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Abstract- Chaotic systems have numerous properties, for example: mixing property, 

sensitivity to initial conditions parameters, structural complexity and deterministic 

dynamics. These properties were investment in the last decade for cryptographic 

applications and developments of pseudorandom number/bit generator. The paper propose 

new pseudorandom number (bits) generator (PRNG) based on the Jacobian elliptic chaotic 

maps and standard map. The principle of the method consists in generating binary sequence 

from elliptic chaotic maps of cn and sn types. These sequence positions is permuted using 

standard map. The performance of the generator is studied through conventional statistical 

methods and also using the NIST test suite. The results show that the produced sequences 

possess high randomness statistical properties and good security level which make it 

suitable for cryptographic applications. 

   

Keywords: chaotic function, pseudorandom sequences, Jacobian elliptic maps, Standard 

map, NIST test suite. 

 



IJCCCE Vol.15, No.3, 2015 

 

Ekhlas Abass Albhrany  et. al. 

 

 

New Pseudo-Random Number Generator System  

Based on Jacobian Elliptic maps and Standard map 

 

 

 

78 
 

 

1. Introduction 

The generation of PRNG plays an 

essential role in a large number of 

applications such as simulations of 

numerical, statistical mechanics, gaming 

industry, communication or cryptography. 

The main advantages of such generators are 

the rapidity and the repeatability of the 

sequences and require less memory for 

algorithm storage. First way to design such 

a pseudo-random number generator is 

connected to the chaos theory [1]-[3].  That 

theory focuses primarily on the description 

of these systems that are often very simple 

to define, but whose dynamics appears to 

be very confused. Indeed, chaotic system 

very attractive for pseudo-random number 

generators because a slightly change in the 

input can cause a large change in the output 

(i.e. the extreme sensitivity to the initial 

conditions). Moreover, during this last 

decade several pseudo-random number 

generators have been successfully 

developed. 

Patidar, 2009 designed a new PRBG 

(pseudo random bit generator) based on 

running pair of chaotic logistic maps side-

by-side and beginning from random 

independent initial conditions [3]. Pareek , 

Patidar ,  Sud, 2010 proposed a new binary 

sequence generator, called Cross- Coupled 

Chaotic Random Bit Generator (CCCBG), 

which achieve the interesting properties of 

a skew tent map. They used two chaotic 

maps which are the piecewise linear skew 

tent maps and cross-coupled. The CCCBG 

generates the binary sequences based on the 

comparison between the outputs of the 

skew tent and cross coupled chaotic maps 

[5]. Francois, Grosges, 2011 proposed an 

algorithm for generation of multiple 

pseudo-random sequences using a chaotic 

function. The algorithm uses permutations. 

The permutation positions are computed 

and indexed using a chaotic function based 

on linear congruencies. These chaotic 

permutations are obtained iteratively on this 

initial vector to produce two chaotic maps 

[6]. Azeem, Adriana, Adrian, 2013 suggest 

using tent map to generate pseudorandom 

binary sequences. The binary sequences 

under investigation are obtained either by 

considering all the successive iterations of 

the tent map and choosing a threshold equal 

to the tent map parameter or by applying a 

periodical sampling on the tent map values 

and by choosing a threshold equal to 0.5 

[7]. Recently, Michael François, David 

Defour and Christophe Negre 2014 propose 

pseudo-random bit generator based on 

combined three logistic maps and generate 

a block of 32 random bits at each iteration. 

The proposed generator based on the 

binary64 double that produced based on the 

IEEE 754-2008 standard for floating-point 

arithmetic [8].In this paper, we propose a 

novel pseudo-random number (bit) 

generator (PRNG) based on the Jacobian 

elliptic chaotic maps and standard map. It 

combines the output of the elliptic chaotic 

maps of cn and sn types. The output from 

each type is converted to binary sequence. 

Theses sequences are combined to produce 

one binary sequence. This sequence is 

permuted by using standard map. The 

choice of using Jacobian elliptic chaotic 

maps and standard map enlarges the 

complexity of the system and increases the 

difficulty for an attacker to extract sensitive 

information from the outputs. Experimental 

results and security analysis indicate that, 

the elliptic chaotic map is advantageous 
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from the point of view of large key space 

and high level of security. 

The produced pseudo-random 

sequences have successfully passed the 

various statistical tests. The assets of the 

generator are: high sensitivity to initial seed 

values, high level of randomness and good 

throughput. 

The paper is structured as follows, the 

description of the method as well as the 

chaotic functions analysis are given in 

Section 2 and 3 and 4. Section 5 presents 

the statistical analysis applied on a set of 

generated pseudo-random sequences. The 

security analysis of the generator is 

achieved in Section 6, before conclusions. 

 

2. Jacobian Elliptic Chaotic Map 

   The core of the generator is the of the cn 

and sn type of Jacobian elliptic chaotic 

map.  Ergodicity and fixed interval of 

chaotic orbits are two major properties for 

the performance of chaos based 

cryptosystems. The families of one-

parameter elliptic chaotic maps of cn and sn 

at the interval [0, 1] are defined as the ratio 

of Jacobian elliptic functions of cn and sn 

types [9] through the following equations: 

 

  
( )(   )  

  (  (     (√ ))) 

  (   )) (  (     (√ )))
                     ( ) 
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Obviously, these equations map the 

unit interval [0, 1] into itself. The maps 

  
( )

(α , x), w = 1, 2, are (N−1)-nodal 

maps, that is, they have (N−1) critical 

points in unit interval [0, 1] and they have 

only a single period one stable fixed point 

or they are ergodic. 

As an example of the Jacobian elliptic maps 

(1), the following maps can be presented:- 
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Where x0∈ [0, 1], α∈[0, 4] and k∈[0, 1]. 

The parameter k (modulus) represents the 

parameter of the elliptic functions. Elliptic 

chaotic maps are ergodic for certain values 

of their parameters.  

 

3. Standard Map 

The so-called standard map was introduced 

in [10]-[11], and is described by: 

 

{
     (     )                          
     (       (     ))       

                       ( ) 

 
where k is the control parameter satisfying 

k > 0, and the i
th

 states ai and bi both take 

real values in [0,2 ) for all i. Thestandard 

map was discretized in astraightforward 

manner [12] by substituting x = aN/2  , y = 

bN/2  , K = kN/2   intoEq. (6), which 

maps from [0,2  ) × [0,2  ) to N × N. After 

discretization, the map becomes 

 

{
     (     )                         

     (       
     

  
)      

                          ( ) 

where K is a positive integer. The 

properties of this discretized map may not 

be as good as the original one, but it can be 

implemented in the integer domain, which 

reduces the computational complexity and 

is more suitable for real-time data 

encryption. The standard map is used to 

realize data permutation [12].  

In the standard map, the pixels at the 

corners of a square image have some 
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special properties. For example, the pixel at 

position (0, 0) remains unchanged after any 

number of iterations. This is actually a 

weakness of the permutation process. And 

it can do some help to the attackers 

although the permutation process is further 

strengthened by a diffusion process. In 

order to avoid it, [13] proposed to change 

the positions of the pixels at the corners ((0, 

0), (0,N-1), (N- 1, 0) and (N- 1,N - 1)). That 

is, the normal scan order is changed into a 

random one. A random-couple (rx, ry) is 

generated (after the iteration of chaotic 

map), which represents the position of a 

randomly selected pixel in the square 

image. Then, the whole image shifts in 

horizontal and vertical directions by rx and 

ry, respectively as shown in Figure 1.The 

normal scan mode by using the random 

shift process is changed into a random one, 

so it is named a random-scan mode.  

The two parameters rx and ry both vary 

from 0 to N-1. Thus, the random-scan 

process can be combined with the chaotic 

permutation process, and the modified 

chaotic map becomes 

 

{
     (           )                       

     (          
     

  
)                 

 ( ) 

 

 
 

 
The modified map is still invertible, so 

the inverse-permutation process can be 

easily realized. The modified chaotic 

confusion process has two advantages [13]: 

First the random-couple can be 

generated under the control of keys, which 

enlarges the cryptosystems key space. This 

mean that the key space for the random-

couple is 2 × N (N is the width or height of 

the matrix). 

Second the random-scan process 

makes it difficult to break the diffusion key 

under known-plaintext attacks. This mean 

that the random-scan process confuses the 

position of the first pixel, which makes 

attackers difficult to get the first pixels 

cipher-pixel, and thus increases the 

difficulty of breaking the diffusion key. 

 

4. The Proposed PRNG 

The main idea of the proposed PRNG 

consists of the following major steps:- 

 Step 1: the initial condition (x) and control 

parameters (α and k) are input to the 

Jacobian elliptic chaotic map type cn 

equation (3) and sn equation (4). These 

numbers are floating point numbers where 

the precision is 10−16
 for each of x0, α and k, 

considered as the keys of the generator. 

 Step 2: Iterate the Jacobian elliptic maps 

100 times and ignore the results, in order to 

eliminate the transient effect of chaotic 

map. 

 Step 3: modify the values of x, k and α 

using simple XOR operation to increase the 

complexity of algorithm. 

 Step 4: Iterate the Jacobian elliptic maps 

one time and convert the floating point 

output of each map to binary sequence of 

random length. The two sequences are 

Figure 1 Scan order in a square image: 

 (a) Normal scan  mode, (b) Random  scan  mode 
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combined into one random length binary 

sequence. 

 Step 5: The parameters of standard map 

equation (7) are constructed from the half 

24-bit of the resulted sequence. These bits 

are divided into three 8-bit integer numbers 

to produce the parameters of standard map 

(r1, r2, k).  These 24-bit then is eliminated 

from the sequence. The resulted binary 

sequence is translate to matrix of 8 x N 

where N is an integer number.  

 Step 6: Diffuse the resulted matrix by using 

standard map equation (7). 

 Step 7: the resulted matrix from the 

standard map is transferred column by 

column to new binary sequence.  

 Step 8: repeat from step 4 until the desired 

number of bits (numbers) is reached. When 

number of bits becomes a chosen number 

(in proposed algorithm this number is 500), 

the parameters x, k and α are modified 

based on last values of cn and sn maps in 

order to increase the complexity of detect 

the keys. 

 Step 9: The output of the algorithm can be 

either a binary sequence of random length 

or a sequence of a random number of 

integer numbers.  

The flowchart of the proposed algorithm is 

presented in Figure 2.   

 
5. Statistical Analysis 

A statistical analysis should be 

carefully conducted to prove the quality of 

the pseudo-random sequences. The quality 

of the output sequences produced by any 

PRBG must have a high level of 

randomness and be completely decorrelated 

from each other.  

 

5.1. Randomness evaluation. 

This testing is implemented using 

statistical tests NIST (National Institute of 

Standards and Technology of the U.S. 

Government) [14]. The testing is achieved 

on sequences produced from nearby or 

successive seed values. 
Because for very distant seed values, 

the chaotic trajectories are very different, 

this usually allows obtaining good pseudo-

random sequences. 

The testing was realized by generating 

a number of m = 1000 different binary 

sequences of length 1500. Each sequence is 

generated by using different seed values. 

The seed values are distributed in the range 

[0..1]  floating point number. All sequences 

generated by the proposed PRNG are 

analyzed using the NIST statistical 

package. These tests are divided into two 

groups based on the sequence length. 

The first group consists of tests that can 

be evaluated on the sequences that have 

length >=100 bits, while the second group 

consists of tests that are evaluated on the 

sequences have length >=1000, 000. 

Therefore we analyzed individual 

sequences and concatenate sequences by 

using the first group and only the 

concatenate sequences using second group. 

The results of NIST tests obtained on the 

two groups are presented in Table 1 and 

Table 2 respectively. The acceptable 

proportion should lie above the proportion 

previously defined. For individual 

sequences, the proportion is: 

 

      √
         

    
                    

This mean that the proportion should be 

in the confidence interval   [0.9994392.. 

0.9805608]. All the tested sequences 

(individual and concatenate) pass 
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successfully the NIST tests. These results 

show clearly the quality of the produced 

sequences from successive seed values. 

 

 
 

 

 

 

 

 

 

 
Input the secret key x, k and α. 

Input N. 

Set i=1, j=1. 
 

Convert the resulted floating point of sn 

and sn maps into binary sequence. These 

sequences are combined in one random 

length sequence. 

i=500? 

Or I=63? 

Transfer the resulted binary sequence to matrix 

and diffuse it by using standard map. 

j <= N? 

Transfer the resulted matrix column by column into new 

binary sequence which is the output of the generator. 

i=i+1, j=j+1. 

Iterate the Jacobian elliptic maps one 

time using the new values of x, k and α 

No  

The parameters x, k and α 

are modified based on last 

values of cn and sn maps. 

Set i=1. 

End 

Iterate the Jacobian elliptic maps cn and sn 100 
times to avoid transient effect. 

Modify the values of x, k and α using simple 
xor operation 

No  

Yes 

Yes 

 

 x,k and α → the 

parameters of 

Jacobian elliptic 

map. 

 i → the counter of 

bit number for 

modification. 

 j → the counter of 

required number of 

bits. 

 N→ the required 

number of bits. 

 
 

Figure 2 The Flowchart of Proposed PRNG. 
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5.2. Correlation evaluation 

         Correlation evaluation is to check the 

correlation between the produced pseudo-

random number sequences. This can be 

done in two different ways. 

Firstly, the correlation between 

generated sequences is analyzed globally by 

computing the Pearson's correlation 

coefficient of each pair of sequences [15].  

Secondly correlation based directly on 

the bits of sequences is analyzed. The 

Hamming distance between two binary 

sequences (of the same length M) is the 

number of places where they differ, i.e., the 

number of positions where one has a 0 and 

the other a 1 [16]. 

 

5.2.1. Pearson’s correlation coefficient 

    Consider a pair of sequences given by: 

S1 = [x1, . . . ,xN] and S2 = [y1, . . . , yN]. 

Therefore, the corresponding correlation 

coefficient is[15]: 

 
      

 
∑ (    ̅) (    ̅)
   
   

[∑ (    ̅)
    

   ]
 

  [∑ (    ̅)
    

   ]
 

 

          ( )   

 

Where the mean values of S1 and S2 are: 

 

 ̅  ∑    
   
         and       ̅  ∑    

   
      

 

Two uncorrelated sequences are 

characterized by CS1,S2 =0. The closer the 

value of CS1,S2 is to ±1, the stronger the 

correlation between the two sequences. In 

the case of two independent sequences, the 

value of CS1,S2 is equal to 0. Correlation 

coefficients are computed for each pair of 

sequences and the distribution of their 

values is presented by a histogram. 

The correlation between each pair of 

the 1000 produced sequences is computed 

using Pearson's correlation coefficient. The 

results of the coefficient are represented in 

the histograms shown in Figure 3. The 

histogram shows that the computed 

coefficients are very close to 0. This means 

that around 99.9% of the coefficients 

belong to [-0.08, 0.08] and the correlation 

between the produced sequences is very 

small. 

 

5.2.2. Hamming distance 

        Given two binary sequences S = 

[s0,……, sM-1 ] and S
׳
 = [s

׳
0,…… s

׳
M-1 ] of 

same length (M), the Hamming distance is 

the number of positions where they differ. 

The distance is given as [16]:   

 

 (   ́)  ∑(    ́ 

   

   

)                                ( ) 

   

In the case of truly random binary 

sequences, such distance is typically around 

M/2, which gives a proportion (i.e. d(S, S
׳
) / 

M) of about 0.50. For each pair of produced 

sequences, this proportion is determined 

and all values are represented through a 

histogram. The interest of both approaches 

is to check the correlation for generated 

sequences mainly from nearby or 

successive seed values. 

The bits of 1000 produced pseudo-

random sequences are analyzed using 

Hamming distance. All resulted values are 

represented through a histogram shown in 

Figure 4. The distributions show that all the 

proportions are around 50% and 99.3% of 

the coefficients are belonging to [0.465, 

0.535]. This testing provides another 
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indication about the decorrelation between 

the generated sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test name 
η  of  

Individual 
Final Result p-value of concatenate Final Result 

Frequency  0.994 Success 0.040903443   Success 

Block Frequency 0.988 Success 0.553430376   Success 

Runs 0.991 Success 0.880462635  Success 

Longest Run 0.993 Success 0.231078877   Success 

Rank 0.993 Success 0.823833254    Success 

FFT 0.989 Success 0.514489087    Success 

Non-Overlapping 0.984 Success 0.398411794   Success 

Serial (1) 0.989 Success 0.684240449   Success 

Serial (2) 0.993 Success 0.999648182  Success 

Cumulative Sums 0.995 Success 0.063395343  Success 

Test name p-value of 

Concatenate 

Final 

Result 

Overlapping 0.957408045388764 Success 

Universal 0.745350098931327 Success 

Linear Complexity 0.402768848028256 Success 

Approximate Entropy 0.110486457868039 Success 

Random Excursions 

(8 p-values) 

0.807101754304452                       

0.485159643724902                               

0.94699932242908                               
0.719851271910543                               

0.150518027509838                               

0.286566773029429                               
0.539296753686001                               

0.850627304185789 

Success 

Success 

Success 
Success 

Success 

Success 
Success 

Success 

Random E-Variant 
(18 values) 

0.349048077620093                               
0.490537427022143                               

0.351985540956662                               

0.253294182514715                               
0.268472090963728                               

0.1927496064346 1                             

0.467725747869967                               
0.843110263994956                               

0.759058537369923                               

0.080102266851582                               
0.128301667190791                               

0.759139341678901                               

0.832576263792955                               
0.704772436102199                               

0.866081601939654                               

Success 
Success 

Success 

Success 
Success 

Success 

Success 
Success 

Success 

Success 
Success 

Success 

Success 
Success 

Success 

Table 1Results of first group of the NIST tests on the 1000 generated sequences for individual 

and concatenate sequences. The ratio η of p-value concerns individual sequences while the p-

value concerns the concatenate sequences. 

Table 2Results of second group of the NIST tests on the 1000 generated sequences for 

concatenate sequences. The p-value concerns the concatenate sequences. 
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6. Security analyses  

    When a new PRNG is proposed, it 

should always be accompanied by some 

security analyses. All the critical points of 

the cryptosystem and cryptographic 

requirements should be taken into account 

when the analysis is done [1].  The analyzed 

points are: the size of the key space, the key 

sensitivity, randomness quality of the 

outputs and two basic attacks are evaluated: 

brute-force attack, differential attack 

. 

6.1. Key space 

Crucial part of each cryptosystem is the 

key. Keeping in mind the end goal to make 

brute-force attacks infeasible, PRNG ought 

to have a large key space. The size of key 

space that is smaller than 2
128

 is not secure 

sufficiently.  Here, the key space is 

constructed form the parameters of 

Jacobian elliptic maps cn and sn (initial 

value x0 and control parameters k and α) 

types which are floating point numbers, 

where x0∈ [0, 1], α∈ [0, 4] and k∈ [0, 1].If 

the precision is 10−16
 for each of x0, α and k, 

the size of key space for initial conditions 

and control parameters is 2
160

((10
16

)
3
). 

In addition the parameters of the 

standard map (permutation parameter k and 

the random scan keys [rx,ry]) which are 

integer number, where k, rx and ry∈ 
[0..255]. If each parameter has 256 possible 

keys (2
8
), the total number of keys is 

(2
8
)
3
=2

24
. So the total space of keys is 

2
160

+2
24

. 

 

6.2. Key sensitivity. 

 Sensitivity analysis is the investigation 

of how the instability in the yield of a 

model can be distributed to various sources 

of instability in the model input [17].  An 

essential factor for the pseudo-random 

generation is the sensitivity on the key. In 

other words, a small changing in the 

starting seeds should cause a large change 

in the pseudo-random sequences. 

 

 
Figure 3 Histogram of Pearson's correlation 

coefficient values on interval [-0.10, 0.10] for the 

1000 sequences 

0.726128320880061                               

0.592148885856078                               
0.843894535051766 

Success 

Success 
Success 
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Figure 4 Histogram of Hamming distance on 

interval [0:435; 0:565] for the 1000 sequences 

This means that a small difference on seed 

values, the output sequences should be 

completely uncorrelated. 

Actually in the test of correlation, the key 

sensitivity was already tested due to the 

successive seed values. To ensure the 

sensitivity of the key, additional analyses 

have been done using Pearson's correlation 

coefficients and Hamming distance. Four 

large pseudo-random sequences of size N 

=500,000 bits S1, S2, S3, S4 produced from 

slightly different initial seeds are 

considered. 

A sequence S1 is produced by using 

the seed values X0=0.2344587645985498, 

K0=0.5123678943210314, 

α0=2.8231406754308769.   

 

A sequence S2 is produced by using the 

seed values X1=X0+8×10
-16

, K1=K0+8× 10
-

16
, α1=α0+8×10

-16
.  

A sequence S3 is produced by using the 

seed values X2=X1+8×10
-16

, K2=K1+8× 10
-

16
, α2=α1+8×10

-16
.  

 

A sequence S4 is produced by using the 

seed values X3=X2+8×10
-16

, K3=K2+8× 10
-

16
, α3=α2+8×10

-16
.  

The analysis is done using the linear 

correlation coefficient of Pearson and the 

Hamming distance between the four 

pseudo-random sequences produced with 

slightly different seed. The results show 

that, the sequences are highly correlated 

from each other as shown in Table 3. 

 

 

 

 

 

 

 

6.3 Attacks of proposed PRNG Any new PRNG must be analyzed against 

attacks to check if the generator cannot be 

Tests S1/S2 S1/S3 S1/S4 S2/S3 S2/S4 S3/S4 

Pearson Corr. 

Coef. 

-0.00089  -0.00104   -0.00163   0.00166     0.001881    0.001594  

Hamming 

Distance 

0.500012  0.50062  0.500818 0.499150 0.499050 0.499200 

Table 3 Correlation Coefficients between four pseudorandom sequences produced 

with slightly different seeds 
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broken. Here, the resistance of the 

generator against two basic attacks as the 

brute-force attack and differential attack is 

analyzed. 

 

a) Brute-force attack. 

The size of the key space must be large 

enough to prevent a brute-force attack [18]. 

This attack consists in checking 

systematically all possible keys until the 

correct key is found. In the worst case, all 

the combinations are tested, that 

necessitates trying all the key space. 

When it is not possible to detect any 

weakness in the algorithm, such an attack 

might be utilized that would make the task 

easier. To resist this kind of attack, the size 

of the key space must be large. It is 

generally accepted that a key space of size 

larger than 2
128

 is computationally secure 

against such attack. In the proposed PRNG, 

the size of the key space  

is around 2
184

 [1], which clearly allows 

resisting the brute force-attack. 

 

b) Differential Attacks 
     This attack is similar to the chosen-

plaintext attack; its principle is studying 

how differences in an input can affect the 

resultant difference at the output in an 

attempt to derive the key [18].Trying to 

make a slight change on the input pair, 

attacker observes the change of the 

produced sequences. Such technique of 

cryptanalysis was introduced by Biham and 

Shamir [19]. Given two inputs In1 and In2 to 

the generator and the corresponding outputs 

Out1 and Out2, there are two methods to 

find the differences between the two 

outputs. 

Firstly, the difference can be computed 

between the two pseudo-random sequences 

relatively to the bits or blocks of bits by 

subtraction method. This can be done by   

 

  ∆in =│ In1-In2│   and ∆out = │Out1 – 

Out2│, respectively. 

 

Secondly, the difference between the two 

output sequences can be computed by  

 

 ∆in = In1   In2   

 

 and 

 

 ∆out = Out1  Out2 

 

Differential probability is then used to 

measure the diffusion aspect on the initial 

conditions. In   proposed PRNG, we iterate 

the jacobain maps 100 times before the 

beginning of the generation. In addition, the 

results of the analyses showed that even 

with a slight difference on the seeds, the 

produced outputs are almost uncorrelated 

from each other. So, the proposed PRNG is 

designed to avoid this kind of cryptanalysis. 

7  

8  

7. Comparative Results of proposed 

PRNG 

The proposed CRNG is compared with 

the PRNG proposed by et al [8]. The 

deference between the proposed PRNG and 

the M. François PRNG is made on numbers 

of factors which include key space, number 

of bits in each iteration, the result of NIST 

test and the result of correlation 

coefficients. Table 4 shows the result of 

comparison.  

The key space of proposed PRNG is 

larger than that of M. François PRNG. It is 

by and large acknowledged that a key space 
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of size bigger than 2
128

 is computationally 

secure against brute-force attack [8].  

The number of bits in each iteration of 

proposed PRNG is randomly in the rang 

[64..80] bits in each iteration. This means 

that the proposed PRNG is faster than M. 

François PRNG. 

 

8. Conclusions 

In this paper, a novel pseudo-random 

number generator based on the Jacobian 

elliptic chaotic map types sn,cn and 

standard map. The initial condition x0 and 

the control parameters k and α is the input 

to the Jacobian elliptic chaotic map to 

produce binary sequence. Chaotic standard 

map is used to diffuse the binary sequence. 

Such a generator has shown its ability to 

produce a very large number of pseudo-

random sequences which can be useful in 

several cryptographic applications because 

it has many properties which are the 

adaptive size of the key space, the 

sensitivity to the initial inputs (keys), the 

quality of pseudo-random sequences, the 

security level against several attacks. 

It can be used as pseudo random bit 

generator or as pseudo random number 

generator. 

The quality of the output sequences 

randomness is evaluated through NIST tests 

which are 15 tests. Table 4 shows that the 

output sequence of proposed PRNG is 

random with large values for the tests than 

that for M. François PRNG. 
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