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Abstract: 
     A numerical study has been performed on mixed convection heat transfer inside a square 

cavity with sinusoidal wavy upper and lower surfaces, the vertical walls are insulated. The 

lower surface was maintained at uniform temperature higher than the upper surface. 

    Vorticity-stream function method has been used to write the dimensionless governing 

equations, which consist of parabolic vorticity and energy equations that are solved by 

(explicit) method and elliptic stream function equation solved by successive over- relaxation 

method (S.O.R). The system of equations was solved using finite difference discretization. 

The Body Fitted Coordinate system (B.F.C) has been used with the grid generation technique 

to solve the flow equations because of the complexity of the upper and lower surfaces shape. 

Two elliptic differential equations had been solved to generate the internal grid.   

     In the present study, the effect of number and amplitude of undulations (λ & A) of the 

wavy surfaces, the Richardson number (Ri) and Grashof number (Gr) on the flow structure 

inside the cavity and Nusselt number of the heated wall are reported for (λ=0 to 3), (A=0, 

0.02, 0.04 and 0.06), (Ri =0.01, 0.1, 1 & 10), (Gr=10
3
 ,10

3.5
,10

4
 & 10

4.5
) and Pr=0.71. A two-

dimensional laminar viscous non-compressible fluid flow was considered.    

      From the present analysis, it is found that local Nusselt number increases with increasing 

the number of waves of the wavy surfaces. While, the mean and local Nusselt number 

decreases with increasing the amplitude of undulation (A) and Richardson number (Ri) and 

increases with increasing the Grashof number (Gr). Higher mean Nusselt number is observed 

at (A=0.02 & Gr=10
4.5

) at low Richardson number value (Ri=0.01). The validity of the 

numerical code is verified by comparison with published results. 
 

الخلاصة   
اجزاء دراسح ػذدٌح لاَرمال انحزارج تانحًم انًخرهظ داخم فجىج يزتؼح جذارٌها انؼهىي وانسفهً ذى فً هذا انثحس      

يرًىجح يغ جذارٌٍ ػًىدٌح يؼشونح. ذى اتماء انسطح انًرًىج الاسفم نهفجىج تذرجح حزارج يُرظًح اػهى يٍ درجح حزارج 

( نهرؼثٍز ػٍ انًؼادلاخ انحاكًح انرً ذركىٌ يٍ يؼادنح دانح الاَسٍاب–اسرخذاو طزٌمح)انذوايٍحانسطح انًرًىج انؼهىي. ذى 

( Successive Over Relaxation)دانح الاَسٍاب( حٍس ذى حهها تاسرخذاو طزٌمح الاسرزخاء)(Elliptic)لطغ َالص

ؼادلاخ ( ولذ ذى حههًا تاسرخذاو دانح انفزوق انثٍُح. ذى ذحىٌم انParabolicًسائذ) ويؼادنرً انذوايٍح وانطالح وهًا لطغ

(. تسثة انرؼمٍذ Finite differenceحذدج)ًدلاخ جثزٌح تاسرخذاو طزٌمح انفزوق اناانحاكًح يٍ يؼادلاخ ذفاضهٍح إنى يؼ

( يغ طزٌمح .B.F.Cانًىجىد فً شكم انجذارٌٍ انؼهىي و انسفهً نهفجىج فمذ ذى اسرخذاو َظاو الإحذاشٍاخ انًطاتمح نهجسى)

لاخ انجزٌاٌ حىل الأشكال انًؼمذج, حٍس ذى ذكىٌٍ شثكح انُماط انذاخهٍح تحم يؼادنرٍٍ ذكىٌٍ شثكح َماط ذًكٍ يٍ حم يؼاد

 (.Ellipticذفاضهٍرٍٍ يٍ َىع انمطغ انُالص)

 & A=0,0.02,0.04)و ارذفاع انًىجح  (λ=0,1,2 & 3)ذى دراسح ذاشٍز ػذد ذًىجاخ انسطحٍٍ انؼهىي و انسفهً نهفجىج

Gr=10)وػذد كزاشىف (Ri=0.01, 0.1, 1 &10)ػذد رٌرشاردسىٌ  و (0.06
3
, 10

3.5
, 10

4
 & 10

4.5
ػهى كم يٍ    (

هٍكم انجزٌاٌ و اَرمال انحزارج ػهى فزض أٌ انًائغ لا اَضغاطً ونشج واٌ انجزٌاٌ طثالً شُائً الأتؼاد. ولذ اسرخذيد 

َرٍجح سٌادج ػذد انًىجاخ وارذفاع  (. تٍُد انُرائج إٌ  اَرمال انحزارج ٌرأشز تًمذار كثٍز=10.7Prلًٍح واحذج نؼذد تزاَرم)

حٍس وجذ إٌ  ػذد َسهد انًىضؼً ٌشداد يغ سٌادج ػذد انًىجاخ  سٌادج ػذد رٌرشاردسىٌ وػذد كزاشىفانًىجح و كذنك 

 تًٍُا ٌُخفض ػذد َسهد انكهً و انًىضؼً يغ سٌادج ارذفاع انًىجح نهسطحٍٍ انؼهىي و انسفهً و سٌادج ػذد رٌرشاردسىٌ

. كًا إٌ أػظى لًٍح نؼذد َسهد انكهً ػُذ اسرخذاو لًٍح يُخفضح نؼذد رٌرشاردسىٌ ذرحمك ادج ػذد كزاشىفو ٌشداداٌ تشٌ

Gr=10)وػذد كزاشىف (A=0.02)ػُذ ارذفاع يىجح 
4.5

ذى ذأكٍذ فؼانٍح انطزٌمح انؼذدٌح انًسرخذيح تًمارَح انُرائج يغ  .(

   ك جٍذ. َرائج انثحىز انساتمح )ذحد َفس انظزوف( حٍس كاٌ انرىاف
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1-Introduction: 
     Thermal buoyancy forces play a significant role in forced convection heat transfer when the flow 

velocity is relatively small and the temperature difference between the surface and the free stream is 

relatively large. The buoyancy force modifies the flow and the temperature fields and hence the heat 

transfer rate from the surface. 

      Problems of heat transfer in enclosures by free convection or combined free and forced 

convection has been an important topic for research studies due to its occurrence in industrial and 

technological applications. Mixed convection occurs in many heat transfer applications such as 

crystal growth, electronic cooling, oil extraction, solar collectors, etc. Many experimental and 

numerical techniques have been proposed to tackle this problem. An experimental investigation of 

mixed convection flow in a lid driven cavity has been performed by [1]. A heated moving bottom 

wall with high Reynolds number and high Grashof number was considered. Their results indicate 

that the overall heat transfer rate is a very weak function of the Grashof number for the examined 

range of Reynolds number. 

     Mixed convection flow in an enclosure filled with a Darcian fluid saturated uniform porous 

medium in the presence of internal heat generation is numerically investigated by [2]. Their results 

indicate that heat transfer mechanisms and the flow characteristics inside the cavity are strongly 

dependent on the Richardson number. Also slight effects on the streamlines for small values of 

Richardson number were found. Numerical mixed convection flow study had been performed by 

[3], in a bottom heated square lid-driven enclosure. The results show that the effects of buoyancy 

are more pronounced for higher values of Prandtl number. A numerical simulation for the flow of a 

viscous thermally stratified fluid in a square cavity was made by [4]. The flow was driven by both 

the top lid and buoyancy. Later on,[5], the same investigators conducted three dimensional 

numerical simulation of mixed convection in a square cavity heated from the top moving wall. They 

observed that the heat transfer was rather insensitive to the Richardson number. 

     From the previous studies it is seen that there are two fields of investigations, the first one deals 

with the cavities with upper or lower moving surface, while the second deals with that of vertical 

moving surfaces. Problems of heat transfer in enclosures with non uniform surfaces have been the 

subject of investigations for many years, too. The implication of the effect of the number and 

amplitude of the wavy surfaces undulation on the flow structure and heat transfer characteristics are 

one of these studies, as it acts to modify the flow and the temperature fields and hence the heat 

transfer rate from the surfaces. Also, it is evident to remember that more of the previous studies 

were related only to natural convection inside wavy enclosures. A numerical study of natural 

convection inside a wavy cavity with adiabatic vertical walls was performed by [6]. They showed 

that for this particular case, the wavy surface have a significant effect on the flow and heat transfer 

inside the cavity through reducing the local Nusselt number. A similar trend has also been observed 

by [7], they have presented a numerical study of natural convection in an inclined cavity with a 

wavy hot wall. 

     Revue the previous studies indicates that there is a little researches deals with the effect of the 

undulation and amplitude of the wavy surfaces on the transport of energy and momentum by mixed 

convection. The aim of the present study is to get a numerical model to investigate the 

characteristics of flow and thermal fields of the laminar flow passing wavy upper and lower 

surfaces with adiabatic vertical walls cavity. The bottom surface is heated with uniform 

temperature. The study based on a full solution of Navier-Stockes and energy equations. The 

solution based on the method of Vorticity-Stream function. The governing equations were solved 

using the finite-difference formulation. The study was achieved at constant Prandtl number 

(Pr=0.71) and dimensionless domain parameters. The effects of Richardson number, Grashof 

number, number of wavy surface undulations and its amplitude on the flow structure and heat 

transfer characteristics are investigated. Detailed results are presented in the form of stream-lines 

and isotherms.  
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2- Physical model 
     The physical model considered here is shown in figure (1), along with the important geometric 

parameters.  

     It consists of a wavy upper and lower surfaces square cavity with sides of length (H). Both the 

side vertical walls are assumed to be adiabatic while the top and bottom walls are maintained at 

constant and different temperatures Tc and Th respectively. The working fluid is assigned a Prandtl 

number of (0.71) throughout this investigation. All the physical properties of the fluid are assumed 

to be constant except density variation in the body force term of the momentum equation according 

to the Boussinesq approximation. 
 

3-Mathematical formulation 
     Under the usual Boussinesq assumption, the governing equations for steady mixed convection 

flow using conservation of mass, momentum and energy can be described in dimensionless form by 

the following equations [8]. 
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The dimensionless variables are defined as: 
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c
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


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     The governing parameters in the preceding equations are the Reynolds number Re, Grashof 

number Gr, Prandtl number Pr and Richardson number Ri, which are defined as follows: 

22

3
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The associated dimensionless boundary conditions are: 

1,0,0  VU                   at the bottom wall. 

0,0,0  VU                        at the top wall. 

0,0,0 





X
VU


                   at the left and right vertical walls.    

The shape of the top and bottom wavy surfaces was described by the following equation. 
       )5...(..............................)]2cos(1[ XAY   

Where, )(A is the dimensionless height of the wave and )( is the number of waves. 
 

3-1 Vorticity –stream function method: 

     The difficulty associated with pressure determination led to eliminate the pressure term from the 

two momentum equations (2&3) by cross differentiation with respect to Y and X respectively and 

subtraction to remove the pressure entirely which leads to a vorticity-transport equation. The 

vorticity (Ω) is a measure of the amount of anticlockwise rotation which the fluid possesses. In 

addition, using the definition of a stream function (which is a scalar quantity denoted by symbol ψ), 

for the steady two-dimensional flow, the problem was reduced to that of solving only two equations 

to obtain the stream function and the vorticity.  

The definition of the dimensionless vorticity, [8] 
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)6(..............................
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The definition of the dimensionless stream function that satisfies the continuity equation (1), was 

given by: 
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
 as ω & φ are the dimensional vorticity and stream function 

respectively.  

     Using the above definitions, the two equations of stream function (continuity equation-1) and 

vorticity transport of flow were written in dimensionless form, as follows: 
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Also, the energy equation without heat generation is: 
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3-2 Body Fitted Coordinate System: 

      The boundary conditions are difficult to be used because of the complexity of the geometrical 

shape of the cavity. So a Body Fitted Coordinate System has been employed to generate the grid. 

This method offers generation of curvilinear coordinate system with coordinate lines coincident 

with the boundaries of the physical domain. So a rectangular grid and finite-difference formulation 

was used in the computational domain. Approximations are introduced to the partial differentials to 

convert the partial derivatives to finite difference expressions that are used to convert the partial 

differential equations to algebraic equations which are solved at discrete points within the 

computational domain. The points (X,Y) in the irregular physical domain and its corresponding 

points (δ,ε) in the regular computational domain are related. In general, Laplace
’
s partial differential 

equations are used [9], as follows:     

)11.........(....................0
2

2

2

2











YX


 

)12.........(....................0
2

2

2

2











YX


 

     The above coordinate’s elliptical equations are solved in the computational domain (δ,ε) to 

provide the grid points locations in the physical domain (X,Y), by finite difference using Successive 

Over Relaxation method of iteration [10].  

     In order to solve the governing equations of fluid flow in the computational domain, a 

transformation of equations (8,9 & 10) from Cartesian coordinates to general coordinates were done 

using chain rule, [11]. The final representative form of the governing equations is: 
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The velocity components (U&V) given by equation (7) were rewritten in general coordinates and 

calculated from the following equations,[12]: 
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     The heat transfer calculation within the cavity was obtained in terms of the average Nusselt 

number at the heated bottom surface. The heat transfer coefficient was expressed in dimensionless 

form by local Nusselt number. The definition of local Nusselt number in dimensionless differential 

form is, [13]: 
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Where (n) is the coordinate normal to the surface.  

     The dimensionless form of local Nusselt number was also transformed to general coordinates 

(δ,ε), to be: 
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Setting the term [ 0)(   ], as the temperature of the bottom surface was assumed to be 

constant the local Nusselt number became: 
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      The average Nusselt number was obtained by integrating the local Nusselt number along the 

bottom surface using Simpson rule as follows: 
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Where (s) represent the coordinate along the wavy surface. 
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4- Numerical Solution: 
     Numerical solutions for the governing equations with the associated boundary conditions were 

obtained using finite difference techniques. The nonlinear governing differential equations 

transformed to linear algebraic equations using finite difference discretization. The appropriate 

finite difference equation is written for each node, the residual for each node appears on the right 

hand side of the node equation. The elliptic stream function equation solved by successive over 

relaxation method (S.O.R), while the parabolic vorticity and energy equations are solved by 

(explicit) method.  

     A computer program is built to find the results. The calculations started with a suitable initial 

guessing and then it takes the previous iteration results as initial condition for the successive 

iteration. At each step, the solution is iterated until the normalized residuals become smaller than 

(0.0001). 
 

5-Results and Discussion: 
     The results are carried out for a steady-state mixed convection in a square cavity with wavy 

upper and lower surfaces. In all cases the working fluid is air, the Prandtl number has been taken as 

(Pr=0.71). The effects of number of undulations of the upper and lower surfaces (λ) and its 

amplitude (A), the Richardson number and Grashof number on the fluid flow and heat transfer 

characteristics have been presented. In mixed convection, the effect of forced convection and its 

strength in comparison to natural convection can be judged on the base of Richardson number (Ri). 

When (Ri) approaches unity, the buoyancy effect becomes important. Consequently the natural 

convection dominates the mixed convection when (Ri1). So, to allow combined effect of natural 

and forced convection, several cases are discussed in terms of streamlines, isotherms and Nusselt 

numbers for (Ri=0.01, 0.1, 1 &10),  (λ=0 to 3), (A=0, 0.02, 0.04 & 0.06), (Gr=10
3
 , 10

3.5
 ,10

4
 & 

10
4.5

). 
 

5.1-Numerical Code Validation: 

     A computational model is validated for mixed convection heat transfer by comparing the results 

of local Nusselt number with that of the laminar mixed convection heat transfer in a square lid 

driven cavity with uniform bottom surface temperature performed by ref.[3]. In the present work, 

numerical predictions have been obtained for the same boundary conditions of ref.[3]. Figure (2) 

compares the results, it is seen that the agreement is good, so it can be decided that the current code 

can be used to predict the flow characteristics of the present study. 
 

5.2 Effect of Number of Undulations of the Wavy Surfaces (λ): 

     The effect of number of undulations (λ) at a specified value of Richardson number (Ri=0.01) on 

streamlines and isotherms are studied at amplitude of undulation (A=0.04). Figure (3), (a1 to d1) 

show stream lines plots for different values of number of undulations (λ=0 to 3) at Gr=10
4
 and 

Pr=0.71.  

     At low Richardson number (Ri=0.01), buoyancy effects are weak but accelerates the fluid near 

the lower heated surface resulting in low separation at the lower corners. The separation occurs at 

the corners of the opposite wall to the heated bottom surface. The separation near the upper surface 

increases as number of undulations (λ) increase which leads to decelerates the fluid at the upper 

cold surface.  

     The corresponding isotherm plots for the above cases are presented in the same figure (a2 to d2). 

For all cases, it can be observed that the thermal boundary layer thickness decreases at the left 

corner of the bottom hot surface and the right corner of the upper cold surface; this is revealed by 

the denser concentration of isotherms near these corners. While, at the other two corners the 

isothermal lines start to diverge from the upper and lower surface leading to a decrease in the heat 

transfer rate. However, despite this reduction in heat transfer, the temperature gradient increases. 

     Also it can be observed that increasing the number of undulation (λ) from 0 to 3 does not affect 

significantly the shape of streamlines and isotherms except that near the surfaces which takes nearly 

the shape of these surfaces. 
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5.3 The Effect of Amplitude of Undulations of the Wavy Surfaces: 

     Representative streamlines and isotherms plots are displayed in figure (4) (a1 to d1) & (a2 to d2), 

for different values of amplitude (A=0 to 0.06) at Ri=0.01, Pr=0.71, Gr=10
4
 and λ=3. It is seen that 

increasing the value of (A) reduce the fluid circulation within the cavity, also the flow near the 

wavy surfaces is affected as the separation of streamlines and isotherms increases along these 

surfaces resulting in low heat transfer rates. In the region far away from the wavy surfaces, there is 

no effect on the shape of streamlines and isotherms associated to the increment of (A). 
 

5.4 The Effect of Richardson number: 

     The effect of Richardson number (Ri) on streamlines and isotherms are studied at number of 

waves (λ=3) and amplitude of undulation (A=0.04). Figure (5), (a1 to d1) and ( a2 to d2) show stream 

lines and isotherms plots for different values of Richardson number (Ri=0.01, 0.1, 1, 10) at Gr=10
4
 

and Pr=0.71.  

     It can be observed that at high Richardson number (Ri>1), the fluid accelerated resulting in low 

separation at the lower corners, the buoyancy effect becomes significant and the natural convection 

dominates the mixed convection resulting in low heat transfer rates. 

     Also it can be observed that increasing the Richardson number does not affect streamlines and 

isotherms pattern.  
    

5.5 The Effect of Grashof number: 

     Streamlines and isotherms plots are presented in figure (6) (a1 to d1) & (a2 to d2) respectively, for 

different Grashof numbers (Gr=10
3
 to 10

4.5
)
 
 at a number of waves (λ=3), amplitude of undulation 

(A=0.04), Richardson number (Ri=0.01) and Pr=0.71.  

     It can be observed that with increasing the Grashof number, the fluid accelerated as a result of 

increasing Reynolds number, resulting in low separation at the lower corners too. Also, the forced 

convection dominates the mixed convection and increases the heat transfer rates in contrast to 

increasing Richardson number which reduce that rate. 

     From the figure mentioned above it can be seen that, isotherm lines are nearly parallel for 

(Gr=10
3
) which is similar to conduction-like distribution and starts to concentrate at the left corner 

of the lower hot surface and right corner of the upper cold surface and turns to diverge at the 

opposite corners for (Gr > 10
3
) due to the dominating influence of the convective currents. At 

Gr=10
4
 & Gr=10

4.5
 convective distortion of the isotherms occurs throughout the cavity due to the 

strong influence of the convective current.                     
    

5.6 The Local and Mean Nusselt Number: 

     The heat transfer effectiveness of the cavity is displayed in terms of local Nusselt number values. 

The effects of varying (λ) on local Nusselt number along the heated surface are illustrated in figure 

(7), for amplitude value of (A=0.04), Ri=0.01, Pr=0.71 and Gr=10
4
. As the flow develops and the 

bulk fluid gets heated, the maximum local Nusselt number increases from their lower values at 

(λ=0) to a higher values with increasing (λ). That is with increasing the number of waves the heat 

transfer rate increases. It is observed that the local Nusselt number for different (λ) shows an 

oscillatory phenomenon with increasing the number of waves of the heated surface (λ), because the 

vortex is not close enough to induce flow following the curving path of the concave parts of the 

wavy surface resulting in low heat transfer rates at those parts in comparison with convex parts of 

the surface.  

     The maximum Nusselt number distribution occur at the left corner of the lower surface due to 

high heat transfer rate, as the vortex is close enough to induce flow around the convex part of the 

first wave of the wavy lower surface and carry heat away, while the minimum Nusselt number 

distribution occur at the right corner due to low heat transfer rate as the isotherm lines diverges 

away from the surface. 

      The effect of variation of (A) on the local (Nu) at (Ri=0.01, Gr=10
4
 & λ=3) are presented in 

figure (8). It is seen that the local Nusselt number for the whole surface, decreases with increasing 
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(A), except that for the small part of the heated lower surface near the left corner where the 

isotherm lines concentrated resulting in maximum value for the local Nusselt number at (A=0.04) 

which is greater than that at (A=0.06) for the same part. In general, a maximum value is deduced at 

(A=0.02), due to low resistance to fluid circulation   within the cavity and low separation observed 

near the heated surface indicating that increasing the surface area of the wavy surface as a result of 

increasing the amplitude of undulation (A), does not increase the heat transfer rate as the effect on 

fluid circulation and separation dominates and reduce the heat transfer rate. 

     Figures (9 & 10) presented the effects of Richardson and Grashof numbers on the local Nusselt 

number, respectively, at the specified parameters. It is seen that the local Nusselt number for the 

whole surface, increases with increasing Grashof number and decreasing Richardson number for the 

reasons mentioned in paragraphs (5.4 &5.5). 

     The variation of the mean (Nu) with (λ) are presented in figure (11), for different values of (A). 

It is seen that the mean Nusselt number also decreases with increasing (A) and a maximum value is 

deduced at (A=0.02), for the same reason mentioned above.  

     For the same reason, it is seen that at low amplitudes of undulation (A=0&0.02), the mean 

Nusselt number profile is almost constant with (λ). 

    Figures (12 & 13) presented the variations of the mean (Nu) with (λ), for different values of 

Richardson number (Ri) and Grashof number (Gr), respectively. It is seen that the mean Nusselt 

number also increases with increasing (Gr) and decreasing (Ri) for the specified parameters 

mentioned in the figures, and a maximum value is deduced at (Gr=10
4.5

 & Ri=0.01), for the same 

reasons mentioned previously.  
 

 6- Conclusions: 
      In this paper, mixed convection in cavity with wavy upper and lower surfaces is studied 

numerically. It is found that the heat transfer is strongly dependent on the number of waves (λ) and 

Grashof number (Gr) . The effects of increasing the amplitude of undulations (A) and Richardson 

number (Ri)  are found to reduce the heat transfer within the cavity. In general, the local Nusselt 

number increases with increasing values of the number of waves (λ) and Grashof number (Gr) and 

decreases with increasing values of the amplitude of undulations (A) and Richardson number (Ri). 

Also the mean Nusselt number decreases with increasing values of the amplitude of undulations (A) 

and Richardson number (Ri) and increases with increasing Grashof number (Gr), maximum heat 

transfer occurs when the wavy surfaces designed with low amplitude of undulations. Higher mean 

Nusselt number is observed at (A=0.02 & Gr=10
4.5

) at low Richardson number value (Ri=0.01). 

The validity of the numerical code is verified by comparison with published results. The result of 

the present work for the particular case (of changing Nusselt number with X) at a specified 

boundary conditions is in excellent agreement with those of the already published work by ref. [3] 

at the same boundary conditions. 
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Nomenclature: 

A Dimensionless height of wavy surface. 

T Temperature (
o
K). 

c,h Subscripts denotes cold & hot. 

g Gravitational acceleration, (m/s
2
). 

Gr Grashof number (gβe(Th-Tc)  H
3
/ν

2
). 

H Enclosure length.(m) 

h Convection heat transfer coefficient (W/m
2
.
o
K). 

K Effective thermal conductivity (W/m.
o
K). 

Nu  Nusselt number.  

P Dimensionless pressure.  

Pr Prandtl number (ν/αe). 

Re  Reynolds number (UoH/ν). 

Ri Richardson number (Gr/Re
2
). 

U,V Dimensionless velocities in X- & Y-direction.   

Uo Dimensionless free stream velocity.  

u,v  Velocities in x- and y-direction, (m/s). 

x,y Cartesian coordinates. 

X,Y Dimensionless Cartesian coordinates.  

δ,ε Dimensionless computational coordinates. 

αe Effective thermal diffusivity of fluid (m
2
/s). 

βe Coefficient of thermal expansion of fluid (K
-1

). 

 Kinematic viscosity of fluid (m
2
/s). 

ρ Fluid density (kg/m
3
). 

 Dimensionless temperature [(T-Tc)/(Th-Tc)]. 

α,β,γ,J, ,ε Transforming coefficients to Body-Fitted Coordinates System. 

 λ Number of waves. 

φ Stream function (m
2
/s). 

Ψ Dimensionless stream function. 

ω Vorticity (1/s). 

Ω Dimensionless vorticity. 
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Fig.(2): Comparison of present results with other published results.
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Fig.(1): Schematic diagram of the physical model.  
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Fig.(3): Streamlines on the left and isotherms on the right for Ri=0.01, Pr=0.71,                                

                                            Gr=10
4
 & A=0.04  
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Fig.(4): Streamlines on the left and isotherms on the right for Ri=0.01, Pr=0.71,    
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 & λ=3. 
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Fig.(5): Streamlines on the left and isotherms on the right for A=0.04,            

Pr=0.71, Gr=10
4
 & λ=3. 
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Fig.(6): Streamlines on the left and isotherms on the right for A=0.04,            

Pr=0.71, Ri=0.01 & λ=3. 
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Fig.(13): The effect of Grashof number on the average
              Nusselt number at A=0.04,    =3 & Ri=0.01. 
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Fig.(12): The effect of Richardson number on the average
              Nusselt number at A=0.04,    =3 & Gr=10 
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