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Abstract 

Let X be a separable Banach space. For every Xx , )(xL , )(xJ , )(xJ mix
are denoted to the limit set 

,extended limit set , extended mixing limit set of x  under the operator T  respectively. In this paper we give 

several properties about these sets and we study these sets for the composition operators C  ,also we give 

some conditions on  to make C  is J – class operator.  

1. Introduction: 
We see in the last years that the dynamics of linear 

operators on infinite dimensional spaces has been 

extensively studied [5], [6]. Recall that if X is 

separable Banach space and XXT : is bounded 

linear operator then T is said to be hypercyclic 

provided there exists a vector Xx such that its 

orbit under T ,  ,...2,1,0:),(  nxTxTOrb n
 is 

dense in X , in this case the vector x  is called 

hypercyclic vector [1] .On the other hand if there 

exists  Xx such that ),( xTOrb  has dense linear 

span in X  then T is said to be cyclic operator and 

the vector x  is called cyclic vector . If X is Banach 

space (possibly non – separable) and XXT : is 

a bounded linear operator then T is said to be 

topologically transitive (topologically mixing) if for 

every pair of non – empty open subsets U, V of 

X there exists a positive integer n such that 

VUT n   ( VUT m   for every nm   

respectively) [2]. One can prove easily that if T is a 

bounded linear operator acting on separable Banach 

space X then T  is hypercyclic if and only if T is 

topologically transitive [2]. Let us assume from now 

and so on that X is a separable complex Banach 

space. If x is a vector in X and XXT : is 

bounded linear operator then define 

:  :)( XyxJ   there exist a strictly increasing 

sequence of positive integers nk  and a sequence 

  Xxn  such that   xxn   and 

  yxT n
nk

 , and  :)( XyxJ mix   there 

exists a sequence   Xxn  such that   xxn  and 

  yxT n

n   denote the extended limit sets and 

extended mixing limit set of x under T  respectively, 

see [2] for more details . We study the dynamics of 

operators by replacing the orbit of a vector with its 

extended limit set and extended mixing limit set. 

George Costakis and Antonios Manoussos proved 

that the operator XXT : is hypercyclic if and 

only if XXJ )(  for every Xx  [2]. An 

operator XXT : will be call a J – class ( J
mix

 – 

class ) operator provided there exists a non – zero 

vector Xx so that the extended limit set of 

x under T  (the extended mixing limit set of x under 

T ) is the whole space i.e. XxJ )(  

( XxJ mix )( ). It is clear from the above discussion 

that every hypercyclic operator is J – class operator, 

but the converse is not necessarily true [2].  

Suppose that U is the unit ball of the complex 

numbers and H (U) is the set of all holomorphic 

functions on U, it is well known that every function f 

belongs to H (U) can be written 

as )(,)(ˆ)(
0

Uzznfzf
n

n 




  . If the sequence of 

the coefficients  )(ˆ nf  is a square - summable 

sequence, i.e. 


0

2

)(ˆ

n

nf , then we say that the 

function f belongs to H
2
 or H

2
(U). 

Therefore









 


0

2
2 )(ˆ:)(

n

nfUHfH . 

H
2
 is called the Hardy space [3], [7]. If  is a 

holomorphic self map of U (i.e. (U) U) then the 

operator 
22: HHC  defined by  ffC   

for every
2Hf  is bounded linear operator on 

H
2
[3], this operator is called the composition 

operator. The mapping  is called linear fractional 

transformation if  
dcz

baz
z




)(  for every 

Uz ,where dcba ,,,  are complex numbers. We 

denote LFT(U) to the set of all linear fractional 

transformations that take U into itself i.e. LFT(U) 

=  :   is linear fractional transformation 

and UU )( .  

If  LFT(U) then   has either one or two fixed 

point [3]. If  is holomarphic self map of U then  
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1-  
timethn

n



   where   is the 

composition of functions  

2- pk

n  means pzn )( on every 

compact subset of U. 

 
This paper organized as follows: In section 2 we 

discuss the definitions of J – sets and study some 
basic properties of these sets ,also we introduce some 

information of the composition operators that we 

needs in the next section. In section 3 we study the J 

– sets of the composition operators and we give some 

conditions to make C  is J – class operator. 

2. Preliminaries: 
In this section we introduce some definitions and 

basic information about the J – sets and J – class 

operators, Let us assume that X is a separable 

complex Banach space, we begin with the following 

definition 

Definition (2.1): 

 Let XXT : be a bounded linear operator. For 

every Xx the sets  

 :)( XyxL  there exists a strictly increasing 

sequence of positive integers  nk such that 

  yxT nK
)( and 

 :)( XyxJ  there exists a strictly increasing 

sequence of positive integers  nk and a sequence 

  Xxn  such that   xxn  and 

  yxT n
nk

  

are denoting the limit set and the extended limit set of 

x under T respectively. 

Remark (2.2) [2]: 

It is clear that an equivalent definition of )(xJ is the 

following  

 :)( XyxJ  for every pair of neighborhoods 

VU , of yx, respectively, there exists a positive 

integer n such that  VUT n   . 

Observe now from the above remark and the 

definition of topologically transitive operator that T  

is topologically transitive if and only if 

XxXxJ )( . 

Definition (2.3): 

Let XXT : be a bounded linear operator. For 

every Xx the set  

 :)( XyxJ mix  there exists a sequence 

  Xxn  such that   xxn  and   yxT n

n  is 

denote the extended mixing limit set of x under T . 

Remark (2.4) [2]: 

 An equivalent definition of )(xJ mix
is the following  

 :)( XyxJ mix  for every pair of neighborhoods 

VU , of yx,  respectively, there exists a positive 

integer N such that  VUT n   for 

every Nn  . 

Observe from remark (2.4) and the definition of 

topologically mixing operator that T  is topologically 

mixing if and only if XxXxJ mix )( . 

Remark (2.5): 

We can prove easily that )()( xJxL   

and )()( xJxJ mix    for every Xx . 

The following lemma appears in [2]. 

Lemma (2.6): 

Let XXT : be a bounded linear operator and 

  nn yx , are two sequences in X  such that 

  xxn  and  yyn   for some Xyx , . 

(i) If )( nn xJy   for every n=1, 2,…, then 

)(xJy . 

(ii) If )( n

mix

n xJy  for every n=1,2,…,then 

)(xJy mix . 

The following proposition consequence immediate 

from the above lemma. 

Proposition (2.7) [2]: 

For every Xx the sets )(xL , )(xJ and )(xJ mix
  

,are closed and T  – invariant moreover, the set 

)(xJ mix
 is convex and especially )0(mixJ   is a 

(closed) linear subspace of X . 

Recall that the operator T  is called power bounded if 

there exists a positive number M  such 

that MT n   for every positive integers n. 

Proposition (2.8) [2]: 

Let XXT : be a bounded linear operator. If T  

is power bounded then XxxLxJ  )()( . 

We prove the following lemmas  

Lemma (2.9): 

If XXT : is power bounded and 

  xxn  ,  yyn  . If )( nn xLy  then 

)(xLy . 

Proof: 

It is clear from proposition (2.8) that 

nxJxL nn  )()( , therefore nxJy nn  )( . 

Lemma (2.6) shows that )(xJy .Since 

)()( xLxJ  Xx  then )(xLy . 

Lemma (2.10): 

Let XXT : be a bounded linear operator then 

for every Xx , )()( xTLxL n , n=0,1,2,…  
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Proof : 

Suppose that )(xLz  and r  is non – negative 

integer then there exists a strictly increasing sequence 

of positive integers  nk such that   zxT nK
)( , 

hence  zxTT rrnk



)( . Thus )( xTLz r  

Conversely: suppose that )( xTLz
p

 for some non 

– negative integer p , then there exists a strictly 

increasing sequence of positive integers  nk such 

that   zxTT
pnK

)( , that is   zxT
pKn 


)( . 

Thus )(xLz . 

We prove the following results . 

Theorem (2.11): 

Let XXT : be a bounded linear operator and 

Xyx , . If )(xLy then )()( xLyL   

Proof : 

Since )(xLy  then there exist a strictly increasing 

sequence of positive integers  nk such that 

  yxT nK
)( . If )(yLz  then there exist a 

strictly increasing sequence of positive integers nF  

such that   zyT nF
)( . Let 0 , then there 

exists a positive integer m such that 

mnzyT nF


2


. 

Since  yxT nK
)( then

  )()( yTxT mFmFnK



  as n , therefore 

there exists a positive integer q  such 

that qnyTxT mFmFnK




2
)()(


. 

So that 

)()()( yTxTzxT mFmFnKmFnK



+ 

qnzyT mF
 



22
)( . This implies 

that   zxT mFnK



)( as n . 

 Thus )(xLz . 

Corollary (2.12): 

If XXT : is power bounded and 

)(xLy then )()( xLyL  . 

Proof : 

We see in theorem (2.11) that )()( xLyL  . 

Since )(xLy then there exist a strictly increasing 

sequence of positive integers  nk such that 

  yxT nK
)( . If )(xLz  then 

nxTLz nk
 )(  (lemma(2.10)), so that )(yLz  

(lemma (2.9)), so that )()( yLxL  . Thus 

)()( xLyL  . 

 

Corollary (2.13): 

If XXT : is power bounded then either 

)()( xLyL   or )()( xLyL    for every 

Xyx , . 

Proof: 

If )()( xLyL   then there exists )()( xLyLz   

that is )(yLz  and )(xLz , so that 

)()()( xLzLyL      (corollary (2.12)). 

Definition (2.14) [4]: 

Suppose that (X,d) , (Y,d') are metric spaces then the 

mapping  YXT :  is  contraction  mapping if 

there 

exists  , 10   such that 

),())(),(( yxdyTxTd   for every Xyx ,  

Contraction mapping theorem (2.15) [4]: 

Suppose that X  is complete metric space and  

XXT : is contraction mapping then there exist 

a unique point Xx 0 such that 00)( xxT  , 0x is 

called fixed point for T . 

Corollary (2.16): 

If XXT : is contraction linear operator then 0 is 

the only fixed point for T . 

Proof: 

Since T  is linear operator then 0 is fixed point for T  

and hence from the contraction mapping theorem that 

0 is the only fixed point for T . 

We prove the following theorem 

Theorem (2.17): 

Suppose that X is Banach space and d  is the metric 

on X induced by its norm  i.e.   

Xyxyxyxd  ,),( , then the operator 

),(),(: dXdXT  is contraction mapping if and 

only if 1T . 

Proof: 

We know (see [8] p.95) that 

 1:)(sup  xsatisfiesXxxTT . 

 If T  is contraction then by definition there exist  , 

10   such that yxyTxT  )()( for 

every Xyx , . If we take y = 0 then for every 

Xx with 1x we have )(xT , thus 

1T . 

Conversely: if 1T  then take T  and hence 

)()()())(),(( yxTyTxTyTxTd 
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XyxyxdyxT  ,),( . Thus T  is 

contraction. 

Corollary (2.18): 

If XXT : is contraction operator then 

 0)()()(  xJxJxL mix
for every Xx and 

hence T is not J – class operator. 

Proof:  

Since T is contraction operator then 1T  

(theorem (2.17)) that is 1
nn TT  for every n 

so that T is power bounded. If )(xJy  then there 

exists a strictly increasing sequence of positive 

integers  nk and a sequence   Xxn  such that 

  xxn  and   yxT n

kn )( . On the other 

hand n

k

n

k

n

k
xTxTxT

nnn )( . Since 

1T then 0
nk

T and hence 0n

k
xT n , 

this implies that   0)( n

k
xT n ,so that y = 0. Thus 

 0)( xJ  for every Xx . Since 

)()(),( xJxJxL mix   for every Xx  (remark 

(2.5)) and by definitions 

XxxJxL mix  )(),(0  then 

 0)()()(  xJxJxL mix
for every Xx  

Definition (2.19) [3]: 

Let   be a holomorphic self map of U (U is the unit 

ball of the complex numbers) then   is said to be 

automorphism if it is one – to – one and onto. 

Recall that if p is fixed point for   (i.e.  

pp )( ) then p is called interior fixed point if 

Up and boundary fixed point if 

  zUp ¢ 1: z .  

Remark (2.20): 

Let  be a linear fractional self map of U then 

1-  is called elliptic if it is automorphisim with  

interior fixed point in U. 

2-  is called parabolic if it has only one fixed 

point see [3] , [7] for more details. 

Lemma (2.21) [7]: 

Let   be a holomorphic self map of U, then   is 

automorphism with interior fixed point (i.e.   is 

elliptic) if and only if there exist U  such that 

zz  )( for every Uz . 

Remark (2.22): 

We can prove easily that
n

CCn

   for every 

positive integer n, where 
  



timethn

n CCCC



    . 

Theorem (Dejoy – Wolff) (2.23) [3]: 

Suppose that   is holomarphic self map of U that is 

not an elliptic automorphism. 

(a) If   has a fixed point Up then 

pk

n  and 1)(  p . 

(b) If   has no fixed point in U, then there is a 

point Up  such that pk

n  . 

Furthermore : 

 p is a boundary fixed point of   . 

 1)(0  p  . 

(c) Conversely, if   has a boundary fixed point 

p at which 1)(  p  then   has no fixed 

points in U, and pk

n  . 

The fixed point p  to which the iterates of   

converge is called the Denjoy – Wolff point of   . 

Remark (2.24):  

Let   be a holomarphic self map of U and 

22: HHC  is the composition operator then 

every constant function is fixed point for C . 

The following proposition consequence from the 

contraction mapping theorem and the above remark. 

Proposition (2.25): 

The composition operator on 
2H is not contraction 

mapping. 

Theorem (2.26) [3]: 

Let   be a holomarphic self mapping of U then C  

is bounded operator on 
2H and 

)0(1

)0(1









C . 

From the above theorem and theorem (2.17), 

proposition (2.25) we have the following proposition. 

Proposition (2.27): 

Let   be a holomarphic self mapping on U then 

)0(1

)0(1
1









 C . 

The following theorem appeared in [2]. 

Theorem (2.28): 

Let XXT : be an operator acting on a separable 

Banach space X . The following are equivalent. 

(i) T is hypercyclic . 

(ii) For every Xx it holds that XxJ )(   

(iii) The set  XxJXxA  )(: is dence 

in X . 

(iv) The set  XxJXxA  )(: has non 

– empty interior. 

3. The limit and extended limit set for the 

composition operators. 

In this section we study the limit set and the extended 

limit set for the composition operators C  where   

is holomorphic self map on U. 



Tikrit Journal of Pure Science 16 (4) 2011                                                                                ISSN: 1813 - 1662 

 377 

 

Theorem (3.1) [7]: 

If   is automorphism with no interior fixed point in 

U then C  is hypercyclic operator. 

The following proposition consequence from theorem 

(3.1) and theorem (2.28) 

Proposition (3.2): 

Let   be a linear fractional self map of U. If   is 

automorphism with no interior fixed point then 
2)( HfJC 


for every 

2Hf  , i.e. C  is J – 

class operator. 

We prove the following theorem. 

Theorem (3.3): 

Suppose that  is complex number such that 

1 then the sequence  n  has a converge 

subsequence. 

Proof: 

We know from Hiene-Borel theorem that the unit 

disk   xD )0(1 ¢ 1: x  is compact set. Since 

 n  is sequence in )0(1D  then  n  has a 

converge subsequence (every infinite subset of 

compact set has limit point). 

The following corollary consequence from theorem 

(3.3). 

Corollary (3.4): 

For every complex number  such that 1 the 

set   rM ¢: there exists a subsequence of 

 n that converge to r is non – empty. 

Lemma (3.5): 

Let   be a holomorphic self map of U. If    has 

interior fixed point Up  then 

2)()( HffJfL CC 


, where )( fLC
, 

)( fJC
 are the limit set and the extended limit set 

of f under C  respectively. 

Proof: 

We know from Theorem (2.26) that 

)0(1

)0(1

n

n

n

n CC








  . 

If   is automorphism then 0 is fixed point      for   

lemma (2.21), hence 1nC  for all n . If   is not 

automorphism then   pn )0(  (theorem(2.23)) 

and hence 
p

p

n

n


















1

1

)0(1

)0(1




 so that the 

sequence













)0(1

)0(1

n

n




 is bounded , this implies 

that there exist 0M  such that nMCn  ,so 

that C  is power bounded , therefore 

proposition(2.8) shows that 
2)()( HffJfL CC 


. 

We prove the following theorem. 

Theorem (3.6): 

If Uzzz  )(  where 1  then 

  2:)()()( HfMrzrffJfL CC  

Proof: 

Since Uzzz  )( then   has interior fixed 

point and hence 
2)()( HffJfL CC 


 

(lemma (3.5)). 

Suppose that )( fLg C
  where 

2, Hgf    

i.e.  2

210)( zazaazf and

 2

210)( zbzbbzg  then there exist a 

strictly increasing sequence of positive integers  nk  

such that 0 gfnk
C  that is            

0
2

11

2

00

2

 babagfC nn kk 

. 

 ,2,10
22

 igfCba nn k

i

ik

i   

then )1......(..........,2,1  iba i

ik

i
n   

We know from theorem (3.3) that  nk  has a 

converge subsequence ,say  nk  which converge to 

r , hence Mr  , i.e.   i

ii raa nki



  as 

n , i=1,2,… , but from (1)   ii ba nki



    

i=1,2,… , therefore irab i

ii    

)()( 1010 rzfrzaazbbzg  

Thus   2:)()( HfMrrzffLC  
. 

Conversely: suppose that Mr  we must prove 

that the function g define by zrzfzg  )()(  is 

belong to )( fLC
  

Case (1): f is non – constant function. 

i.e.  2

210)( zazaazf  so that 

 22

210)( zrarzaazg , suppose that 

m

mm zazazaazf  2

210)( and 
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mm

mm zrazrarzaazg  22

210)( , 

m=1,2,… .We claim that mfLg mm C  )(


 

Mr  then there exist a strictly increasing 

sequence of positive integers  nk such 

that  rnk
   , 

therefore


22

1

22

)( ragfgfC n

n

n k

mkmmm

k 

 0
22
 mmk

m ra n  as n , so that 

,...2,1,0)(  mfLg mm C
 . 

 Since C  is power bounded (see the prove of 

lemma (3.5)) and   ggm  ,   ffm  then 

lemma (2.9) shows that )( fLg C
 . 

Case (2): f is constant function i.e. 

zazf  0)( then it is clear that 

zzfazfzfC n

n  )())(())(( 0 , that is 

  ffCn  . hence )( fLf C
 . Thus 

  2)(:)( HffLMrrzf C 
  

 

Corollary (3.7): 

 If Uzzz  )( where 1  then 

  2)0()()( HfffJfL CC 


 

Proof:  

Since 1 then  0M and hence from 

theorem (3.6) that  

  2)0()()( HfffJfL CC 


. 

 

The following corollary consequence from lemma 

(2.21) and theorem (3.6) 

Corollary (3.8): 

If   is elliptic (i.e.   is automorphism with interior 

fixed point) 

then

  2:)()()( HfMrrzffJfL CC  

 

Lemma (3.9) [3]: 

For each
2Hf  ,  

2
1

)(
z

f
zf


  for each Uz . 

 

We prove the following theorem. 

Theorem (3.10): 

Suppose that   is non – elliptic. If   has interior  

fixed point p then 

  2)()()( HfpffJfL CC 


 

Proof: 

Since   has interior fixed point p then theorem 

(2.23) shows that for every Uz , pzn )(  as 

n also   
2)()( HffJfL CC 


 

(lemma (3.5)). 

Let )( fLg C
  then there exist a strictly increasing 

sequence of positive integers  nk such that 

gfC nk
 , so that 0)(  gf

nk as n . 

For each Uz  

0
1

)(
)())((

2







z

gf
zgzf n

n

k

k


  

therefore )())(( zgzf
nk  as n for all 

Uz , but )())(( pfzf
nk   (since 

pzn )( ). Thus )()( pfzg   for each 

Uz . 

 

Example (3.11): 

We can prove easily that 
z

z
z




2
)( is linear 

fractional self map of U and 0 is the interior fixed 

point for   therefore 

  2)0()()( HfffJfL CC 


. 

 

Theorem (3.12) [7]: 

If   has no fixed point in U then C  is hypercyclic 

unless   is a parabolic non – automorphism . In this 

latter case C  is strongly non hypercyclic in the 

sense that the only possible limit points of C  – 

orbits are constant functions. 

 

In the following theorem we summarized the 

previous results. 

Theorem (3.13): 

Let   be holomorphic self map of U. 

1- If   has interior fixed point then C  is not   

J – class operator  

2- If   has no interior fixed point then  

(i) If   is not parabolic then C  is J – 

class operator. 

(ii) If   is parabolic non – automorphism 

then
2)( HfKfLC 


, where 

K is the set of constant functions. 
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(iii) If  is parabolic automorphism then 

C  is J – class operator. 

Proof: 

For proof (1) see Corollary (3.8) and theorem (3.10). 

For proof (2), (i) and (iii) see theorem (2.28) and 

theorem (3.12). 

Proof (2), (ii): 

Suppose that
2Hf  and )( fLg C

 then there 

exist a strictly increasing sequence of positive 

integers nk such that gfC nk
 . Thus g  is 

constant function (theorem (3.12)), so that Kg . 

We end this paper by the following problem. 

Problem: 

Is C   J – class operator when   is parabolic non – 

automorphism? 
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 Jالتركيبية من الصنف المؤثرات 
 ليث خليل شاكر

 العراق تكريت ,  قسم الرياضيات , كلية علوم الحاسوب والرياضيات , جامعة تكريت ,
 ( 7202/  07/  01   تاريخ القبول: ---- 7202/  4/  72  تاريخ الاستلام:) 

 الملخص :
Xxفضاء باناخ قابل للفصل , لكل Xليكن  , )(xL, )(xJ,)(xJ mix  المجموعة المحددة , المجموعةة المحةددة الموسةعة الى تشير

كةة ل   المجموعةةاتهعةةدة طةةواذ ل ةة    أعمينةةاعلةةى الترتيةةب هفةةا بةة ا البحةة   Tبالنسةةبة للمةة  ر  xللعنصةةر , مجموعةةة الطلةةم المحةةددة الموسةةعة 
  هJمن الصنف  Cشروم تجعل الم  ر التركيبا  وأعمينا Cدرسنا ب   المجموعات بالنسبة للم  ر التركيبا 

 

 


