2.23) shows that for every zeU ¢ (z) > p as
n — oo also Lc(p(f):\]c(p(f) vf e H?

(lemma (3.5)).
Letg € ch, () then there exist a strictly increasing

sequence of positive integers {kn}such that
kn

C, f —g,sothat Hf(%)_gH_’oasn — 00,

Foreach zeU

f 2))—9(z S"—_—>O
o @) - g(] <A @)1

therefore f (¢, (2)) — g(z) as N —ooforall
zeU , but (g (2)) > f(p) (since

@,(2) > p). Thus g(z) = f(p) for each
zeU.

Example (3.11):

We can prove easily that ¢(z) = is linear

fractional self map of U and 0 is the interior fixed
point for ¢ therefore

Le, () =3¢, (F) c{f ()} VfeH?.

Theorem (3.12) [7]:
If ¢ has no fixed point in U then C, is hypercyclic

unless ¢ is a parabolic non — automorphism . In this
latter case C(p is strongly non hypercyclic in the

sense that the only possible limit points of C(p -
orbits are constant functions.

In the following theorem we summarized the
previous results.

Theorem (3.13):

Let @ be holomorphic self map of U.

1- If @ has interior fixed point then Cw is not

J — class operator
2- If @ has no interior fixed point then

(i) If @ is not parabolic then C, is J -

class operator.
(if) If @ is parabolic non — automorphism

then Lc¢(f)§ K WVvfeH?, where

K is the set of constant functions.
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(iii) If@ is parabolic automorphism then
C,, isJ - class operator.

Proof:

For proof (1) see Corollary (3.8) and theorem (3.10).
For proof (2), (i) and (iii) see theorem (2.28) and
theorem (3.12).

Proof (2), (ii):

Suppose that f e H?and g € LC¢, (f)then there

exist a strictly increasing sequence of positive
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