/ /

2006/11/15

2006/10/2

Abstract

The photometric and fundamental plane for a sample of early type galaxies(elliptical and lenticular galaxies) which belongs to Virgo cluster have been calculated by fitting the Sersic model ($r^{1/n}$ -model) to the surface brightness profiles along the major axis of the these galaxies. The results show that the photometric plane has the following relation $r_e \propto n^{0.83} \langle I \rangle_e^{-0.44}$ with a vertical scatter of 0.199 in log r_e , this scatter translates to a 58 per cent error in distance per galaxy, and for the fundamental plane the relation found to have the following form $r_e \propto \sigma_0^{0.9} \langle I \rangle_e^{-0.62}$ with a vertical scatter of 0.124 in log r_e , this scatter translates to a 33 per cent error in distance per galaxy.

Djorgovski & Davis r^{1/4} -(1987) r_e r_e σ μ_{e} (Fundamental Plane) FP $\langle I \rangle_{\rm e}$ $r_e \propto \sigma_0^{1.39} \langle I \rangle_e^{-0.90}$ σ_0 r_e Jorgensen et al., (1996) $r_e \propto \sigma^{1.24} \langle I \rangle_e^{-0.82}$ 0.073 log r_e 0.084 log r_e 100 kms⁻¹ 17% (isophotes) .

•

n

:

Graham (1997) $r_e \propto \sigma_0^{1.44 \pm 0.11} \langle I \rangle_e^{-0.93 \pm 0.08}$ $r^{1/n}$

Khosroshahi et al., (2000) (Photometry Plane) PHP μ_0 r_e $r^{1/n}$

 $\log n = (0.173 \pm 0.25) \log r_e - (0.069 \pm 0.007) \mu_b(0) + (1.18 \pm 0.05)$

.r^{1/4}

		РНР				
	FP		σ			
	La Barbera et al.,	(2005) .				
) Z ~ 0.3					
7	log r _e		$\binom{1.07 \pm r_e \propto n}{\%32}$	$0.06 \langle I \rangle_e^{0.6}$	55±0.009	
.L		استخدم (Lynden-Bell et al., (1988)				
	(Centaurus)	$C_{\rm res}$		(Hydra)		
		Granam (20	JOZ)			
		:				
B-)		12	15	27		
2)			Caon et al., (1	990) Hyperca	(band t^{\star}	
$r^{1/n}$						
				(Se	rsic1968)	
	$\mu(r) = \mu_o +$	$1.0857 b_n (-$	$\left(\frac{r}{r_e}\right)^{1/n}$	(1)		
	μ_{o}		r _e		r	

(Least-Square Fitting)

^{*}Hypercat: http://www.obs.univ-lyon1.fr/hypercat/

	.(Muhsin 20	005)			
$\mu_{e} = \mu_{o} + 1.0857 \mathrm{b_{n}}$	((2)			
$b_n = 2n - 0.327$	(3)	n)	b _n		
5%					
PSF	(FWHM)				
	(Caon et al., 1990)				
	r	>1.5 FWHM	[
2%	$\mu_B \leq 26 \operatorname{mag}/\Box$				
μ_e r _e , r	1	(1)	r ^{1/n}		
	:				
PHP					
(La Barbera et al., 2005)		μ_e n r _e			
$r_e(kpc) \propto n^{A_{php}}$	$\langle I \rangle_{e}^{-B_{php}}$	(4)			
	FP	(Jorgense	B A n et al.,1999)		
$r_{e}~(kpc$) $lpha~\sigma_{o}^{A_{FP}}$	$\langle I \rangle_e^{-B_{FP}}$.	(5)			

 σ $_{o}$

.

 $\left< \mu \right>_e$

$$r_{e}$$

$$\left\langle \mu \right\rangle_{e} = \mu_{e} - 2.5 \log \left(\frac{n \ e^{b_{n}}}{b_{n}^{2n}} \Gamma(2n) \right) \qquad \dots (6)$$

$$\left(\operatorname{arcsec} \right) \qquad r_{e} \qquad (kpc)$$

$$r_{e} (kpc) = \frac{d(kpc) \times 2\pi \times re(arc \operatorname{sec})}{360 \times 60 \times 60} \qquad \dots (7)$$

$$\left(\operatorname{M_{B}} \right) \qquad (1) \qquad (Capaccioli \& \operatorname{Caon} 1991) \qquad 31.3 \operatorname{mag} (1) \qquad (Capaccioli \& \operatorname{Caon} 1991) \qquad 31.3 \operatorname{mag} (1) \qquad (Capaccioli \& \operatorname{Caon} 1991) \qquad 31.3 \operatorname{mag} (1) \qquad (Least-Square Fitting) \qquad (Muhsin 2005 \qquad)$$

$$\left(\operatorname{S} (4) \qquad B \qquad A \qquad (Least-Square Fitting) \qquad (Muhsin 2005 \qquad) \right)$$

 $r_e \propto n^{0.83} \langle I \rangle_e^{-0.44}$ (8)

Graham (2002)

Graham (2002)

.

(1)									
Galaxy Name NGC/or IC	Туре	M _B	n*	μ_{e}	r _e (arcsec)	Log(r _e)	$\left< \mu \right>_e$	σ _o ** (km/sec)	
N4168	Е	-19.07	6.65	24.59	75.20	0.82	22.93	186	
N4374	Е	-21.59	8.39	24.19	151.64	1.13	22.41	293	
N4387	Е	-18.21	1.83	21.33	13.46	0.07	20.34	112	
N4434	Е	-18.23	3.84	22.01	13.73	0.08	20.64	122	
N4458	Е	-18.37	2.55	22.46	18.92	0.22	21.30	101	
N4464	Е	-17.84	2.42	20.60	7.10	-0.20	19.47	129	
N4473	Е	-20.24	3.15	22.14	44.71	0.60	20.88	179	
N4478	Е	-18.94	1.86	20.69	12.63	0.05	19.69	144	
N4486	Е	-21.82	5.34	23.84	165.27	1.16	22.30	339	
N4550	Е	-18.53	1.64	21.15	22.52	0.30	20.21	80	
N4551	Е	-18.23	1.90	21.60	14.74	0.11	20.59	114	
N4564	Е	-19.25	1.48	21.50	27.11	0.38	20.61	158	
N4621	Е	-20.98	5.23	23.15	82.91	0.86	21.62	237	
N4660	Е	-19.16	2.37	20.54	14.04	0.09	19.42	191	
I3468	Е	-17.67	2.08	23.37	20.89	0.27	22.32	34	
N4431	SO	-17.44	1.65	23.30	24.08	0.33	22.36	68	
N4459	SO	-20.04	4.84	22.69	46.71	0.62	21.20	172	
N4476	SO	-18.26	3.07	22.01	16.29	0.16	20.76	73	
N4552	SO	-20.92	10.14	24.01	95.11	0.92	22.13	263	
N4649	SO	-21.74	5.02	23.24	120.96	1.03	21.72	343	
N4638	SO	-19.13	2.16	19.93	12.59	0.05	18.85	129	
N4474	SO	-18.82	1.23	21.72	24.49	0.33	20.92	87	
N4452	SO	-18.29	5.37	19.34	9.20	-0.09	17.79	269	
N4436	SO	-17.24	1.82	23.08	23.01	0.31	22.09	38	
N4415	SO	-17.72	1.74	22.97	18.48	0.21	22.01	41	
N4352	SO	-17.79	1.74	22.57	24.11	0.33	21.61	65	
13653	S O	-16.87	1.57	21.37	6.43	-0.25	20.46	49	

* **

Caon et al., (1990) & Jorgensen et al., (1992) Hypercat http://www.obs.univ-lyon1.fr/hypercat/

References:

- Caon, N., Capaccioli, M., Rampazzo, R., (1990) "Photographic and CCD surface photometry of 33 early-type galaxies in the virgo cluster". Astron. Astrophys. Suppl. Ser., 86, 429-471.
- **Capaccioli, M., Caon, N., (1991)** "On the lack of a simple relation between R_e and μ_e for early-type galaxies". Mon. Not. R. Astron. Soc., 248, 523-527
- **Djorgovski, S., Davis, M., (1987)** "Fundamental properties of elliptical galaxies". The astrophysical. journal., 313, 59-68.
- Faber, S. M., Wegner, G., Burstein, D., Davies, R., Dressler, A., Lynden-Bell, D., Terlevich, R. J., (1989) "Spectroscopy and photometry of elliptical galaxies. VI. Sample selection and data summary". The Astrophys. journal. supplement. Series., 69, 763-808.
- Graham, A.W., (1997). "Elliptical Galaxies: Structure, Dynamics and Applications". Ph.D thesis to the Australia National University.
- Graham, A.W., (2002) "The Photometric Plane of Elliptical Galaxies". Mon. Not. R. Astron. Soc., 000, 1-6.
- Hoessel, J.G., Schneider, D.P., (1985) "CCD observations of Abell clusters. IV - Surface photometry of 175 brightest cluster galaxies". Astronomical. Journal, 90, 1648-1664.
- Jorgensen, I., Franx, M., Hjorth, J., van DoKKum, P. G., (1999) " The evolution of cluster E and SO galaxies measured from the fundamental Plane ". Mon. Not. R. Astron. Soc., 308, 833-853.
- Jorgensen, I., Franx, M., Kjaergaard, P., (1992). "CCD surface photometry for E and SO galaxies in the Coma Cluster", Astro. & Astrophys. Suppl., 95, 459.
- Jorgensen, I., Franx, M., Kjaergaard, P., (1996) " The fundamental Plane for cluster E and SO galaxies ". Mon. Not. R. Astron. Soc., 280, 167-185.
- Khosroshahi, H.G., Wadadekar, Y., Kembhavi, A., Mobesher, B., (2000) "A near infrared photometric plane for ellipticals and bulges of spirals". ApJ, 531,L103.
- La Barbera, F., Covone, G., Busarello, G., Capaccioli, M., Haines, C.P., Mercurio, A., Merluzzi, P., (2005) " New insights into the structure of early-type galaxies: the Photometric Plane at z ~ 0.3 "Mon. Not. R. Astron. Soc., 000, 1-35.
- Lynden-Bell, D., Faber, S.M., Burstein, Davies, D.R., Terlevich, R.J., Wegner, G., (1988). "Spectroscopy and Photometry of Elliptical galaxies. V. Galaxy Streaming toward the new supergalactic center". Astrophys. Journal, 326, 19L.

- Muhsin, N. A., (2005) " The structural Photometric Parameters for Earlytype galaxies Msc thesis to the college of Education, University of Mosul.
- **Sersic, J., (1968)** (Cited by Ref. Trujillo et al.,2001)
- Trujillo, Graham, A.W., Caon, N., (2001) "On the estimation of galaxy structural parameters : the sersic model". Mon. Not. R. Astron. Soc., 326, 869-876.