Topological Properties of Some Types of Spaces

B. K. Mahmood¹, Taha H. Jassim²

¹Salah Al –Deen's Education, The Ministry of Education, Iraq

² Department of mathematics, College of Computers Sciences And Mathematics, University of Tikrit, Tikrit, Iraq.

(**Received:** 22 / 4 / 2010 ---- Accepted: 13 / 12 / 2010)

Abstract

The aim of this paper is to introduce the relation with some type of spaces ($T \frac{1}{2}$, $T^* \frac{1}{2}$, T_c , αT_b , αT_c

 $_{g}T_{\delta g}$, complemented, $T_{\alpha \rho s}$) spaces. At last we study the topological properties on them.

1-Introduction

Levine [14,15] introduced semi open sets and gclosed sets. Njastad [16] introduced α - open sets. Abd El-Monsef et.al [1] invented β - open .Maki et.al [7,8] introduced αg - closed sets and $g\alpha$ closed sets . Bhattacharya and Lahiri [3] , Arya and Nour [2] , Dontchev [12] , Gnanambal [13] and Chandrasekhara Rao and Joseph [4] investigated sg- closed sets , gs - closed sets , gsp - closed sets gpr - closed sets and s * g - closed sets respectively .Dunham [11], Bhattacharya and Lahiri [3], Duntchev [12], Gnanambal[13] were familiar with $T \frac{1}{2}$, semi - $T \frac{1}{2}$. Devi et.al [9,10] introduced T_b , T_d and αT_b , αT_d - spaces respectively. Veera Kumar [17-19] introduced $T \frac{1}{2}$

, $T \frac{1}{2}$, T p , T p - spaces. Chandrasekhara

Rao and Narasimhan [5] introduced T_{s} - spaces .

In this paper we introduce the relation among some types of these spaces by diagram and proof them moreover we give counter example . And we study the topological properties on them .

2- Preliminaries and basic definitions

Let (X,τ) be a topological space .For any subset $A \subseteq X$, the closure [resp. δ -closure, α - closure] of a subset A of a space (X,τ) is the intersection of all closed sets that contain A and is denoted by cl(A) [resp. cl δ (A), α cl(A)].

Let (X, τ) and (Y, \mathfrak{T}) be topological spaces . A function $h: X \to Y$ is said to be a homeomorphism if and only if the following conditions are satisfied :

- The function h: X → Y is both injective and surjective (so that the function h: X → Y has a well-defined inverse h⁻¹: X → Y
- The function $h: X \to Y$ and its inverse $h^{-1}: X \to Y$ are both continuous [6].

Definition 2.1: A set A of a topological space (X, τ) is called :

(1) semi open if there exists an open set U such that $U \subseteq A \subseteq cl(U)$.

(2) semi closed if X - A is semi open. Equivalently, a set A of a topological space (X, τ) is called

semi closed if there exists a closed set F such that $int(F) \subseteq A \subseteq F$.

(3) generalized closed (g - closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(4) generalized open (g - open) if X - A is *g*-closed. Equivalently, a set A of a topological space (X, τ) is called (g - open) If $F \subseteq \text{int}(A)$, whenever $F \subseteq A$ and F is closed in X.

- (4) generalized semi open (gs open) if $F \subseteq int(A)$ whenever $F \subseteq A$ and F is closed in X.
- (6) generalized semi closed (gs-closed) if X A is gs-open. Equivalently, a set A of a topological space (X, τ) is called (gs-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (7) semi star generalized closed (s*g closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.
- (8) semi star generalized open (s*g open) if X A is s*g closed in X. Equivalently, a set A of a topological space (X, τ) is called (s*g open) if F ⊆ int(A), whenever F⊆ A and F is semi closed in X.
- (9) α open if $A \subseteq \text{int} \{ cl [\text{int}(A)] \}$.
- (10) α closed if $cl \{ \text{ int } [cl(A)] \} \subseteq A$

(11) αg - closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(12) αgs - closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.

(13) g^* - closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g - open in X.

- (14) $\delta \cdot g$ closed if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (15) δg closed if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.

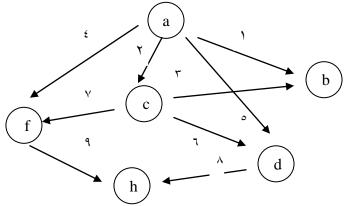
Definition 2.2: A topological space (X, τ) is called :

- (a) $T \frac{1}{2}$ space if every g closed set is closed.
- (b) $T^* \frac{1}{2}$ space if every g^* closed set is closed.
- (c) T_c space if every gs closed set is g^* -closed.
- (d) $_{\alpha}T_{b}$ space if every αg closed set is closed.

- (e) ${}_{g}T_{\delta g}$ spaces if every g closed is δg^{2} closed.
- (f) $_{\alpha} T_{c}$ space if every αg closed set is g^{*} closed.
- (g) complemented space if every open set is closed.
- (h) $T_{\alpha gs}$ space if every αgs closed set is closed.

3- Topological Properties and Relations among Some Types of Spaces

In this section we introduce the relations between all above definition (2.2) by the following diagram: Theorem 3.1:



Proof:

1- Every $T \frac{1}{2}$ space is a $T^* \frac{1}{2}$ space.

Let X be a $T \downarrow_2'$ space, let $A \subseteq X$ and g - closed set in X. It is very sufficient to prove that A is g^* - closed

Now we have $cl(A) \subseteq U$, $A \subseteq U$, U is open.

Since X is $T \frac{1}{2}$ space, we have A is closed set in X. Suppose that B = A then we have $cl(B) \subset U$, B

 $\subseteq U$, *B* is closed set in *X*.

 \therefore U is g - open in X.

 \therefore B is g^* - closed.

i.e. A is g* - closed.

 $\therefore X$ is $T^* \frac{1}{2}$ space.

2- Every $T \frac{1}{2}$ space is a T_c space.

Let X be a T $\frac{1}{2}$ space, let $A \subseteq X$ and g - closed set in X. It is very sufficient to prove that A is g^* closed.

Now we have $cl(A) \subseteq U$, $A \subseteq U$, U is open.

Since X is $T \frac{1}{2}$ space, we have A is closed set in X. \therefore A is gs - closed.

Since X is $T \frac{1}{2}$ space, we have A is closed set in X.

Suppose that B = A then we have $cl(B) \subseteq U$, $B \subseteq U$, $B \subseteq U$, B is closed set in X.

 \therefore U is g - open in X.

 \therefore B is g^* - closed.

i.e. A is g^* - closed.

 $\therefore X$ is T_c space.

3-Every T space is a $T^* \frac{1}{2}$ space.

Let X be a T_c space, let $A \subseteq X$ and gs-closed set in X. It is very sufficient to prove that A is closed. Now we have $cl(A) \subseteq U$, $A \subseteq U$, U is open.

Since X is T_c space, we have A is g^* - closed.

We have $cl(A) \subseteq U$, $A \subseteq U$, U is g - open set in X.

Suppose that B = A, then we have $cl(B) \subseteq U$, $B \subseteq U$, B is closed set in X.

 \therefore A is closed in X.

 \therefore X is $T^* \frac{1}{2}$ space.

4- - Every $T \frac{1}{2}$ space is αT_c space.

Let X be a $T \frac{1}{2}$ space, let $A \subseteq X$ and g-closed set in X. It is very sufficient to prove that A is g^* -closed. Now we have $cl(A) \subseteq U$, $A \subseteq U$, U is open.

Since $\alpha cl(A) \subseteq cl(A)$, we hav, $\alpha cl(A) \subseteq U$, $A \subseteq U$, U is open.

 \therefore A is αg - closed.

Since X is $T \frac{1}{2}$ space, we have A is closed set in X.

we have $cl(A) \subseteq U$, $A \subseteq U$, A is closed set in X.

 \therefore U is g - open in X.

 $\therefore A \text{ is } g^* \text{ - closed.}$

 $\therefore X \text{ is } _{\alpha} T_{c} \text{ space}$ 5- Every $T \frac{1}{2}$ space is $_{\alpha} T_{b}$ space. Let X be a $T \frac{1}{2}$ space, let $A \subseteq X$ and g - closed set in X. It is very sufficient to prove that A is closed. Now we have $cl(A) \subseteq U$, $A \subseteq U$, U is open. Since $\alpha cl(A) \subseteq cl(A)$, we have $\alpha cl(A) \subseteq U$, $A \subseteq U$, U is open. $\therefore A$ is αg - closed.

Since X is $T \frac{1}{2}$ space, we have A is closed set in X.

 $\therefore X$ is $_{\alpha}T_{b}$ space.

6-Every T_c space is ${}_{\alpha}T_{b}$ space.

Let X be a T_c space, let $A \subseteq X$ and gs - closed set in X. It is very sufficient to prove that A is closed. Now we have $cl(A) \subseteq U$, $A \subseteq U$, U is open. Since $\alpha cl(A) \subseteq cl(A)$, we have $\alpha cl(A) \subseteq U$, $A \subseteq U$, U is open.

 \therefore A is αg - closed.

Since X is T_c space, we have A is g^* - closed.

We have $cl(A) \subseteq U$, $A \subseteq U$, U is g - open set in X. Suppose that B = A, then we have $cl(B) \subseteq U$, $B \subseteq U$, B is closed set in X

 \therefore A is closed in X.

 $\therefore X \text{ is }_{\alpha} T_b \text{ space.}$

7- Every T_c space is αT_c space.

Let X be a T_c space, let $A \subseteq X$ and gs - closed set in X. It is very sufficient to prove that A is g^* closed. Now we have $cl(A) \subseteq U, A \subseteq U, U$ is open.

Since $\alpha cl(A) \subseteq cl(A)$, we have $\alpha cl(A) \subseteq U$, $A \subseteq U$, U is open.

 $\therefore A \text{ is } \alpha g \text{ - closed}.$

Since X is T_c space, we have A is g^* - closed.

 $\therefore X \text{ is }_{\alpha} T_{c} \text{ space.}$

8- Every $_{\alpha}T_{b}$ space is $T_{\alpha gs}$ space.

Let X be a $_{\alpha}T_{b}$ space, let $A \subseteq X$ and αg - closed set in X. It is very sufficient to prove that A is closed

We have $\alpha cl(A) \subseteq U$, $A \subseteq U$, U is open. Since every open set is semi open, then U is semi open. So that $\alpha cl(A) \subseteq U$, $A \subseteq U$, U is semi open.

 $\therefore A$ is αgs - closed.

Since X is $_{\alpha} T_{b}$ space, we have A is closed.

 $\therefore X$ is $T_{\alpha gs}$ space.

9- Every $_{\alpha}$ T $_{c}$ space is $T_{\alpha gs}$ space.

Let X be a $_{\alpha}$ T $_{c}$ space, let $A \subseteq X$ and αg closed set in X. It is very sufficient to prove that A is closed.

We have $\alpha cl(A) \subseteq U$, $A \subseteq U$, U is open.

Since every open set is semi open , then U is semi open.

So that $\alpha cl(A) \subseteq U$, $A \subseteq U$, U is semi open. $\therefore A$ is αgs - closed.

Since X is $_{\alpha} T_{c}$ space, we have A is g^* - closed. We have $cl(A) \subseteq U$, $A \subseteq U$, U is g - open set in X. Suppose that B = A, then we have $cl(B) \subseteq U$, $B \subseteq U$, B is closed set in X.

 \therefore A is closed in X.

 $\therefore X$ is $T_{\alpha gs}$ space.

Now we want to present the topological property of some types of spaces.

Theorem 3.2 : $T \frac{1}{2}$ space property is a topological property.

Proof :

Let *h* be a homeomorphism from a topological space (X, τ) in to a topological space (Y, \mathfrak{I}) , and let (X, τ) be a $T \frac{1}{2}$ space.

To prove that (Y, \mathfrak{T}) is $T \frac{1}{2}$ space.

Suppose $B \subseteq Y$ be any g - closed set, since h is onto then there exist $A \quad g$ - closed in X such that B = h(A).

Since (X,τ) is $T \frac{1}{2}$ space

 \therefore A is closed set in X.

Since *h* is open function.

 $\therefore h(X-A)$ is open in Y.

Now B is closed in Y.

 \therefore (Y, \mathfrak{I}) is $T \frac{1}{2}$ space.

Theorem 3.3 : $T^* \frac{1}{2}$ - space property is a topological property.

Proof :

Let *h* be a homeomorphism from a topological space (X, τ) in to a topological space (Y, \mathfrak{T}) , and let (X, τ) be a $T^* \frac{1}{2}$ - space.

To prove that (Y, \mathfrak{T}) is $T^* \frac{1}{2}$ - space.

Suppose $B \subseteq Y$ be any g^* - closed set, since *h* is onto then there exist $A \quad g^*$ - closed in *X* such that B = h(A).

Since (X, τ) is $T^* \frac{1}{2}$ - space.

 \therefore A is closed set in X.

Since h is open function.

 $\therefore h(X-A)$ is open in *Y*.

Now B is closed in Y.

 \therefore (Y, \mathfrak{I}) is $T^*\frac{1}{2}$ - space.

Theorem 3.4 : T_{c} - space property is a topological property . Proof : Let *h* be a homeomorphism from a topological space (X, τ) in to a topological space (Y, \mathfrak{I}) , and let

 (X,τ) be a T_c - space.

To prove that (Y, \mathfrak{Z}) is T_c - space.

Suppose $B \subseteq Y$ be any gs - closed set, since h is onto then there exist A gs - closed in X such that B = h(A).

Since (X, τ) is T_c - space. $\therefore A$ is g^* - closed set in X.

Since *h* is open function. $\therefore h(X-A)$ is g^* - open in *Y*. Now *B* is g^* - closed in *Y*.

$$\therefore$$
 (Y, \mathfrak{I}) is T c - space.

Theorem 3.5 : $_{\alpha} T_{b}$ - space property is a topological property .

Proof :

Let *h* be a homeomorphism from a topological space (X, τ) in to a topological space (Y, \mathfrak{I}) , and let

 (X,τ) be a $_{\alpha}T_{b}$ - space.

To prove that (Y, \mathfrak{I}) is ${}_{a}T_{b}$ - space.

Suppose $B \subseteq Y$ be any αg - closed set, since *h* is onto then there exist *A* αg -closed in *X* such that *B* = h(A).

Since (X, τ) is $_{\alpha} T_{b}$ - space.

 \therefore *A* is closed set in *X*. Since *h* is open function. \therefore *h*(*X* - *A*) is open in *Y*. Now *B* is closed in *Y*.

$$\therefore (Y, \mathfrak{I})$$
 is $_{\alpha} T_{b}$ - space.

Theorem 3.6 : ${}_{g}T_{\delta g}$ - space property is a topological property.

Proof :

Let *h* be a homeomorphism from a topological space (X, τ) in to a topological space (Y, \mathfrak{I}) , and let

$$(X,\tau)$$
 be ${}_{g}T_{\delta g}$ - space.

To prove that (Y, \mathfrak{I}) is ${}_{g}T_{\delta g}$ - space.

٨

Suppose $B \subseteq Y$ be any g - closed set, since h is onto then there exist $A \cdot g$ - closed in X such that B = h(A).

Since
$$(X, \tau)$$
 is ${}_{g}T_{\delta g}$ - space.
 $\therefore A$ is $\delta - \hat{g}$ - closed set in X.
Since h is open function.

$$\therefore h(X-A) \text{ is } \delta - g \text{ - open in } Y.$$

Now *B* is $\delta - g$ closed in *Y*.

$$\therefore$$
 (Y, \Im) is ${}_{g}T_{\delta g}$ - space.

Theorem 3.7 : $_{\alpha}$ T $_{c}$ space property is a topological property.

Proof :

Let *h* be a homeomorphism from a topological space (X, τ) in to a topological space (Y, \mathfrak{I}) , and let

$$(X,\tau)$$
 be $a_{\alpha}T_{b}$ space.

To prove that (Y, \mathfrak{I}) is αT_c space.

Suppose $B \subseteq Y$ be any αg - closed set, since *h* is onto then there exist *A* αg - closed in *X* such that *B* = h(A).

Since (X, τ) is ${}_{\alpha} T {}_{c}$ space. \therefore A is g^* - closed set in X. Since h is open function. $\therefore h(X-A)$ is g^* - open in Y. Now B is g^* - closed in Y.

 $\therefore (Y, \mathfrak{I})$ is $_{\alpha} T_{c}$ space.

Theorem 3.8 : complemented space property is a topological property . Proof :

Let *h* be a homeomorphism from a topological space (X, τ) in to a topological space (Y, \mathfrak{I}) , and let (X, τ) be a complemented space. To prove that (Y, \mathfrak{I}) is be a complemented space.

Suppose $B \subseteq Y$ be any open set, since *h* is onto then there exist *A* open in *X* such that B = h(A).

Since (X, τ) is complemented space.

 \therefore A is closed set in X.

 $\therefore h(X-A) \text{ is open in } Y.$ Now B is closed in Y. $\therefore (Y, \mathfrak{I}) \text{ is complemented space.}$

Theorem 3.9 : $T_{\alpha gs}$ space property is a topological property.

Proof :

Let *h* be a homeomorphism from a topological space (X, τ) in to a topological space (Y, \mathfrak{I}) , and let

 (X,τ) be a $T_{\alpha gs}$ space.

To prove that (Y, \mathfrak{I}) is $T_{\alpha gs}$ space.

Suppose $B \subseteq Y$ be any αgs - closed set, since *h* is onto then there exist *A* αgs - closed in *X* such that *B* = h(A).

Since (X, τ) is $T_{\alpha gs}$ space.

 $\therefore A \text{ is closed set in } X.$ Since *h* is open function. $\therefore h(X - A) \text{ is open in } Y.$ Now *B* is closed in *Y*.

 $\therefore (Y, \mathfrak{I})$ is $T_{\alpha gs}$ space.

Now it is very suitable to give an example which is prove that T_c - space in not $T\frac{1}{2}$ space.

Example : Let $X = \{1, 2, 3, 4\}$ $\mathcal{T}_x = \{\phi, X, \{1\}, \{3\}, \{1,3\}\}$ let $A = \{2\}$, U = X is open $cl(A) = \{2, 4\} \subseteq U$, $A \subseteq U$ $\therefore A$ is gs - closed

References

(1) Abd El – Monsef , M.E. ,El Deep S.N. & Mohmond , R.A. , β - open sets and β - continuous mapping , Bull. Fac. Sec. Assiut univ. , 12 (1) (1983) : 77 – 90 .

(2) Arya , S.P. & Nour , T. , *Characterizations of S* - *normal spaces* , India , J. pure. Appl. Math. , 21(8) (1990) : 717 - 719.

(3) Bhattacharya , P. & Lahari , B.K. , *Semi - generalized closed sets in topology* , India , J. Math. , 29(3) (1987) : 375 – 382 .

(4) Chandrasekhara Rao, K. & Joseph, K., *Semi star generalized closed sets*, Bulletin of pure and Appl. Sciences, 19E(2) (2000) : 281 - 290.

(5) Chandrasekhara Rao , K. & Narasimhan , D. , T = s - spaces, Proc. Nat. Sic. India , 77(A) , IV , (2007) : 363 – 366 .

(6) David R.W., *General topology* (*Hilary Term*), Part(II), (2002): 8.

(7) Devi, R., Balachandran, K. & Maki, H., Generalized α - closed sets in topology, Bull, Fukuoka univ. Ed., Part II, 42(1993): 13 -21.

(8) Devi, R., Balachandran, K. & Maki, H., Semi – generalized closed maps and generalized semi – closed maps, Mem. Fac. Sci. Kochi univ. Ser. A. Math., 14(1993): 41-54.

(9) Devi, R., Balachandran, K. & Maki, H., Associated topologies of generalized α - *closed sets* and α - *generalized closed sets*, Mem. Fac. Sci. Kochi univ. Ser. A. Math. 15(1994) : 51 -63.

since X is T_c - space then A is g^* - closed

since $cl(A) \subseteq U$, $A \subseteq U$, U is open, then A is g - closed.

but A is not closed set in X.

 \therefore X is not $T \frac{1}{2}$ space.

Remark: It is very easy to show another counter examples .

(10) Devi , R. , Balachandran , K. & Maki , H. , Generalized α - closed maps and α - generalized closed maps , Indian J. pure. Appl. Math. 29(1) (1998): 37 – 49.

(11) Dunham , W. , $T \frac{1}{2}$ spaces , Kyungpook , Math. J. , 17(1997): 161 - 169 .

(12) Dontchev , J., On generating semi – preopen sets , Mem. Fac. Sci. Kochi univ. Ser A. Math. , 16(1995): 35 - 48.

(13) Gnanambal, Y., On generalized pre – regular closed sets in topological spaces, Indian J. pure Appl. Math. 28 (3) (1997): 351 – 360.

(14) Levine , N. , Semi – open sets and semi continuity in topological spaces , Amer. Math. Monthly , 70(1963): 36-41.

(15) Levine, N., *Generalized closed sets in topology*, Rend. Circ. Math. Palermo, 19(2) (1970): 89 – 96.
(16) Njastad, O., *On some classes of nearly open sets*, Pacific J. Math., 15(1965): 961-970.

(17) Veera Kumar , M.K.R.S. , Between closed sets and g – closed sets , Mem. Fac. Sci. Kochi univ. Ser. Appl. Math. , 21(2000) : 1 - 19.

(18) Veera Kumar , M.K.R.S. , $g^* - pre - closed sets$, Acta Ciencia Indica Math. , Meerut , XX VIII , M(1) (2002) : 51 -60 .

(19) Veera Kumar , M.K.R.S. , On $T^* \frac{1}{2}$ spaces , Antartica J. Math. , 1(1) (2004) : 9 -16 .

الخواص التبولوجية لبعض انواع الفضاءات

بلقيس خليل محمود الامين ' ، طه حميد جاسم '

لا مديرية تربية صلاح الدين ، تكريت ، العراق

أقسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق

الملخص

لهدف من هذا البحث هو تقديم العلاقات بين بعض أنواع الفضاءات من النوع ,
$$\hat{T}_{\delta g}$$
 , σ , σ , σ , σ , σ) ($T^{1/2}_{2}$, $T^{*1/2}_{2}$, T_{c} , σ) π , σ) ($T_{\delta g}$) ($T_{\delta g}$

. در اسة الصفات التبولوجية على تلك الفضاءات complemented , $T_{lpha gs}$)