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 This paper proposes the use of the integral sliding mode control (ISMC) 
based on the barrier function to control the servo actuator system with 
friction.  Based on the barrier function, the main features of the ISMC 
design were preserved, additionally, the proposed control design is done 
without the need to know the bound on the system model uncertainty, 
accordingly, the overestimation of the control gain doesn’t take place and 
the chattering is eliminated. Moreover, the steady-state error can be 
adjusted via selecting the barrier function parameter only. 

The simulation results demonstrate the performance of the proposed ISMC 
based on the barrier function where the system angle successfully follows 
the desired angular position with a small pre-adjusted steady-state error. 
Additionally, the obtained results clarify superior features compared with 
a traditional ISMC designed to the same actuator. 
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1.  INTRODUCTION 
One of the effective approaches to control nonlinear systems containing matched disturbances is 

sliding mode control (SMC), which has given efficiency in design has been widely used in industrial 
[1]. Despite the benefits of SMC, it has many disadvantages such as the chattering effectiveness, the 
reaching phase, and sensitiveness to matchless uncertainties [2, 3]. To solve these problems, various 
strategies of SMC have been proposed, including integral sliding mode control (ISMC), which is 
looking to remove the reaching phase by enforcing sliding mode during the full system response [4, 
5].In an integral sliding mode, the order of the motion equation is equal to the main system without 
reducing by using the dimension of the control input. Concepts of ISMC can expand for the purpose 
of building a new type that can estimate turbulence and solve the problem of chatter without losing 
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control accuracy and strength [6]. In the ISMC approaches; knowledge of parameters uncertainties 
bounds is required for the purpose of calculating the control gain [7].  

The adaptive controller is defined as being able to regulate its behavior for the purpose of 
responding to make dynamic changes for the process and the characteristics of disturbances [8]. 
Recently, the Adaptive Sliding Mode controllers based on using barrier function have been 
established as is present in [9]. 

In this paper, an integral sliding mode control based on barrier function is proposed. Then it was 
applied for a DC servo actuator system containing friction, to deal with the above strategies. 

The major advantages of the proposed algorithm in addition to the known features of ISMC are: 

• The algorithm does not require knowledge of the upper bound on the model uncertainty and 
disturbance or its derivatives. 

• Only one control parameter is needed, which also adjusts the steady-state error. 
• As a by-product, the chattering is eliminated because the proposed ISMC is continuous. 

The organization of this work is as follows. The second section introduces the problem statement. 
In the third section, the DC servo actuator system including the friction model is described. Then, 
Classical ISMC Design is discussed in section four. While in the fifth section the proposed controller 
is illustrated in brief. And, the sixth section explains the simulation results. Finally, in the seven 
sections conclusions are drawn. 

2. PROBLEM STATEMENT 
For the classical ISMC, the main difficulty is the determination of the discontinuous gain 𝑘𝑘, 

where it is required to know the upper bounds on the system parameters and on the friction and the 
external load components. This will lead to an excessive gain value which will cause undesirable 
chattering behavior. 

In this paper, we propose the use of the barrier function instead of the discontinuous control term 
𝑢𝑢𝑠𝑠. So, we will not need to determine the gain 𝑘𝑘 in classical ISMC, and consequently, we do not need 
to know the upper bound on the perturbation as mentioned above. Additionally, because the barrier 
function is a continuous function, the chattering is eliminated. 

3. DC SERVO ACTUATOR SYSTEM WITH FRICTION MODEL 
The DC motor is a specific type of motor that is classified as one of the main machines that use 

electrical power to generate mechanical power. The servo actuator system model can be represented 
by a second-order dynamic system with friction [10], 

 𝐽𝐽 𝑥̈𝑥 = 𝑢𝑢 − 𝐹𝐹 −  𝑇𝑇𝐿𝐿  (1) 

Where; 

𝑥𝑥 The actuator position 
𝐽𝐽 The moment of inertia 
𝐹𝐹 The friction torque 
𝑇𝑇𝐿𝐿 The external load torque 
𝑢𝑢 The control input 

 
The friction torque is explained as static friction phenomena, which contain: Coulomb friction, 

viscous friction, and stiction friction [10] 

 𝐹𝐹 = �𝐹𝐹𝑠𝑠𝑒𝑒
−� 𝑥̇𝑥𝑣𝑣𝑠𝑠

�
2

+  𝐹𝐹𝑐𝑐 � 1 −  𝑒𝑒−�
𝑥̇𝑥
𝑣𝑣𝑠𝑠
�
2

� +             𝜎𝜎|𝑥̇𝑥|� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥)  (2) 

Where; 

𝐹𝐹𝑠𝑠 The Coulomb friction  
𝐹𝐹𝑐𝑐 The stiction friction 
𝑣𝑣𝑠𝑠 The stribeck velocity 
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𝜎𝜎 The viscous friction coefficient 

4. CLASSICAL INTEGRAL SMC DESIGN 
For comparison purposes, the design of a classical ISM In order to design the classical integral 

sliding mode control (classical ISMC) system, the servo actuator system is rewritten in terms of the 
nominal and perturbation terms as follows: 

                    𝑥̈𝑥 = 1
𝐽𝐽𝑜𝑜

 𝑢𝑢 + 𝛿𝛿(𝑡𝑡)  (3) 

Where𝛿𝛿(𝑡𝑡) is the perturbation term which amount of the parameter variations and the external 
load, and it can be expressed as: 

                                                 𝛿𝛿(𝑡𝑡) = ∆ �1
𝐽𝐽
�  𝑢𝑢 − 1

𝐽𝐽
(𝐹𝐹 + 𝑇𝑇𝐿𝐿)  (4) 

Also, 𝐽𝐽𝑜𝑜 is the nominal moment of inertia. In a state-space representation, Eq. (3) can be put by 
the following equations: 

 
𝑥̇𝑥1 = 𝑥𝑥2                
𝑥̇𝑥2 = 1

𝐽𝐽𝑜𝑜
 𝑢𝑢 + 𝛿𝛿(𝑡𝑡)�   (5) 

Define the error functions 𝑒𝑒1and 𝑒𝑒2 which are the tracking error and its derivative, as 

      
𝑒𝑒1 = 𝑥𝑥1 − 𝑥𝑥𝑑𝑑
𝑒𝑒2 = 𝑥𝑥2 − 𝑥𝑥𝑑̇𝑑�  (6) 

where𝑥𝑥𝑑𝑑 is the reference signal which chosen to be differentiable function, accordingly, Eq. (5) 
in terms of the error functions is given by, 

 
𝑒̇𝑒1 = 𝑒𝑒2                           
𝑒̇𝑒2 = 1

𝐽𝐽𝑜𝑜
 𝑢𝑢 + 𝛿𝛿(𝑡𝑡) − 𝑥̈𝑥𝑑𝑑

�  (7) 

Designing the classical ISMC is done here according to the fooling steps; let the control law be 
taken as 

           𝑢𝑢 = 𝐽𝐽𝑜𝑜(𝑢𝑢𝑜𝑜 + 𝑢𝑢𝑠𝑠)  (8) 

Where 𝐽𝐽𝑜𝑜 is the nominal value for the moment of inertia,  𝑢𝑢𝑜𝑜 is the nominal control applied to 
stabilize the nominal system dynamics with the desired characteristics while 𝑢𝑢𝑠𝑠 is the discontinuous 
control designed to reject the perturbation term. 

 Now, define the sliding manifold𝑠𝑠(𝑒𝑒) as 

 𝑠𝑠(𝑒𝑒) = 𝑠𝑠𝑜𝑜(𝑒𝑒) + 𝑧𝑧  (9) 

Which consists of two main parts: 𝑠𝑠𝑜𝑜(𝑒𝑒) is the conventional sliding manifold and 𝑧𝑧 is the integral 
term, with 𝑠𝑠(𝑒𝑒), 𝑠𝑠𝑜𝑜(𝑒𝑒), z ∈  𝑅𝑅1. Let the conventional sliding manifold be chosen as 

 𝑠𝑠𝑜𝑜(𝑒𝑒) =  𝑒𝑒2  (10) 

Then, the integral sliding manifold derivative is 

 𝑠̇𝑠(𝑒𝑒) = 𝑒̇𝑒2 + 𝑧̇𝑧    (11) 

By substituting Eq. (7), (8) into Eq. (11), we can obtain  

 𝑠̇𝑠(𝑒𝑒) = 𝑢𝑢𝑜𝑜 + 𝑢𝑢𝑠𝑠 + 𝛿𝛿 − 𝑥̈𝑥𝑑𝑑 + 𝑧̇𝑧  (12) 

Let the integral part derivative be defined as 
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    𝑧̇𝑧 = 𝑥̈𝑥𝑑𝑑 − 𝑢𝑢𝑜𝑜  (13) 

Accordingly, 𝑠̇𝑠(𝑒𝑒) becomes 

   𝑠̇𝑠(𝑒𝑒) = 𝑢𝑢𝑠𝑠 + 𝛿𝛿  (14) 

To rewrite the system dynamics  described in Eqs. (7), we apply the equivalent control  [10] to 
Eq. (14) yield; 
[𝑠̇𝑠(𝑒𝑒)]𝑒𝑒𝑒𝑒 = 0 = [𝑢𝑢𝑠𝑠]𝑒𝑒𝑒𝑒 + 𝛿𝛿 
⟹ [𝑢𝑢𝑠𝑠]𝑒𝑒𝑒𝑒 = −𝛿𝛿 

Sudstituting in Eq. (7), we obtain the following equivalent system dynamics; 

     𝑒𝑒1̇ = 𝑒𝑒2           
𝑒𝑒2̇ = 𝑢𝑢𝑜𝑜 − 𝑥̈𝑥𝑑𝑑

�   (15) 

Therefore, 𝑢𝑢𝑜𝑜 can be selected as in Eq. (16) which makes the origin of the error dynamics in (15) 
globally asymptotically stable 

 𝑢𝑢𝑜𝑜 =  𝑥̈𝑥𝑑𝑑 − 𝑐𝑐1𝑒𝑒1 − 𝑐𝑐2𝑒𝑒2  (16) 

where 𝑐𝑐1 and 𝑐𝑐2 are positive constant values selected according to the desired carectristic. 
 As a final step, we need to determine the gain 𝑘𝑘 of the discontinuous control term 𝑢𝑢𝑠𝑠, where it 

is given by 

   𝑢𝑢𝑠𝑠 = −𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑠𝑠)  (17) 

The gain 𝑘𝑘 is determined via the inequality 

 𝑘𝑘 > |𝛿𝛿|  (18) 

Then using Eq. (4), we obtain (Appendix A) 

 𝑘𝑘 = 420 + 1.174 |𝑢𝑢𝑜𝑜| + 14.7|𝑥̇𝑥|  (19) 

According to the above, the classical ISMC is given by 

   

𝑠𝑠(𝑒𝑒) = 𝑒𝑒2 + 𝑧𝑧                                                           
𝑧̇𝑧 = 𝑐𝑐1𝑒𝑒1 + 𝑐𝑐2𝑒𝑒2, 𝑧𝑧(0) = −𝑒𝑒2(0)                        
𝑢𝑢𝑜𝑜 =  𝑥̈𝑥𝑑𝑑 − 𝑐𝑐1𝑒𝑒1 − 𝑐𝑐2𝑒𝑒2                                         
𝑢𝑢𝑠𝑠 = −(420 + 1.174 |𝑢𝑢𝑜𝑜| + 14.7|𝑥̇𝑥|)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠)
𝑢𝑢 = 𝐽𝐽𝑜𝑜(𝑢𝑢𝑜𝑜 + 𝑢𝑢𝑠𝑠)                                                     

 
⎭
⎪
⎬

⎪
⎫

  (20) 

5. THE PROPOSED INTEGRAL SMC 
In this work, we propose to use the barrier function 𝑔𝑔𝜖𝜖(𝑠𝑠) instead of the discontinuous control 

term 𝑢𝑢𝑠𝑠. Firstly, let us define the barrier function as follows; 
Definition [1]: Let’s suggest that some 𝜀𝜀 > 0 is given and fixed; the barrier function can be 

defined as even continuous function 𝑓𝑓: 𝑧𝑧 ∈ [−𝜀𝜀, 𝜀𝜀] → 𝑔𝑔(𝑧𝑧) ∈ [𝑏𝑏,∞] strictly increasing on [0, 𝜀𝜀]. 

• lim
|𝑧𝑧|→𝜀𝜀

𝑔𝑔(𝑧𝑧) = +∞ 

• 𝑔𝑔(𝑧𝑧) has a unique minimum at zero and 𝑔𝑔(0) = 𝑏𝑏 ≥ 0 
 
 
Two different classes of BFs exist: 

1. Positive definite BFs (PBFs): 𝑔𝑔𝑝𝑝(𝑧𝑧) = 𝜀𝜀 𝐹𝐹
𝜀𝜀−|𝑧𝑧|, i.e.𝑔𝑔𝑝𝑝(0) = 𝐹𝐹 > 0. 

2. Positive Semi-definite BFs (PSBFs): 𝑔𝑔𝑝𝑝𝑝𝑝(𝑧𝑧) = |𝑧𝑧|
𝜀𝜀−|𝑧𝑧|, i.e.𝑔𝑔𝑝𝑝𝑝𝑝(0) = 0. 
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The PBFs 𝑔𝑔𝑝𝑝𝑝𝑝(𝑧𝑧) was chosen and will be used when simulating the servo system in this paper. 
To this end, the following ISMC based on barrier function was proposed for the servo actuator 
system 

 

𝑠𝑠(𝑒𝑒) = 𝑒𝑒2 + 𝑧𝑧                                   
𝑧̇𝑧 = 𝑐𝑐1𝑒𝑒1 + 𝑐𝑐2𝑒𝑒2, 𝑧𝑧(0) = −𝑒𝑒2(0)
𝑢𝑢𝑜𝑜 =  𝑥̈𝑥𝑑𝑑 − 𝑐𝑐1𝑒𝑒1 − 𝑐𝑐2𝑒𝑒2
𝑢𝑢𝑠𝑠 = −𝑔𝑔𝜀𝜀 = −𝑠𝑠

𝜀𝜀−|𝑠𝑠|           

𝑢𝑢 = 𝐽𝐽𝑜𝑜(𝑢𝑢𝑜𝑜 + 𝑢𝑢𝑠𝑠)            
                 

⎭
⎪
⎬

⎪
⎫

  (21) 

where𝑔𝑔𝜀𝜀 = 𝑔𝑔𝑝𝑝𝑝𝑝(𝑠𝑠) ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠) = 𝑠𝑠
𝜀𝜀−|𝑠𝑠| is a differentiable function of 𝑠𝑠(𝑒𝑒). 

 
Remark 1: Since the proposed ISMC in Eq. (24) is continuous, the chattering will be eliminated 

(or attenuated if a smaller value of 𝜀𝜀 is selected), moreover; the steady-state error is function to𝜀𝜀 and 
becomes smaller for smaller 𝜀𝜀.   

 
Remark 2: we do not need to determine the discontinuous gain 𝑘𝑘 as in classical ISMC, which 

required knowing the bond on the perturbation term 𝛿𝛿(𝑡𝑡). Instead, we need only to select a suitable 
value for 𝜀𝜀 according to the wanted accuracy. 

6. SIMULATION RESULTS 
This section gives the simulation results of the DC actuator system with the proposed ISMC 

based on barrier function. The nominal and actual dynamic parameters of the model are presented in 
Table I and Table II respectively, which are selected based on the information provided in [10]. 

TABLE I: DC servo actuator and friction model nominal parameters. 

Nominal 
Parameters 

Value Unit 

𝐽𝐽𝑜𝑜 0.2 𝐾𝐾𝑔𝑔.𝑚𝑚2 
𝑇𝑇𝐿𝐿𝐿𝐿 2 N. m 
𝐹𝐹𝑠𝑠𝑠𝑠 2.19 N. m 
𝐹𝐹𝑐𝑐𝑐𝑐 16.69 N. m 
𝜗𝜗𝑠𝑠𝑠𝑠 0.01 rad/sec 
𝜎𝜎𝑜𝑜 0.65 N. m.sec/rad 

 

TABLE II: DC servo actuator and friction model parameters used in the simulation. 

Actual Parameters Value Unit 
𝐽𝐽 0.23 𝐾𝐾𝐾𝐾.𝑚𝑚2 
𝑇𝑇𝐿𝐿 2.25 N. m 
𝐹𝐹𝑠𝑠 2.5185 N. m 
𝐹𝐹𝑐𝑐 21.1935 N. m 
𝜗𝜗𝑠𝑠 0.0115 rad/sec 
𝜎𝜎 0.821 N. m.sec/rad 

The simulation is performed using MATLAB with the initial condition(𝑥𝑥1(0), 𝑥𝑥2(0)) =
( 𝜋𝜋
360

, 0).The control objective is to satisfy the system stability as well as minimizing the tracking 
error so 𝑥𝑥1 tracks the desired trajectory𝑥𝑥𝑑𝑑. The position, velocity, and acceleration desired signals in 
the present work are chosen as [11]. 

𝑥𝑥𝑑𝑑 =
1

16𝜋𝜋
sin(8𝜋𝜋𝜋𝜋) −

1
24𝜋𝜋

sin (12𝜋𝜋𝜋𝜋) 
𝑥𝑥𝑑̇𝑑 = sin(10𝜋𝜋𝜋𝜋) sin(2𝜋𝜋𝜋𝜋)(25) 

𝑥𝑥𝑑̈𝑑 = 10𝜋𝜋 cos(10𝜋𝜋𝜋𝜋) sin(2𝜋𝜋𝜋𝜋) − 2𝜋𝜋 sin(10𝜋𝜋𝜋𝜋) cos (2𝜋𝜋𝜋𝜋) 
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The ISMC based on barrier function input 𝑢𝑢 is given in Eq. (21), with 𝜀𝜀 = 0.01.While for the 
classical SMC input 𝑢𝑢 is as given in Eq. (20), for the gain 𝑘𝑘 with the nominal integral control 
parameters 𝑐𝑐1 = 6750 and 𝑐𝑐2 = 195. 

To demonstrate the characteristics of the proposed control and highlight its robustness, two cases 
were used: 

 

I. Constant load torque case  
In this case, a constant load torque was used𝑇𝑇𝐿𝐿 = 2.5 𝑁𝑁.𝑚𝑚.The results can be illustrated as 

follows: In Figure 1, the time required to reach the desired angle is less than 0.1 sec for both 
controllers classical ISMC and ISMC based on barrier function. This result is realized while plotting 
the error in Figure 2 where the maximum error of angle does not exceed 8.7 × 10−3radian. The 
sliding manifolds as shown in Figure 3 does not exceed 𝜀𝜀 for the proposed controller from the first 
moment of operation, on the other hand, the classical ISMC also doesn’t exceed 𝜀𝜀 but it represented 
by a very high amount of undesirable switching of the actuation torques. The control effort is 
clarified in Figure 4, where it can notice that the classical ISMC required more effort in addition to 
unwanted switching, unlike the continuous one for the ISMC based on barrier function. 

 
Figure 1: Angle 𝒙𝒙𝟏𝟏vs. time, 𝑻𝑻𝑳𝑳 = constant. 

 
Figure 2: The position error 𝒆𝒆𝟏𝟏vs. time, 𝑻𝑻𝑳𝑳 = constant. 
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Figure 3: The integral sliding manifold 𝒔𝒔(𝒕𝒕) vs. time, 𝑻𝑻𝑳𝑳 = constant. 

 
 

Figure 4: The control input 𝒖𝒖 vs. time using saturation function for Classical ISMC, 𝑻𝑻𝑳𝑳 = constant.  

 
To solve the problem of chattering in the classical ISMC for the above case, the saturation 

function is used as an approximation for the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠(𝑡𝑡))function. With this change, the controller 
becomes as follow 

 𝑢𝑢𝑠𝑠 = − 𝑘𝑘�𝑡𝑡, 𝑠𝑠(𝑡𝑡)� 𝑠𝑠𝑠𝑠𝑠𝑠 ( 𝑠𝑠(𝑡𝑡),𝛼𝛼)   (22) 

In this case, the results can be clarified as follows: In Figure 5 the time required to reach the 
desired angle is still less than 0.1 sec for both controllers classical ISMC and ISMC based on barrier 
function. This can be checked while plotting the error in Figure 6 where the maximum error of angle 
does not exceed 8.7 × 10−3radian. The sliding manifold as shown in Figure 7 does not exceed 𝜀𝜀 for 
the proposed controller from the first moment of operation, on the other hand, the classical ISMC 
also doesn’t exceed ε and the chattering problem has been solved using a saturation function as an 
approximation for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠(𝑡𝑡)) function with 𝛼𝛼 is taken equal to 0.009. This function caused the two 
controllers to work similarly. The control effort is clarified in Figure 8, where it can be noted that the 
classical ISMC and the barrier ISMC required the same effort. 

The similarity between the control performance for the classical ISMC and the ISMC based 
barrier function is the result of using the same sliding mode control method (the ISMC) and both 
controllers provide the control input with the efficient gain through 𝑢𝑢𝑠𝑠 which enables the control 
system from maintaining the state in the vicinity of the sliding manifold from the first instant. 
Additionally, both controllers use the same nominal controller which led to the same state response. 

 
 

Figure 5: Angle 𝒙𝒙𝟏𝟏vs. time using saturation function for Classical ISMC, 𝑻𝑻𝑳𝑳 = constant 
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.  
 

Figure 6: The position error 𝒆𝒆𝟏𝟏vs. time using saturation function for Classical ISMC, 𝑻𝑻𝑳𝑳 = constant. 

 
Figure 7: The integral sliding manifold 𝒔𝒔(𝒕𝒕) vs. time using saturation function for Classical ISMC, 

𝑻𝑻𝑳𝑳 = constant. 

 
 

Figure 8: The control input 𝒖𝒖 vs. time using saturation function for Classical ISMC, 𝑻𝑻𝑳𝑳 = constant. 

 

II. Variable load torque case 
    In this case, an increasing variable load torque was used which expressed in Eq. (23), 

 𝑇𝑇𝐿𝐿 =  �
2.5 sin(35 𝜋𝜋 𝑡𝑡) , 𝑡𝑡 ≤ 0.5        
5 sin(35 𝜋𝜋 𝑡𝑡 ) , 0.5 < 𝑡𝑡 ≤ 1   

10 sin(35 𝜋𝜋 𝑡𝑡 ), 𝑡𝑡 > 1     
  (23) 
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Figure 9: The increasing variable torque load 

Figure 10 represents the DC actuator angle, where the time required to reach the desired signal is 
less than 0.1 sec for both controllers' classical ISMC and ISMC based on barrier function. This result 
is realized while plotting the error in Figure 11 where the maximum error of angle does not exceed 
8.725 × 10−3 radian. The sliding manifold as shown in Figure 12 does not exceed 𝜀𝜀 for the proposed 
controller while the classical ISMC also doesn’t exceed𝜀𝜀. The control input is seen in Figure 13, 
where for the barrier ISMC the controller is still continuous in spite of increasing the external load by 
four times. 

The above results reveal the ability of the proposed continuous controller in enforcing the 
position to follow the desired reference with an error not exceed 𝜀𝜀 in spite of system uncertainty and 
variable external disturbances and without chattering. The results of the classical ISMC also show the 
ability to make the position to follow the desired reference but with discontinuity and inducing 
chattering. Moreover, the only assigned parameter for the barrier ISMC is 𝜀𝜀, which represents the 
tracking accuracy also. For the classical ISMC, the situation is different where it required calculating 
discontinues gain k according to our knowledge about the bound of the uncertain parameters and on 
the external disturbance, which also leads to a high amplitude of the control input. 

 Finally, the benefits of using the ISMC based on barrier function can be summarized as 
follows 

1. The design of the proposed controller is done without the need to know the bound on the 
system model uncertainty. 

2. Calculating the value of the control gain is not required for the proposed controller; on the 
other hand, it is essential for the classical ISMC. 

3. The ultimate bound on the steady-state error can be adjusted when using the proposed 
controller and because the bound on the sliding variable is preselected by ε, which is not the 
case for the classical ISMC, where the bound on the sliding variable is a function for many 
parameters including the uncertainty of the system model besides the parameters of the 
approximating function. 
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Figure 10: Angle 𝒙𝒙𝟏𝟏vs. time using saturation function for Classical ISMC, 𝑻𝑻𝑳𝑳 = variable. 

 
 

Figure 11: The position error 𝒆𝒆𝟏𝟏vs. time using saturation function for Classical ISMC, 𝑻𝑻𝑳𝑳 = variable. 

 
 

Figure 12: The integral sliding manifold 𝒔𝒔(𝒕𝒕) vs. time using saturation function for Classical ISMC, 
𝑻𝑻𝑳𝑳 = variable. 

 
 

Figure 13: The control input 𝒖𝒖 vs. time using saturation function for Classical ISMC, 𝑻𝑻𝑳𝑳 = variable. 

 

7. CONCLUSION 
In this paper, a barrier strategy to adjust the gain of ISMC for the DC servo actuator system with 

a friction model was proposed. The main advantage of this strategy is unlike the classical ISM where 
the computation of the discontinuous gain needs information on the upper bound of the system 
parameters and disturbances, where here the only required design parameter is the 𝜀𝜀 value which 
quantifies the tracking accuracy. The obtained results for different torque loads showed that the 
proposed ISMC based barrier function has a similar control system performance to the case of 
employing ISMC, but with a smaller control input effort. In addition, in order to eliminate chattering 
in classical ISMC, the discontinuous term is approximated using the saturation function, which 
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required selecting a suitable design parameter 𝛼𝛼. Although in this case, the results seemed very close 
to the results of the proposed controller, it still needs many tries times to select the suitable value for 
α which is not the case for the proposed ISMC which based on the barrier function, where due to the 
differentiability nature of the barrier function which it prevents chattering in the system response. 

 

Appendix A 
To determine the discontinuous control gain 𝑘𝑘(𝑡𝑡), the first step starts from inequality (22) and 

using Eq. (4) 

𝑘𝑘 > �∆ �
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𝑘𝑘 =  𝑘𝑘𝑜𝑜 +
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Where 𝑘𝑘𝑜𝑜 > 0, taking the value of 𝑘𝑘𝑜𝑜 = 0.5 and using the system parameters with maximum 
uncertainty (35%) as presented in Table A. I, the following terms in the above formula for 𝑘𝑘 are 
calculated; 

�∆ �
𝐽𝐽𝑜𝑜
𝐽𝐽
�� ≤ �

𝐽𝐽𝑜𝑜
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚

−
𝐽𝐽𝑜𝑜
𝐽𝐽𝑜𝑜
� ≤ 0.54 

�
𝑇𝑇𝐿𝐿
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚

� ≤ 20 

�
𝐹𝐹
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚

� ≤ 173.5 + 6.75|𝑥̇𝑥| 

Table A. I: System parameters with 35% uncertainty used for Classical ISMC. 

Parameters Value Unit 
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 0.13 𝐾𝐾𝐾𝐾.𝑚𝑚2 
𝑇𝑇𝐿𝐿 𝑚𝑚𝑚𝑚𝑚𝑚 2.5 N. m 
𝐹𝐹𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚 2.9565 N. m 
𝐹𝐹𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚 22.5315 N. m 
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 0.8775 N. m. sec/rad 

Then, for 𝑘𝑘𝑜𝑜 = 0.5,𝑘𝑘 is equal to 

 𝑘𝑘 = 420 + 1.174 |𝑢𝑢𝑜𝑜| + 14.7|𝑥̇𝑥|  (A.1) 

For the variable load torque case we have |𝑇𝑇𝐿𝐿| ≤ 10, accordingly 𝑘𝑘 becomes 

 𝑘𝑘 = 544 + 1.174 |𝑢𝑢𝑜𝑜| + 14.7|𝑥̇𝑥|  (A.2) 
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