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Abstract
The main aim of this search isto solve kind of partial differential equations of second

order with variable coefficients, which have the general form

A, Y)Z, +B(X, Y)Z,, +C(X,¥)Z,, + D(X, Y)Z, +E(X,¥)Z, + F(X,y)Z =0,

where some of A(x,y),B(x,y),C(x,y),D(x,y), E(x,y) andF(x,y) are functions of
x or y orboth x and vy.

For this purpose, we will use one kind of the partial differential equations its formula

Ay X% Zyx+Dy XZy +CZyy +EZy +FZ =0
where A, D, ,C,E and F are real constants.
We found the following substitution
U gx 4 [v(y)d
Z(X,y):e'[ X X+J. (y) dy .
Transforms the above kind to the first order ordinary differential equation with two
independent functionsU (x) and V (y), which have the general form
A, (xu (x) +U 2(x)—U(x))+ D, U(x) +C6/’(y) +V2(y))+ EV(y)+F=0.

We found the general form of its complete solution and we applied this form for solving the
heat equation as physical application in spherical coordinates
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A, (xu ’(x)+U2(x)—U(x))+ D, U(x)+C+EV(y)+F=0,

Aas S i) b 5 ki€ s ) jal) dlolae Jad Lkt o5 25 Lgdad dalal) dageall odlef Allall Liaa 5 IS

1. Introduction

Many scientists used theory of differential equations like Newton, Leibniz and others in the
seventeenth century to describe many phenomena in Physics, Chemistry, Biology, and other
fields. This study focuses on important types from the partial differential equations, which is
linear second order with variable coefficients. The researcher Kudaer [7], searched function

Z(x), such that the assumption y(x) = ejz(x)dX gives the general solution of the linear second order

ordinary differential equations, which have the general form
y"+P(x) y+Q(x) y=0,and its solution depends on the forms of P(x) and Q(x).

The researcher Abd Al-Sada [1], searched functionsU (x) and V (y), such that the assumption

Z(x,Y) :eju(x) e[V iy gives the complete solution of the linear second order partial differential
equations, which have the general formAZz,, +BZ,, +CZ,, +DZ, +EZ, +FZ =0,

where A,B,C,D,E and F are real constants.
The researcher Hani [5], searched functionsU (x),V (y) and W(t), such that the assumption

Z(x,y) = glvwdes [vmarfwn gives the complete solution of the linear second order partial
differential equations, which have the general form

AZ,+BZ +CZ,+DZ +EZ, +FZ, +GZ, +HZ +1Z, +JZ=0,

where A , B, ..., and J are real constants.

These ideas made us to search functions U (x) and V (y), that give the complete solution of the
linear second order partial differential equations with variable coefficients, which have the form
A(X, Y)Z, +B(X, ¥)Z,, +C(X,¥)Z,, + D(X, ¥)Z, + E(X,¥)Z, + F(X,¥) Z =0,

and this solution depends on the forms of the functions A(x,y), B(x,y),C(X,Yy),D(X,y), E(X,y)
and F(x,y).

2. The Complete Solution of partial differential equations of Second Order with
Variable Coefficients

Our aim now is to solve special kind of the linear second order of partial differential equations
with variable coefficients, which have the general form

AXY) Zyx +B(XY) Zyxy +C(X,Y) Zyy + D(X,¥) Zx +E(X,y) Zy + F(X,y) Z =0,
where some of A(x,y), B(X,y), C(x,y), D(x,y), E(x)y) and F(X,y)are functions of x or y or
both x and vy. So, for this purpose we will search functions U (x) and V (y) such that the

. [FXax+ vy ay . _
assumption Z(x,y) =€ , gives the complete solution to the above equation and to

do this we will get one kind of the above equation its formula
Aix® Zyx+DyxZy +CZyy +EZy +FZ =0, (i.e. B=0)

9A,,D;,C E and F are constants and not identically zero.

3. Description of The Method That Gives The Complete Solution
Let us consider the second order partial differential equation which has the general form

Aix? Zyx+DyXZy +CZyy +EZy +FZ =0 (1)
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In order to find a complete solution of (1), we search functionsU (x) and V (y), such that the
assumption

U(x)
dx+ [V (y) dy
Z(xy)= e X ...(2)

represents the complete solution of it.
This assumption will transform (1) to first order ordinary differential equation, its general form is

given by A, (xU "(x) +U 2 (x) —U(x)) +DyU(X)+ c(v'(y) +V2(y))+ EV(y)+F=0 ...(3)

The equation (3) is of the first order ordinary differential equation and contains two independent
functionsU (x) and V (y).

4. The Complete Solution of the Linear Second Order of Partial Differential Equations

To find the complete solution of the linear second order of partial differential equations with
variable coefficients, we go back to the previous equation on the beginning of this search:If B =0,
and the partial differential equation is given by :

A;x* Zyy+Dy XZy +CZyy +EZy +FZ =0
Then the complete solution is given by:

2 2 2
it 22y s gy FEAELE
4'A, A, C ac

where 4, a, and d; ; (i =1, 2) are arbitrary constants.

(In(c4 %) : (¢, x))0

D 2 2 2
O Ly oiA g EEAE L E2
4°A, A, C 4cC

where 1,c,, d; and d, are arbitrary constants .
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D
iv) 2ty E

Z(xy) =Ky x 28 @267 (y-c,) In(c,X) ; (€4%))0

2 2 2
if 2Py A g FHA_E
4 A A C 4c?

where K, =e?, ¢, and c, are arbitrary constants.

proof : Since

A, (xu '(X)+U2(x) —U(x))+ D, U(x)+C(V’(y)+V2(y))+ EV(y)+F=0,
therefore,

el V2wl e+ F=-a, (U 10700 U -D U =7,

2 2
S0 Vi) VIM v+ T o Lt B=Cand B, =TtA
C C C
then the last equation becomes : V’(y)+V2(y)+ 81V(y)+ B, = 0 .. (4
D 22
Also XU'(X) +U 2(x) + (=L —1)U(x) - — =0.
A1 Al

D — 22 .
Let A,= A—l—l and A, = A_/I then the last equation becomes:
1 1

xU'(x)+U?(x) +AU(X)+A, =0 .. (5

The equation (4) is variable separable equation, now

2
. B? dv B
i) If B, ;tTl,weget +dy=0 ; bf:BZ—Tl

(V(y) + 21)2 + b12

B
1. 4 V+5

= -tan =1y = V(y) = bytan (byc, ~byy) >
1 b, 2
2
i) If BZ:%,wegetd—V2+dy=O = —_18 =Cr—Y
(V(y)+E§1j V(y)+ 5
1 B
= V(y)= - ; #C
(y) yc, 2 y#Cy

Also, equation(5) is variable separable equation, so we can solve it as follows:
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du dx

U2(X)+AU(X)+A; X

A2
d: 5 +d—):(:0 ; bngZ—A3
(U(x)+22J —b?
A2
i) If TZ;tA?,,weget
A A
1 U0+ U+
—tanh 7| ——=— |=In(c3x) ; -1(——=—(1 and (c3x))0
by b, by

=  U(X)=by tanh (b, In (c3x))—%

A2
i) If f:Ag,weget U 2+%:O
A X
U(x)+—2
v+
-1 +Inx=-Incy = U(x) = 1 A . CaXeR'{1}
U(x)+& In(c,x) 2
2

So, the complete solution of (1), is given by:

by tanh (by In(c3x)) Ay d batan ( bec—b B S

i) Z(X, y): e-[ X 2X) X+I( 1 ( 1~1 1y) 2) y
A? B2
If T2¢A3 and BZ ;éTl

aY) By
In [cosh (b, In (c3x))]——=1In x+In[cos (bic;—byy)]-—Yy+g
S I ; cos(hb;¢; —byy))0

So Z(x,y)=¢€
A By
=x 2 e 2 cosh(b,In(csx))(d;cosh;y+d,sinbyy),
whered; =e9cosb;c; and  d, =e9sinb;c,
AZ B1

—_c _7y _ .
=Z(xy)=x 2 e 2 (y x"2 +a, X bz)(dlcosbly+d25|nb1y)
b -b,
Cy C
wherea, = =2 and a,=—
2
A B A2 A2
e By [P 52a,
So, Z(x,y)= X e [a; x +a, X

]

/ 2
B, )
[dicosyB, —Ty+d2 siny\B, —
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1Py E 1Dy, 2 1Dy, 2
= X Z(Al : e 2Cy[a A AL +a2x A A1]
2 2
F+ A 2 . |F+4 2
[dlcos\/ ~_E y+dzsm\/ -E y]
C  4c? C  4c?
where A, a;, and d, ; (i=1,2) are arbitrary constants.
y A B?
||) If T2¢A3 and BZ :T]'
(bztanh(bz In (c3x)) Az)dx J( )
Therefore, Z(X,y)= e X
In[cosh(bzln(c3x))]—7lnx+|n(y c2)——y+g
=e
A
2 By X b
=X 2 e 2 (a;x2+a,x 2)(y-cy)
b -b
C,2 C, 2
where a; =——e? and a,= 32 ed.

So, the complete solution of (1), is given by:

1,D E 1012, 2 1,0 o A
G =y s I - JF L2
Z(x,y)=x 2% e 2C7[a,; x A A +a,y X A Ay

—C3)
where 4, ¢,, a; and a, are arbitrary constants.
A2 512
i) If TZZA3 and B, # — 7
1 B

I, 2z)o|x+j(btan(b ~by)=—"*)dy

Therefore, Z(x,y)=e XN (€.X)
A B
In (In (c,X)) ——2 In x+In [cos(b,c,~b,y)]-—L y +g
=e 4 2 171 M1 2 : Cos(blcl_bly)>0

By
_x 2 e 2’ (dycoshyy+d,sinbyy)In(csx) ;(csx))0

whered; =e? cosb;c; and d, =e9sinb,c;.
So, the complete solution of (1), is given by

Az
Z(x,y) = x 2 e 2 [dlcosw/B ——y+d23|n\/B ——y](In(c4x))

*( 11) _E ﬂ F /1 2
=(x 2 A 2¢” )(d, cos \/ c - E2 y+d25|n\/ J; — E2 y) (In(c4x))
4C 4C

where 4, ¢,, d, and d, are arbitrary constants.
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2 2
A B;

iv) If  2=A; ad B,=—1

: -&)dx+j(i_ﬁ)dy
Therefore, Z(x,y)= e *"Cx) 2 y—c, 2

In (In( 04x))—22|n X+1In (y—cz)—Bz1 y+g

So, the complete solution of (1), is given by :

A2 _Biy
Zy)=Kyx 2 e 27 (y-c,)(In(cex)) ; K, =e%and c,x>0
_1(&_1) _E

y
=Ky x 2% e 260 (y—cy)(In(ceX))
whereK,, c,, and c, are arbitrary constants.

Note :If we write

i) +v 2 BV () =g (X000 +U200 V(0] -Dy U -F =32

then the complete solution is established by the same method , but

F— 22 E 22
A,=—-1, Az= , Bj=— and B, =—
2 3 1 C 2 C

Aq Aq

5. Solution of the Heat equation ( as application) in spherical coordinates

6. Derivation of the Heat Equation

Newton articulated some principles of heat flow through solids, but it was Fourier who created the
correct systematic theory. Inside a solid, there is no transfer of heat energy and little radioactive
transfer, so temperature changes only by conduction, as the energy we now recognize as molecular
kinetic energy flows from hotter regions to cooler regions [4].

The first basic principle of heat is [4, 9]:

1) The heat energy contained in a material is proportional to the temperature, the density of the
material o and a physical characteristic of the material called the specific heat capacity c (is the
quantity of heat which should be flow from (to) mass unit from material to change its temperature

per a degree, its measurement units is cal/g-c®) [10].
In mathematical terms, Q =_mQ pcU(x,t)d>x ... (6).

In other words, the rate of heat flow from one region to another is

proportional to the temperature gradient between the regions, we see that

the rate of heat transfer dependson the material, as measured with
a physical constant as the heat conductivity K ( is the time average of heat flow through the material

per unit area for all gradient unit heat, its measurement units is Cal/cm -sec-c®) [10].

The second basic principle is :

2) The heat transfers through the boundary of a region is proportional to the heat conductivity, to the
gradient of the temperature across the region, and to the area of contact, so if the boundary of the
region CQ is written as 0 €2, with outward normal vector n, then

%_?ZJJ'@QKn-VU(x,t)dZX (D).
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If we differentiate equation (6),with respect to time and apply Gauss’s divergence theorem

dQ

equation (7), we find that at can be expressed in two ways as an integral :

o pevixndx=([], VKU d*x

Since the region Q can be an arbitrary piece of the material under study, the integrands must be
equal at almost every point. If the material under study is a slab of a homogeneous substance, then
p,c and K are independent of the position x , and we obtain the heat equation

v _ k VU ... (8)

ot
wherek =K/pc (diffusivity ), ordinary substances have values of (k) ranging from about

5to 9000 cm?/sec.
2
ou _, U

The one-dimensional heat equation [3],is —= >
ot 0 X

.. (9)

where% =U,. If U inequation (8) depends onlyon x,y and t, and does not depend on z

because of the symmetry, then this equation will reduce to the form
2 2
ou _ oy o .. (10),
ot ox> oy?
The last equation is called the heat equation in two - dimensional[10].

7. The Heat Equation in Different Coordinate Systems

Since we can write Laplacian V2 in three — dimensional, so the heat equation [5, 9], as follows:

% =k V2 , where VU given in cartesian, cylindrical and spherical coordinates as follows[3]:

In cartesian coordinates:

2 2 2
vzuzagﬂauﬁag .. (11).
ox® o0y° o0z
In cylindrical coordinates (r, @, z):
2 2
vy=12 Ny, 1Y U (12
r or or’ r256° 08272
In spherical coordinates (I, 8, @) :
2
TP SRR TR S A SN
re or or’ rsing 00 00" rcsin“@ o¢

Now, we will try to solve the heat equation in spherical coordinates by using our method.

8. The Heat Equation in Spherical Coordinates
Let us consider mineral solid sphere with radius equal to one unit, as in Fig.(1). Suppose that the
temperature of the upper half surface of sphere with angle 6 (where 0 <6 <r/2) is kept fixed at

U, #0 , while the temperature of the lower half (where n/2 < 0 <) is kept at zero.
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KeptatU

- k‘cp[ at g
Fig. (1) [9]
The general form of the heat equation in spherical coordinates is given by:
2 1 cotd 1
Ut=k|U_. . +-U_+—U,,+ u,+ U ... (14).
re r 00 7
r 2 2 2sin2g 2

Since U depends on r and @, and does not dependon ¢ or t (i.e U =U(r,0)),
then the equation (14) becomes

urr+§ur+i2u99+¥uezo .. (15),
r r
The initial condition is given by :
Uy 0<o(Z
U@Lo)=f(0) = 2 .. (16).
0 %SGSﬂ

In addition to that, the solution U is finite inside the sphere.
The complete solution of the (15) , is given by [9] , which has the form
c
U(r,0)=(cyr" +r”_2+1 )[€3P (X) +¢4Q, (X)]
Where £ =—n(n+1), x=cosé, P, (x) and Q, (X) are Legendre functions, and
c, ; (i=1,2,3,4) are arbitrary constants. Now, we attempt to solve this equation by our suggested

method. Since I # 0 then multiplying (15) by rz, we get

r’Uy, +2rU, +U,, +cotdU, =0 .. (@7).
To find the complete solution of the last equation, we try to find two new functions R(r) and W ()
, such that the assumption

RO 4 4 [wo)do
U(r,ts?):eI r I ... (18)

will help us to find the complete solution of the above mentioned equation.
From (18), we find U, ,U, ,U,and U, , and substituting them in (17) to obtain

R(r)
I dr+jW(0)d0=o

2

[rz [R'(N+R*(N-RM, , Rﬁr) +W () +W 2(8) +cotaW (6) |e
r
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deruww)da
Since e T #0, which gives

rR'(r)+ R2(r) + R(r) +W'(8) +W 2(8) + cotdW () =0
Putting W '(6) +W 2(6) + cotOW (6) = —|rR'(r) + R (r) + R(r) |= 22
where A is an arbitrary constant .

So rR'(r+R?(r)+R(r)-12=0 ... (19)
W'(6) +W 2 (6) +cotOW (6) + A2 =0 ... (20)
dR dr

From equation (19), we get

+
RE(N+R(r)-4* r
dR dr

_ . 2 _ 4,21
N +—=0 ; b°=2 +7
(R(r)+2j —b?

= R(r):btanh(bln(clr))—% ; (c,r)»0

The equation (20), is different than of the previous case which appeared, but we can solve it as
follows :

This equation is similar to Riccati equation[8], and we will transform it to linear ordinary
differential equation of second order[6], using the following assumption, keeping in mind that V is a

function of &
V=W = V'=2W'= V'=V?_cotdV + 12

! " ’ 2
LetV:—I\I\//Il ~  y-_M +('V'_j

M M
— —cotdV — 1> = M"+cotdM’+1°M =0

M
2

= sing

M +cost—M+/12$in6?M(t9)=0
do? do

This equation is a linear ordinary differential equation of second order, it can be solved by using the
assumption x=cosé , and by chain rule,

M M X Ging M - 6ing M _ _gin? 6?d—M=(x2 _1)d_M
do dx dé dx do dx dx
Therefore,
i(sined—M):i{(xz—l)d—M}%:sinei{(l—xz)d—M}
do dé” dx dx |dé dx dx
d2Mm dM
= (1-x2 —2X——+A*M =0 .. (21
- M 210 o
Let A% =n(n+1) , then (21) will take the form
2
(1—x2)d M—Zde+n(n+1)M:0 .. (22)
dx? dx
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This equation is Legendre differential equation[9], then the general solution of (22) is given by:
M(X) =CoPn(X)+c3Qn(X); n=0,1,2,...

where P, (x)and Qp (x) are Legendre functions such that P, (x) is given by :
If n=0,1,2,3,...,m ,then  Py(x) =1, P (x) =X, Py(X) =%(3x2 ~1),

1
_ Ly

The last formula is called (Rodrigue S formula), and

Py(x) = %(SX3 ~3X), . ,Pn(X) =

dx
Qn (X) = Pn (x )I
2Py (0]
— W)= M —sin@[c, Py (cosd) + c;3Qp (cosh)]
M C,Pn (cosd) +c3Qp (cosh)
I(M —i)dr+I_Sin9[Cz P'(cosd) + ¢, Q; (cosh)] d&
Therefore U(r,0) =e ' 2r ¢, P, (cost) +¢;Q, (coso)

In[cosh(bIn (c, r))] —% Inr+1In[c, P, (cosd) +c,Q, (cosd)] +4g

[c,P, (cosO) +c3Q, (cosh)] )0

1
U(r,0) =Ar 2 cosh(blIn(c;r))[c,P,(cosd)+c3Q, (cosd)] where A =e9
b-1 b+l
= U(r,0)=(a;r 2 +a,r ® 2)) [c, P, (cosd) +c5 Q, (cosh)]
¢ c'b
wherea; =A-1 and a, _A—

= U0 =(ar" 4 24a,r
But A% =n(n+1)

_ (2.1 _1 _ 2,1 1
= n—ﬂu+4 2andn+1_/1+4+2

So, the complete solution of (17) will have the shape
u(r,0) =(a;r" +a,r ™) (c,P, (cosd) +c4Q, (cos))
where a, and C, (i=1,2 and j=2,3) are arbitrary constants.
This solution becomes infinite when r = 0, this keep us to choose a, =0, and if §=0orm
then Legendre functions become infinite, we can get the boundedess when we take n=0,1,2,3, ...
So, P, (cos@) is Legendre polynomials, since the functions Q,,(cos@) are infinite if 6=0,x,
accordingly, we choose c3 =0. Thus the solution becomes

U(r,0) =Ar"P,(cosb) ; A=a;c
To obtain a solution that also satisfies the initial condition (16),we consider the series
u(r,o) = ianr”Pn (cos6)

n=0

Now, the values of the coefficientsa can be determined from the condition (16), and hence

24l 1 (

‘/74 2 )[c, P, (cosd) +c3 Q,(cosh)]
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ULO) = f(6) = Sa,P, (cosd) .(23)
n=0
To find the expansion of f(&)using Legendre series[9], and multiplying (23) by siné P, (cos)

and integrating with respect to 8 from 0 to , we get

T 0 T
[ f(0) Py (cos@)sinddé =3 a, j P, (cosd) B, (cosd)sind d@
0

n=0 0
w1 0 if nzm
=Ya, [P (X)P_ (x) dx=
EO n_Iln() m (X) 2a, -
2n+1

We can realize that Legendre polynomials are orthogonal on the interval (-1, 1), so

T

5
an =204y [P, (cosh)singdd  Putting n = 0,1,2,... and using the first few Legendre
0

2
polynomials terms we get P, (cosd) =1, P, (cosd) = cosd,
P, (cosé) = %(30052 6-1), P;(cosh) = %(50053 € —3cosb), ...
U 3U -7 U0

So, aOZTO,a]_:TO,a2=O,a3:T 1o

Yoly. 3 7.3
= U(r,0)= TO 1+5r P, (cosb) -5 P;(cosé) +...
Which represents the solution of the above partial differential equation .

Conclusion
We found a substitution to solve special kind of partial differential equations as follows :

29 4 v (y) dy
Z(xy)=e X ,
this a substitution help us to find solution of this kind of partial differential equations
quickly with steps less than known methods.
This method used in search is method right to solve the heat equation in spherical coordinates and
can applied its on the same equation in other coordinates, also can be applied on other equations as
Laplace equation and wave equation in different coordinates.
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