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Abstract – This paper proposes a cognitive neural controller to guide a 
nonholonomic mobile robot during continuous and non-continuous trajectory tracking 
and to navigate through static obstacles with collision-free and minimum tracking error. 
The structure of the controller consists of two layers; the first layer is a neural network 
topology that controls the mobile robot actuators in order to track a desired path based 
on back-stepping technique and posture identifier. The second layer of the controller is 
cognitive layer that collects information from the environment and plans the optimal 
path. In addition to this, it detects if there is any obstacle in the path so it can be avoided 
by re-planning the trajectory using particle swarm optimization (PSO) technique. The 
stability and convergence of control system are proved by using the Lyapunov criterion. 
Simulation results and experimental work show the effectiveness of the proposed 
cognitive neural control algorithm; this is demonstrated by minimizing tracking error 
and obtaining the smooth torque control signal, especially when the robot navigates 
through static obstacles with collision-free and the external disturbances applied.  

. 
Keywords: – Nonholonomic Mobile Robots, Cognitive Controller, Neural Networks, 
Trajectory Tracking. 
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1. Introduction 
Over the last decade, the design and 

engineering of mobile robot systems 
acting autonomously in complex, 
dynamic and uncertain environments has 
remained a challenge. Such systems have 
to be able to perform multiple tasks, and 
therefore must integrate a variety of 
knowledge-intensive information 
processes on different levels of 
abstractions guaranteeing real-time 
execution, robustness, adaptability and 
scalability [1]. Cognitive control 
methodologies have been proven to be a 
source of inspiration and guidance to 
overcome current limitations in the 
controller for more complex and adaptive 
systems, and these methodologies have 
been utilizing mobile robot systems as 
demonstrators, serving as an important 
proof of the concept for cognitive models 
[2]. 

In recent years, several studies have 
been published for solving mobile robot 
control problems which can be classified 
into three categories: The first category is 
the position estimation control approach 
for navigation problems of the mobile 
robot on interactive motion planning in 
dynamics environments and obstacle 
motion estimation [3]. Since the working 
environment for mobile robots is 
unstructured and may change with time, 
the robot must use its on-board sensors to 
cope with dynamic environment changes 
while for proper motion planning such as 
environment configuration prediction and 
obstacle avoidance motion estimation it 
uses sensory information [4]. The second 
category for navigation problems of the 
mobile robot is path planning. The path is 
generated based on a prior map of the 
environment and used certain 
optimization artificial algorithms based on 
minimum time, distance and energy 

performance index for avoiding both 
static and moving obstacles as presented 
in [5]. The third category for the 
navigation problems of mobile robot is 
designing and implementing the motion 
control that mobile robot must execute the 
desired path accurately and minimize the 
tracking error.  

Many control algorithms are proposed 
in the path-tracking control problems, 
such as Lyapunov-based nonlinear 
controllers [6], adaptive nonlinear neural 
PID controller [7], model-based 
predictive controllers [8], neural-fuzzy 
controllers [9], neural networks [10], the 
back-stepping method and feedback 
controller [11], etc. 

The basic prediction problems in the 
path-tracking for mobile robot are still 
there waiting to be addressed; therefore, 
the fundamental essences of the 
motivation for this work are [10], [12] – 
[17]: 
- To track the desired path with minimum 
tracking error. 
- To generate optimal control action for 

mobile robot. 
- To overcome un-modeled disturbances. 
- To save the battery energy of the robot 
system. 

The contributions of this paper 
obviously are summarized by the 
following points. 

 Detecting the obstacle in the path 
and planning the optimum path for 
collision-free path between a 
starting and target location.   

 Overcoming the challenge in 
modelling and identifying the 
position and orientation of the 
mobile robot for steps-ahead 
prediction. 

 Developing the analytical derive 
for the cognitive neural control 
law with high computational 
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accuracy which based on 
Lyapunov criterion stability, back-
stepping method and posture 
identifier. This drive is used to 
obtain the best torque control 
action quickly also it leads to 
minimize the tracking error of the 
mobile robot. 

 Investigating the cognitive control 
methodology robustness and 
adaptation performance through 
adding undesirable boundary 
disturbances. 

 Verifying experimentally the 
capability of the proposed 
controller in tracking different 
types of trajectories with 
continuous gradients (lemniscates) 
or non-continuous gradients 
(square) with obstacle by using 
real Boe-Bot mobile robot model. 

Simulation results and experimental 
work show that the proposed cognitive 
controller is robust and effective in terms 
of minimum tracking error and in 
generating an optimal velocity control 
action quickly and re-planning the desired 
path to avoid the obstacle despite the 
presence of bounded external 
disturbances. 

The remainder of the paper is 
organised as follows. Section two is a 
description of the kinematics and 
dynamics model of the nonholonomic 
wheeled mobile robot. In section three, 
the proposed cognitive neural controller is 
derived. Simulation results and 
experimental work of the proposed 
controller are presented in section four 
and the conclusions are drawn in section 
five. 

2. Nonholonomic Mobile Robot 
Model 

The schematic of the nonholonomic 
mobile robot shown in Fig. 1 consists of a 

cart with two driving wheels mounted on 
the same axis and an omni-directional 
castor in the front of cart. The castor 
carries the mechanical structure and keeps 
the platform more stable [7], [18] and 
[19].  Two independent analogous DC 
motors are the actuators of left and right 
wheels for motion and orientation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two wheels have the same radius 
denoted by r , and L  is the distance 
between the two wheels. The centre of 
mass of the mobile robot is located at 
point c , centre of axis of wheels. The pose 
of mobile robot in the global coordinate 
frame  YXO ,,  and the pose vector in the 
surface is defined as:  

Tyxq ),,(                                                                (1) 

x and y are coordinates of point c and   
is the robotic orientation angle measured 
with respect to the X-axis. These three 
generalized coordinates can describe the 
configuration of the mobile robot with 
kinematics constraints that they have ideal 
rolling without skidding [7], [18] and 
[19]. Therefore, the kinematics of the 
robot can be described as: 
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where )(qS is defining a full rank matrix 
and Vl  and Vw, the linear and angular 
velocities. The dynamic model can be 
described by the following form of 

X-ax is

Y-ax is

O
Figure 1  Mobile robot platform [18] and [19] 
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dynamic equations based on Euler 
Lagrange formulation [18] and [19] as 
follows: 
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where  
L and R  are the torques of left and right 

motors respectively. 
M and I present the mass and inertia of 
the mobile robot respectively.  
 is the vector of constraint forces. 

d  denotes bounded unknown 
disturbances including unstructured and 
unmodelled dynamics. 

3. Cognitive Neural Controller 
The approach used to detect the static 

obstacle in the desired path of the mobile 
robot is based on neural network model 
and to re-plan optimal smoothness desired 
path for mobile robot by using artificial 
intelligent technique in order to avoid the 
static obstacle with minimum distance 
and to track the desired trajectory by 
using an adaptive neural control 
methodology. The proposed controller 
can be given in the form of the block 
diagram shown in Fig. 2 [19]. It consists 
of:  
a) Neural Network Topology Layer. 
b) Cognitive Layer. 

In the following section, each part of 
the proposed controller will be explained 
in detail. 

 
 
 
 
 
 
 
 
 
 
 

3.1. Neural Network Topology Layer 
Neural network topology layer is the 

execution layer because it controls the 
mechanical actuators in order to follow 
the mobile robot's desired trajectory (fed 
from the cognitive layer). The general 
structure of this layer is an adaptive 
neural controller and can be given in the 
form of block diagram, as shown in Fig. 3 
[19].  It consists of: 
a) Posture Identifier.  
b) Inverse-Dynamics Neural Feedback 
Controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.1. Posture Identifier 
The modified Elman recurrent neural 

network model is applied to construct the 
position and orientation neural network 
identifier, as shown in Fig. 4 [19]. The 
nodes of input, context, hidden and output 
layers are highlighted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2 The proposed structure of the cognitive 

neural controller for the mobile robot system [19] 
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neural controller [19]  
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Figure 4 Elman neural networks acts as the posture 
identifier [18] and [19]. 
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The structure shown in Fig. 4 is based on 
the following equations [20]: 

}),(),({)( VbbiaskhVCkGVHFkh o                       (4) 

)),(()( WbbiaskWhkO                                             (5) 
where VH,VC and W are weight matrices, 
Vb  and Wb  are weight vectors and F is a 
non-linear vector function. 
The outputs of the identifier are the 
modelling pose vector in the surface and 
are defined as: T

mmmm yxq ),,(  , where mx  
and 

my  are the modelling coordinates and 

m  is the modelling orientation angle. 
Dynamic back propagation algorithm is 
used to train the Elman network based on 
mean square error as in (6): 
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where np is the number of patterns. 
 

3.1.2. Inverse-Dynamics Neural Feedback 
Controller  

The inverse-dynamic neural feedback 
controller (IDNFC) is essential to 
stabilize the tracking error of the mobile 
robot system when the trajectory of the 
robot drifts from the desired trajectory 
during transient state. The feedback 
controller consists of the nonlinear 
feedback acceleration control equation 
based on back-stepping technique and 
posture neural network identifier with 
optimization algorithm. The structure of 
the proposed nonlinear inverse-dynamic 
neural feedback controller can be shown 
in Fig. 5 [19]. 
 
 
 
 
 
 
 
 

The reference linear velocity and the 
reference angular velocity are given by 
(7) and (8) respectively [20]. 

22 )()( rrr yxv                                                    (7) 
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where 
T

rrrr yxq ),,(   the desired pose vector.  


rx is the sr Tx / . 


ry  is the sr Ty / . 


rx is the sr Tx /


 . 


ry  is the sr Ty /


 . 

sT  is the sampling time.  

The control law for the smooth velocity 
control action can be expressed as 
equation (9) for 0rv  and 0rw  in order 
to make the system is asymptotically 
stable [19]. 

),,,( Kwvqfv rremcc                                            (9) 
where 

emq is the pose error vector T
mmm eeyex ),,(  . 

K  is nonlinear control gains. 
 
The orthogonal rotation matrix as in (10) 
used to map the error of global coordinate 
system onto the error of local coordinate 
system and can be deduced from 
geometrical relationship of Fig. 6. 
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where 
mex  and mey  are the modelling 

coordinates errors and me  is the 
modelling orientation angle error. 
After taking the time derivative of the 
configuration error as follows: 
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Figure 5 The nonlinear inverse-dynamic feedback 
neural controller structure [19]. 
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The control objective, a differentiable, 
time-varying controller will be proposed 
based on back-stepping method and 
posture identifier and proved by using the 
Lyapunov criterion as follows:  
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where 0,, kkk yx
 are design control gain 

parameters. 
The proposed nonlinear feedback 
acceleration control input is the time 
derivative of cv  as follows: 
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The Lyapunov based nonlinear are the 
simplest but also successful methods in 
kinematics stabilization. A constructive 
Lyapunov functions criterion is 
considered based on as follows [23]: 
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Vqem  then, V becomes a 
Lyapunov function. 
So the closed loop system is globally 
asymptotically stable with three weighting 
parameters of error variables 0),,( kkk yx

. 
The controller gains ),,( kkk yx

 are 
determined by two stages as follows: 
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where ),,( ***

kkk yx
are determined by 

comparing the actual and the desired 
characteristic polynomial equations. 
While ),,( kkk yx   are determined by 
using the gradient- descent delta rule 
method in order to adjust the parameters 
of the nonlinear feedback acceleration 
controller. The desired characteristic 
polynomial takes the following form: 
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and the characteristic frequency
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where rMaxw  is the maximum allowed 
mobile robot angular velocity. 
Substituting (12) in (11) then linearization 
the derivative state vector error and 
comparing coefficients at the same power 
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of Z in equation (19) the ),,( ***
kkk yx  gains 

are obtained as follows: 
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The control parameters ),,( kkk yx of 
nonlinear feedback acceleration 
controllers are adjusted by using the 
gradient- descent delta rule method in 
order to find the suitable control gains. 
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where   is ,, yx for each time. 
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k here indicates that calculations are 
performed at the kth sample. 

3.2. Cognitive Layer  
Cognitive layer is the planning layer, 

which collects all the information from 
the environment by using sensors such as 
IR, 2D laser scanner, ultrasound and 
camera [19]. The cognitive layer can also 
re-plan the desired path if any static 
obstacle in the trajectory is detected, in 
order to avoid the mobile robot colliding 
with entities in the environment, ensuring 
that the trajectory tracking of the mobile 
robot allows collision-free navigation 
[19].  

To apply the cognition path planning 
for the mobile robot, it needs a model of 
the obstacle in the cognitive layer to 
determine the obstacle's dimensions in 
order to avoid the accident between the 
mobile robot cart and the obstacle. It also 
needs an AI method to re-plan the path 

with minimum distance to avoid the 
obstacle and reach the desired path [19]. 

3.2.1. Obstacle Neural Network Model 
The neural network can be described by 
the obstacle model in the path, as shown 
in Fig. 7 [2], [19], [20] and this structure 
is based on the following equations: 
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where xi and yi are the coordinate of ith 
points of the desired path; xwm and ywm  
are the network weights for xi and yi 
respectively; and Im is the bias, which is 
equal to the free element in (26) 
expressing the shape of the obstacle. 
IHm is the weighted input of the mth 
neuron of the middle layer and the neural 
activation function is (.)f  and p is a 
parameter that controls the step of curve 
shape.  
m is the number of the neurons in the 
middle layer and it is equal to the number 
of vertices of the obstacle. 
OHm is the output of the mth neuron of the 
middle layer. 
It uses a repulsive penalty function (RPF) 
in the output neuron and o is a bias 
which is equal to the number of the 
vertices of the obstacle decreased by 0.5. 
Co is the output of the obstacle neural 
network model of each point in the 
workspace is equal to 0 or 1. If the output 
is equal to 1, then the coordinate (xi,yi) is 
in the obstacle region, otherwise the point 
is not in it.  
 
 
 
 
 

Figure 7 The obstacle neural network model 
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To build an optimal and robust path 
planning algorithm for maneuvering the 
mobile robot to avoid the obstacle in the 
environment while minimizing costs such 
as time, energy and distance, the 
following algorithm is used [19]: 
 Determine the localization of the 

obstacle centre point (obx,oby) with 
respect to the reference point (x0,y0) 
and determine the dimensions of the 
obstacle as length Lob and width Wob. 
To calculate these main points, neural 
network obstacle model is used (as 
shown in Figure 9) with calculation of 
the vertices points, as a condition for 
minimum or maximum distance 
between mobile robot centre point and 
obstacle centre point using (26), (27), 
(28) and (29). 

 The detection of the start point is 
undertaken by applying (xi,yi) for each 
coordinate point of the desired 
trajectory in the neural network 
obstacle model and finding the output 
of the model; if the model output 
Co=1, the start point in the algorithm 
is detected as (xi-1,yi-1), which means 
that the mobile robot is approaching 
the obstacle body. After finding the 
start point, (xj,yj) is applied for the 
coordinate point of the desired 
trajectory starting from start point in 
the neural network obstacle model, 
and finding the output of the model if 
the model output is changed from 
Co=1 to Co=0, the end point in the 
algorithm is detected as (xj,yj), that 
means the mobile robot is away from 
the obstacle body and it returns to the 

desired trajectory and the number of 
points between start and end points is 
denoted as . 

 After determining the start and end 
points and the optimal side for re-
planning the path, AI technique (e.g. 
particle swarm optimization (PSO)) is 
applied to plan the optimal 
smoothness path without overshooting 
between the start and end points with 
minimum distance. 

3.3.2. Particle Swarm Optimization 
Technique 

PSO is a kind of algorithm to search 
for the best solution by simulating to find 
the optimal path and to avoid static or 
dynamic obstacles [2]. PSO algorithms 
use a population of individuals (called 
particles) whose positions represent the 
potential solutions for the studied 
problem, with velocities are randomly 
initialized in the search space. The aim of 
the algorithm is to determine the points 
(xi,yi) (i=1, 2, 3… ) that constitute the 
optimal smoothness path from the starting 
point to the end point. In order to reduce 
the length of the point's string, the point's 
xi is determined by using the x-axes of the 
start and end points. Therefore, yi 
becomes the search space for each via-
point of the mobile robot trajectory and 
the via-point candidates are specified by 
one-dimensional data. The conventional 
evolutionary equations of particle swarm 
optimization are as follows [19], [20]: 

 
)()( ,22,,11,

1
,

k
di

k
d

k
di

k
di

k
di

k
di ygbestrcypbestrcVV       (30) 

1
,,

1
,

  k
di

k
di

k
di Vyy                                          (31) 

popi ,.....3,2,1 , ,.....3,2,1d  
 
where: 
 pop is the number of particles;  

k
diV , is the velocity of the ith particle at k 

iteration;  



IJCCCE Vol.15, No.1, 2015 
 
A. S. Al-Araji and Khulood E. Dagher 
 

 
Cognitive Neural Controller for Mobile Robot 

 
 

54 
 

k
diy , is the position of the ith particle at k 

iteration;  
c1 and c2 are the acceleration constants 
with positive values equal to 2; 
 r1 and r2 are random numbers between 0 
and 1;  

ipbest is best previous weight of ith 
particle;  

dgbest is best particle among all the particle 
in the population. 
The particles are evaluated using a fitness 
function to see how close they are to the 
optimal solution and the stability of the 
PSO algorithm. Two evaluation functions 
must be integrated into a fitness function, 
the collision avoidance and the shortest 
distance. Collision avoidance is essential 
to path planning and makes the mobile 
robot travel in the workspace safely. 
Collision avoidance can be described in 
two main points [2]: 

1- The via-point yi should not be in 
the obstacle region. 



 


others

Cif
CA o

Fit 0
01

1
                               (32) 

2- The section yiyi+1 should not 
intersect obstacle region. 





 

00000000001
0 1

2 others
obstacleyy

CA ii
Fit

                       (33) 

The fitness function of the collision 
avoidance can be given by (34) [19]: 



 


othrs

CACAif
CA FitFit

Fit 0
11 21                        (34) 

The minimum distance is the second 
fitness function which makes the mobile 
robot travel in the workspace with 
minimum travelling time and travel 
distance and can be expressed as follows  
[2]: 





 

1

1

2
1

2
1 )()(



j
jjjjFit yyxxMD                       (35) 

The final fitness function is constructed as 
shown in (36) [2]: 
 

FitFit CAMDFit /                                      (36) 

When the final fitness function reaches 
the minimum value, the global optimal 
smoothness path is found. To investigate 
whether the new desired trajectory is 
optimal travelling time for the mobile 
robot, the desired linear velocity of the 
mobile robot while tracking the optimal 
path in order to avoid the static obstacle 
should not exceed the VImax and can be 
calculated using (37) [2]: 
 

axI
Fit

I VV
T

MDV Im                                     (37) 

T must be calculated, which is the 
travelling time of the tracking between the 
start and end points, using equation (38) 
based the sampling time sT as follows [2]: 

sTT                                                             (38) 
where 
  is the maximum number of points.   
   

4. Simulation Results and Experimental 
Work 

The proposed controller is verified by 
means of computer simulation using 
MATLAB program. The simulation is 
carried out by tracking a desired position 
(x, y) and orientation angle ( ) with a 
lemniscates and square trajectories in the 
tracking control of the robot [2]. The 
parameter values of the robot model are 
taken from [7], [18] - [20]: M=0.65kg, 
I=0.36kgm2, L=0.105 m and r=0.033 m. 
The first stage of operation is to set the 
posture identifier. Modified Elman 
recurrent neural networks model 
(MERNN) is used to oppose the 
conventional neural networks in the 
nonlinear mobile robot modelling for the 
following reasons [2]: 

 To increase the speed of learning 
and to minimize the numbers of 
nodes in hidden layer because it has 
the context units that is used only to 
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memorize the previous activations 
of the hidden units. 

 To improve the network memory 
ability, self-connections (  fixed 
value) are introduced into the 
context units of the network in order 
to give these units a certain amount 
of inertia.  

 To increase the order of the neural 
model for matching with actual 
model through self-connection in 
the context units for the Elman 
network. 

 To reduce the output oscillation and 
to minimize the error between the 
actual output and neural network 
output. 

This task is performed using 
modified Elman recurrent neural 
networks model and used PRBS 
signals as training set of 125 
patterns with a learning rate of 
0.1and sampling time of 0.5 second 
[2]. After 3244 epochs with a mean 
square error less than 5.7×10-6 the 
identifier outputs of the neural 
network, position x, y and 
orientation , are approximated to 
the actual outputs of the model 
trajectory, as shown in Fig. 8 [2].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Case I: 
The desired lemniscates trajectory which 
has explicitly continuous gradients, this 
trajectory can be described by the 
following equations [2]: 
 

)
50
2sin(75.075.0)( ttxr



,

)
50
4sin()( tty r


              (39) 
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22

1
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rrr

r
r




 

            (40) 

 
The robot model starts from the initial 
posture ]2/,25.0,75.0[)0( q  as its initial 
conditions. 
A disturbance term 

 Tttd )2sin(01.0)2sin(01.0  [2], [18] - [20] is 
added to the robot system as unmodelled 
kinematics and dynamics disturbances in 
order to prove the adaptation and 
robustness ability of the proposed 
controller [2]. 
The robot trajectory tracking obtained by 
the proposed cognitive neural controller is 
shown in Fig. 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This figure demonstrates excellent 
position and orientation tracking 
performance in terms of tracking the 
desired path as well as re-planning the 
path to avoid the static obstacle and the 

 

F

Figure 8. The response of posture identifier with the 
actual mobile robot model outputs for the training 

patterns. 
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Figure (9). Actual trajectory of mobile robot and 

desired lemniscates trajectory with obstacle 
avoidance. 
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simulation results demonstrated the 
effectiveness of the proposed controller 
by showing its ability to generate small 
smooth values of the control input torques 
for right and left wheels without sharp 
spikes, as shown in Fig. 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case II: 
Simulation is also carried out for desired 
square trajectory which has explicitly 
non-continuous gradient for verification 
the capability of the proposed controller 
performance [2]. Fig. 11 shows that the 
mobile robot tracks the square desired 
trajectory quite accurately and free-
collision.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 shows the behaviour of the 
control action torques for right and left 
wheels is smooth values with small sharp 

spikes when the desired orientation angle 
changes suddenly at each corner. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case III: 
In order to validate the applicability of the 
proposed control methodology, 
experiments have executed by using 
mobile robot from PARALLAX Inc. The 
lab experiments have been conducted 
using a Boe-Bot robotics type 
nonholonomic wheeled mobile robot 
(V3), as shown in Fig. 13 [2]. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
The wheeled mobile robot is equipped 
with BASIC Stamp 2 programmable 
(BS2) microcontroller type (PIC16C57c) 
consisting of EEPROM 2KByte, a 
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Figure 11 Actual trajectory of mobile robot and desired 
square trajectory with obstacle avoidance 
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 Figure 12. The torque of the right and left wheel action. 

Figure 13. Boe-Bot mobile robot for the 
experiments [19]. 
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Figure 10. The torque of the right and left wheel action. 
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decoding logic unit, infrared sensors, 
PWM generator for differential control of 
the robot [2], [7], [9], [18] - [20]. 
Velocities commands sent by the 
computer are coded messages which are 
recognized by microcontroller. Based on 
received characters, the microcontroller 
creates control actions for servo motors. 
The output voltages of the two IR sensors 
are converted to coded messages by 
microcontroller and sent to the personal 
computer in order to calculate the tracking 
error of the mobile robot during motion. 
It is modified the data transmitting 
between the Boe-Bot robot and main 
computer from wire to wireless 
communication by using wireless USB 
Hub and adapter that has radio speed up 
to 480Mbps and forty times faster than 
wireless Internet (802.11b) protocol [2],  
[19] and [20].  
In the experiments, the best control data 
action of the simulations was the five 
step-ahead action of the control 
methodology. These control data has 
transmitted to the Boe-Bot mobile robot 
model, which admits right wheel velocity 
and left wheel velocity as input reference 
signals by using wireless USB hub 
communication after has been converted 
the data format from MATLAB file of 
simulations to BASIC Stamp Editor 
Software version 2.5 format as a lookup 
table [2]. 
The velocities of the simulation results for 
right and left wheels have downloaded to 
the memory of the Boe-Bot mobile robot 
as commands which have smooth values 
without sharp spikes and can be shown in 
Fig. 14a. 
The mean of the mobile robot linear 
velocity is equal to 0.135 m/sec, and 
maximum angular velocity is equal to 
0.65 rad/sec, as shown in Fig. 14b. 

The initial pose for the Boe-Bot mobile 
robot starts at position 0.75 and -0.25 
meter and orientation 1.57 radian, and 
should follow desired lemniscates 
trajectory, as show in Fig. 15. The desired 
trajectory starts at position 0.75 and 0. 
After 50 second, the mobile robot has 
finished the tracking of the desired path 
and the tracking was reasonably accurate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14  Velocity action: (a) the right and left wheel 
velocity; and (b) the linear and angular velocity 
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Figure 15 Real set-up experiment of Boe-Bot robot 
 for lemniscates trajectory tracking with  

obstacle avoidance [19] 
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For the desired square trajectory, the Boe-
Bot mobile robot starts at initial position 0 
and -0.1 meter and initial orientation zero 
radian, and should follow desired path, as 
show in Fig. 16.  
The desired square trajectory starts at 
position 0 and 0. After 32.5 second, the 
mobile robot has finished the tracking of 
the desired trajectory with good 
performance tracking. 
The best control data action of the 
simulations has transmitted and 
downloaded to the memory of Boe-Bot 
mobile robot model, which admits right 
wheel velocity and left wheel velocity as 
control signals, as shown in Fig. 17a 
where the velocities of the right wheel 
and the left wheel were smooth values 
without sharp spikes and the mean of 
linear velocity of the mobile robot is 
equal to 0.125 m/sec, and the maximum 
peak of the angular velocity is equal to 
0.625 rad/sec can be shown in Fig. 17b.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mean-square error for each 
component of the state error ),,( eeyexMSE

for simulation results and experimental 
work are calculated, as shown in Table 1 
by using (41). 

 
))()()((11

1

222



po

i
mrmrmr yyxx

po
J  (41) 

where po is the number of the desired 
trajectory points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The percentage of the mean square error 
between simulation results and 
experimental work can be shown in Table 
2. 
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point 

End 
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Obstacle 

Fig. 16 Real set-up experiment of Boe-Bot robot for 
square trajectory tracking with obstacle avoidance [19] 

Table 1: The MSE for simulation results and experimental work. 
Cognitive Control  

Methodology  
Simulation 

Results 
Experimental Work 

),,( eeyexMSE  for 
Lemniscates path

 
0356.0,027.0,023.0(

 
)0399.0,029.0,024.0(  

),,( eeyexMSE  for 
Square path

 
0317.0,055.0,039.0(

 
)0339.0,09.0,062.0(  

Table 2: The percentage of MSE between simulation 
results and experimental work 

(MSE) for Desired Path Lemniscates 
path Square path 

(MSE of X-coordinate) 
100% 

4.16% 37.09% 

(MSE of Y-coordinate) 
100% 

6.89% 38.88% 

(MSE of Orientation) 
100% 

10.77% 6.48% 
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Figure 17. Velocity action: (a) the right and left wheel 
velocity; and (b) the linear and angular velocity. 
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The difference between simulation results 
and experimental work caused the 
residual errors in the experimental results 
due to the inherent friction present in the 
real system especially during tracking the 
non-continuous gradient path and 
modelling errors due to the difficulty 
estimating or measuring the geometric, 
kinematics or inertial parameters or from 
the lack of a complete knowledge of the 
components of the system.  
In addition to that, calibration and 
alignment of the IR sensors for reading X-
Y coordinate of the mobile robot 
trajectory cause some of error readings 
which were not presented in the 
simulation. 

5. Conclusions 
The Matlab simulation results and the 
experimental work of the proposed 
cognitive neural trajectory tracking 
control methodology for non-holonomic 
wheeled mobile robot which consists of 
two layers: neural network topology layer 
and cognitive layer illustrate evidently 
that the controller has been capable of: 

 Identifying and modelling the 
system through using modified 
Elman recurrent neural network. 

 Tracking continuous and non-
continuous desired trajectories 
with collision-free navigation. 

 Detecting the static obstacle and 
avoided it by re-planning desired 
trajectory based on PSO 
technique with minimum 
distance. 

 Minimizing the tracking errors as 
well as overcoming the 

unmodelled kinematic 
disturbance. 

 Generating smooth and suitable 
torque commands, R  and L  . 
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