

Al-Mustansiriyah Journal of Science ISSN: 1814-635X (print) 2521-3520 (electronic)

ORIGINAL ARTICLE

OPEN ACCESS

Quaternary Boundary Optimal Control Problem for Quaternary Nonlinear Elliptic System with Constraints

Alaa S. Khneab ^{a, (D)}, Jamil A. Ali Al-Hawasy ^{b, (D)}, and Ion Chryssoverghi ^{c, (D)}

 $^{\mathrm{a}}$ Karbala Directorate of Education, Karbala, Iraq

^bDepartment of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq

^cDepartment of Mathematics, School of Applied Mathematical and Physical Sciences, Athens, Greece

CORRESPONDANCE

Jamil A. Ali Al-Hawasy jhawassy17@uomustansiriyah. edu.iq

ARTICLE INFO

Received: March 27, 2024 Revised: June 14, 2024 Accepted: June 23, 2024 Published:September 30, 2024

© 2024 by the author(s). Published by Mustansiriyah University. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. **ABSTRACT:** Background: Boundary optimal control problems governed by nonlinear elliptic systems are complex, involving equality and inequality constraints. Objective: This paper examines a quaternary boundary optimal control vector problem (QBOCVP) regulated by a quaternary nonlinear elliptic system (QNES) and subject to equality and inequality constraints (EINC). Methods: A weak formulation of the QBOCVP is developed, along with a mathematical representation of the quaternary adjoint equations (QAEs) associated with the QNES. Results: An existence theorem for a QBOCV addressing the constrained problem is established and rigorously proven under appropriate assumptions. The QAEs corresponding to the QNES are mathematically formulated. The Fréchet derivative (FD) of the cost function (CF) and the EINC is also derived. Furthermore, the necessary condition theorem (NCTH) and the sufficient condition theorem (SCTH) for optimality are presented and proved. Conclusions: This work provides a rigorous analysis of the QBOCVP with EINC controlled by QNES. It establishes the existence theorem and optimality conditions, providing a theoretical framework for addressing such constrained problems.

KEYWORDS: Fréchet derivative; Optimality conditions; Quaternary classical boundary control vector; Nonlinear elliptic system

INTRODUCTION

O ptimal control problems (OCPs) have been widely applied across various real-world domains, including medicine [1], economics [2], robotics [3], and aircraft [4], among others. Over time, researchers have shown significant interest in studying OCPs broadly, with a particular focus on optimal classical continuous control problems (OCCCPs). In the last decade, considerable attention has been directed toward OCCCPs governed by three main types of nonlinear partial differential equations (NPDES): elliptic [5], hyperbolic [6], and parabolic [7].

Subsequently, this research extended to systems governed by coupled NPDES of these three types [8]–[10], and later to systems controlled by triple NPDES of these types [11].

These advancements motivated us to investigate the quaternary boundary optimal control vector problem (QBOCVP) with equality and inequality constraints (EINC) governed by quaternary nonlinear elliptic systems (QNES), a topic previously unexplored by other researchers. In this study, we establish and prove an existence theorem for a QBOCV under appropriate assumptions. Additionally, the mathematical formulation of the quaternary adjoint equations (QAEs) associated with QNES is presented. The Fréchet derivative (FD) for the cost function (CF) and the EINC is derived. Finally, the necessary condition theorem (NCTH) and the sufficient condition theorem (SCTH) for optimality are formulated and proven.

DESCRIPTION OF THE PROBLEM

Let $\Omega \subset \mathbb{R}^2$ be an open and bounded subset with boundary $\partial \Omega$, the QBOCVP includes the QNES:

$$C_1 y_1 + c_1 y_1 + \sigma_1 y_2 + \sigma_2 y_3 + \sigma_3 y_4 + a_1 (x, y_1) = \rho_1 (x) \text{ in } \Omega$$
(1)

$$C_2 y_2 - \sigma_1 y_1 + c_2 y_2 + \sigma_4 y_3 - \sigma_5 y_4 + a_2 (x, y_2) = \rho_2 (x) \text{ in } \Omega$$
(2)

$$C_{3}y_{3} - \sigma_{2}y_{1} - \sigma_{4}y_{2} + c_{3}y_{3} - \sigma_{6}y_{4} + a_{3}(x, y_{3}) = \rho_{3}(x) \text{ in } \Omega$$
(3)

 $C_4 y_4 + \sigma_3 y_1 + \sigma_5 y_2 + \sigma_6 y_3 + c_4 y_4 + a_4 (x, y_4) = \rho_4 (x) \text{ in } \Omega$ (4)

with

$$\frac{\partial y_r}{\partial n_r} = \sum_{i,j=1}^2 c_{rij} \frac{\partial y_r}{\partial x_j} \cos\left(n_r, x_i\right) = w_r, \forall r = 1, 2, 3, 4 \text{ on } \partial\Omega,$$
(5)

where $C_r y_r = -\sum_{i,j=1}^2 \frac{\partial}{\partial x_i} \left(c_{rij}(x) \frac{\partial y_r}{\partial x_j} \right)$, $\forall r = 1, 2, 3, 4 \text{ on } \partial\Omega$, $\forall i, j = 1, 2, c_r, \rho_r \in L_2(\Omega)$, for $r = 1, 2, 3, 4, \sigma_l = \sigma_l(x) \in L_{\infty}(\Omega)$, $\forall l = 1, 2, 3, 4, 5, 6$, $\vec{y} = (y_1, y_2, y_3, y_4) \in (H_2(\Omega))^4$ is the quaternary state vector solution (QSVS), $\vec{w} = (w_1, w_2, w_3, w_4) \in L_2(\partial\Omega) = (L_2(\partial\Omega))^4$ denotes its corresponding QBCV, the functions $a_r(x, y_r)$ and $\rho_r(x) (\forall r = 1, 2, 3, 4)$ will be defined later.

The QBCV Constraint is $\vec{U} = \{\vec{u} \in L_2(\partial\Omega) : \vec{u} \in \vec{W} \text{ a.e in } \partial\Omega\}$, with $W_1 \times W_2 \times W_3 \times W_4 = \vec{W} \subset R^4$ is convex and bounded.

The CF (r = 1, 2, 3, 4) is

$$H_0(\vec{w}) = \sum_r^4 \int_{\Omega} h_{0r}(x, y_r) \, dx + \sum_{r=1}^4 \int_{\partial\Omega} \bar{h}_{0r}(x, w_r) \, d\omega, \tag{6}$$

the constraints on QBCV are

$$H_1(\vec{w}) = \sum_r^4 \int_{\Omega} h_{1r}(x, y_r) \, dx + \sum_r^4 \int_{\partial \Omega} \bar{h}_{1r}(x, w_r) \, d\omega, \tag{7}$$

$$H_{2}(\vec{w}) = \sum_{r}^{4} \int_{\Omega} h_{2r}(x, y_{r}) \, dx + \sum_{r}^{4} \int_{\partial \Omega} \bar{h}_{2r}(x, w_{r}) \, d\omega,$$
(8)

the set of the admissible QBCV is

$$\vec{U}_A = \{ \vec{w} \in \vec{U} \mid H_1(\vec{w}) = 0, H_2(\vec{w}) \le 0 \}.$$

The QBOCVP is to minimize (6) subject to the EINC (7)-(8), i.e. to find $\vec{w} \in \vec{U}_A$, s.t.:

$$H_0(\vec{w}) = \min_{\vec{u} \in \vec{U}_A} H_0(\vec{u}).$$

The Weak Formulation (WF) of the QNES Let $\vec{V} = V_1 \times V_2 \times V_3 \times V_4 = (H_1(\Omega))^4 = H_1(\Omega)$, where

$$H_1(\Omega) = \{ \vec{v} : \vec{v} \in H_1(\Omega), \text{ with } \frac{\partial v_r}{\partial n} = w_r, r = 1, 2, 3, 4, \text{ on } \partial\Omega \}.$$

The WF of (1)-(5) is

$$C_{1}(y_{1}, v_{1}) + (c_{1}y_{1}, v_{1})_{\Omega} + (\sigma_{1}y_{2}, v_{1})_{\Omega} + (\sigma_{2}y_{3}, v_{1})_{\Omega} - (\sigma_{3}y_{4}, v_{1})_{\Omega} + (a_{1}(y_{1}), v_{1})_{\Omega} = (\rho_{1}, v_{1})_{\Omega} + (w_{1}, v_{1})_{\partial\Omega}$$

$$\tag{9}$$

$$C_{2}(y_{2}, v_{2}) + (c_{2}y_{2}, v_{2})_{\Omega} - (\sigma_{1}y_{1}, v_{2})_{\Omega} + (\sigma_{4}y_{3}, v_{2})_{\Omega} - (\sigma_{5}y_{4}, v_{2})_{\Omega} + (a_{2}(y_{2}), v_{2})_{\Omega} = (\rho_{2}, v_{2})_{\Omega} + (w_{2}, v_{2})_{\partial\Omega}$$
(10)

$$C_3(y_3,v_3) + (c_3y_3,v_3)_{\Omega} - (\sigma_2y_1,v_3)_{\Omega} + (\sigma_4y_2,v_3)_{\Omega} -$$

$$(\sigma_6 y_4, v_3)_{\Omega} + (a_3(y_3), v_3)_{\Omega} = (\rho_3, v_3)_{\Omega} + (w_3, v_3)_{\partial\Omega}$$
(11)

$$C_4(y_4, v_4) + (c_4y_4, v_4)_{\Omega} - (\sigma_3y_1, v_4)_{\Omega} + (\sigma_5y_2, v_4)_{\Omega} -$$

$$(\sigma_6 y_3, v_4)_{\Omega} + (a_4(y_4), v_4)_{\Omega} = (\rho_4, v_4)_{\Omega} + (w_4, v_4)_{\partial\Omega}$$
(12)

Adding the above four equalities (9)-(12), to get

$$C(\vec{y},\vec{v}) + (a_1(y_1),v_1)_{\Omega} + (a_2(y_2),v_2)_{\Omega} + (a_3(y_3),v_3)_{\Omega} + (a_4(y_4),v_4)_{\Omega} = (\rho_1,v_1)_{\Omega} + (w_1,v_1)_{\partial\Omega} + (\rho_2,v_2)_{\Omega} + (w_2,v_2)_{\partial\Omega} + (\rho_3,v_3)_{\Omega} + (w_3,v_3)_{\partial\Omega} + (\rho_4,v_4)_{\Omega} + (w_4,v_4)_{\partial\Omega}$$
(13)

Presumption 1:

P1) $\frac{C(\vec{y},\vec{y})}{\|\vec{y}\|_V} \ge d_1 \|\vec{y}\|_V, \forall \vec{y} \in \vec{V}.$

 $P2)|C(\vec{y}, \vec{v})| \le d_2 \|\vec{y}\|_V \|\vec{v}\|_V, \forall \vec{y}, \vec{v} \in \vec{V}.$

P3) $a_r(x, y_r)$ and $\rho_r(x)$ ($\forall r = 1, 2, 3, 4$) are of Carathéodory type (CTHT) on $\Omega \times R$ and on Ω resp. and satisfy ($\forall r = 1, 2, 3, 4$).

 $|a_{r}(x,y_{r})| \leq \theta_{r}(x) + d_{r}|y_{r}|, |\rho_{r}(x)| \leq \overline{\theta}_{r}(x), \text{ with } \theta_{r}, \ \overline{\theta}_{r} \in L_{2}(\Omega), \forall (x,y_{r}) \in \Omega \times R \times W_{r}, \ d_{r} \geq 0.$

P4) $a_r(x, y_r)$ is monotone w.r.t. y_r resp. $\forall x \in \Omega$.

P5) $a_r(x,0) = 0, \ \forall \ x \in \Omega, \forall r = 1, 2, 3, 4$

Theorem 1 [12]: In additions to the Presumption 1, if a_1 is strictly monotone. Then the WF 13 has a unique QSVS $\vec{y} \in \vec{V}$, for a given QBCV $\vec{w} \in \vec{U}_A$.

Lemma 1 [12]: In addition to the Presumption 1, if the function a_r is Lipchitz (LIP) $(\forall r = 1, 2, 3, 4)$ w.r.t. y_r resp., the function $\rho_r(\forall r = 1, 2, 3, 4)$ is bounded. Then the operator $\vec{w} \to \vec{y}_{\vec{w}}$ from \vec{U}_A to $L_2(\partial \Omega)$ is LIP continuous (LIPC), i.e., $\|\Delta \vec{y}\|_{\Omega} \leq L \|\Delta \vec{w}\|_{\partial \Omega}, L > 0$.

Presumptions 2: Assume that h_{lr} and \bar{h}_{lr} are of CTHT on $\Omega \times R$ and $\Omega \times W_r$ resp., for r = 1, 2, 3, 4, l = 0, 1, 2, and satisfy:

$$|h_{lr}(x, y_r)| \le \beta_{lr}(x) + d_{lr}y_r^2, |\bar{h}_{lr}(x, w_r)| \le \bar{\beta}_{lr}(x) + \bar{d}_{lr}w_r^2$$

where $(y_r, w_r) \in R \times W_r$ with $\beta_{lr}, \overline{\beta}_{lr} \in L_1(\partial \Omega)$ and $d_{lr}, \overline{d}_{lr} > 0$.

Lemma 2 [12]: With Presumption 2, the functional $\vec{w} \mapsto H_l(\vec{w})$, for each l=0,1,2, defines on $L_2(\partial \Omega)$ is continuous.

Theorem 2 [8]: In addition to the assumptions. (A) and (B), if \vec{U} in the \vec{W}_A is compact, $\vec{W}_A \neq \emptyset$. If for each $i = 1, 2, 3, G_1(\vec{u})$ is independent of $u_i, G_0(\vec{u})$ and $G_2(\vec{u})$ are convex w.r.t u_i , for fixed (x, t, y_i) . Then there exists a CCCBOTCV for the considered problem.

Proposition 1 [13]: Let f and $f_y: D \times \mathbb{R}^n \to \mathbb{R}^m$ are of CTHT, let $F: L^p(D) \to \mathbb{R}$ be a functional, s.t. $F(y) = \int_D f(x, y(x)) dx$, where $D \subset \mathbb{R}^d$, and $\forall (x, y) \in D \times \mathbb{R}^n, p, q \neq 0$: $||f_y(x, y)|| \leq \zeta(x) + \eta(x)||y||^{\frac{\beta}{q}}$, where $\zeta \in L^q(D \times R)$, $\frac{1}{p} + \frac{1}{q} = 1$, $\eta \in L^{\frac{pq}{p-\beta}}(D \times R)$, $\beta \in [0, p]$ if $p \neq \infty$, and $\eta \equiv 0$, if $p = \infty$. Then the FD of F exists $\forall y \in L^p(D \times \mathbb{R}^n)$ and is given by $\hat{G}(y) h = \int_D f_y(x, y(x)) h(x) dx$.

RESULTS AND DISCUSSION

Existence of an QBOCV

Theorem 3: In addition to the Presumptions 1 and 2, assume that $\vec{U}_A \neq \emptyset$, H_1 is independent of w_r , (for r = 1, 2, 3, 4), \bar{h}_{lr} is convex w.r.t. w_r for fixed x resp. for r = 1, 2, 3, 4 and l = 0, 2. Then there exists a QBOCV.

Proof: The continuity of $H_l(\vec{w})$ (for each l = 0, 1, 2) on $L_2(\Omega)$ is obtained by Lemma 2.

Now, since for each r = 1, 2, 3, 4, that $y_{rn} \xrightarrow{S} y_r$ in $L_2(\Omega)$, (by using the same technique which is used in the proof of theorem 1, for more details see ref. [12]), then

$$H_1(\vec{w}_n) = \sum_{r=1}^4 \int_{\Omega} h_{1r}(x, y_{rn}) \, dx \to \sum_{r=1}^4 \int_{\Omega} h_{1r}(x, y_r) \, dx = H_1(\vec{w})$$

But $H_1(\vec{w}_n) = 0$, for each n, hence $H_1(\vec{w}) = 0$.

From the other side, since $\int_{\Omega} h_{lr}(x, y_{rn}) (\forall l = 0, 2 \text{ and } \forall r = 1, 2, 3, 4)$ is continuous w.r.t. y_r , and \vec{W} is compact, hence $h_l(y_r)$ is satisfied the presumptions of Theorem 2, to get that

$$\sum_{r=1}^{4} \int_{\Omega} h_{lr}(x, y_{rn}) \, dx \to \sum_{r=1}^{4} \int_{\Omega} h_{lr}(x, y_{r}) \, dx, \forall l = 0, 2.$$

Since $\int_{\Omega} h_{l1}(x, y_1) dx (\int_{\partial \Omega} \bar{h}_{l1}(x, w_1) d\omega)$ is continuous w.r.t. y_1 (w.r.t. w_1 and is weakly lower semi continuous (W.L.S.C) w.r.t. w_1), i.e.

$$\int_{\Omega} h_{lr}(x, y_r) dx + \int_{\partial \Omega} \bar{h}_{lr}(x, w_r) d\omega \leq \int_{\Omega} h_{lr}(x, y_r) dx + \lim_{n \to \infty} \inf \int_{\partial \Omega} \bar{h}_{lr}(x, w_{rn}) d\omega$$
$$= \lim_{n \to \infty} \inf \int_{\Omega} \left[h_{lr}(x, y_r) - \bar{h}_{lr}(x, y_{rn}) \right] dx + \lim_{n \to \infty} \int_{\Omega} \bar{h}_{lr}(x, w_{rn}) d\omega$$
$$= \lim_{n \to \infty} \inf \left[\int_{\Omega} h_{lr}(x, y_{rn}) dx + \int_{\partial \Omega} \bar{h}_{lr}(x, w_{rn}) d\omega \right]$$

Hence $H_l(\vec{w})$ is W.L.S.C w.r.t. $(\vec{y}, \vec{w}), \forall l = 0, 2.$

Then $H_2\left(\vec{w}_n\right) \leq \lim_{n \to \infty} H_2\left(\vec{w}_n\right) = 0$, Beside these results, one has

$$H_0\left(\vec{w}\right) \le \lim_{n \to \infty} \inf H_0\left(\vec{w}_n\right) = \lim_{n \to \infty} H_0\left(\vec{w}_n\right) = \min_{\vec{w} \in \vec{U}_A} H_0\left(\vec{w}_n\right)$$

 \vec{w} is a QBOCV

The NCTH and THE SCTH for Optimality

The following Presumptions are useful to study the NCTH and SCTH.

Presumptions 3:

P1) a_{1yr} , (for r = 1, 2, 3, 4) is of CTHT on $\Omega \times R$ and satisfies $|a_{1yr}(x, y_r)| \leq \tilde{d}_r, a_{1yr}(x, y_r) \geq 0$, for $x \in \Omega$ and $\tilde{d}_r \geq 0$.

P2) $\rho_r(\text{for } r = 1, 2, 3, 4)$ is of the CTHT type on Ω and satisfies: $|\rho_r(x)| \leq \check{d}_r$, for $x \in \Omega$ and $\check{d}_r \geq 0$

P3) h_{lyr} and \bar{h}_{lwr} , (r = 1, 2, 3, 4&l = 0, 1, 2) are of the CTHT type on $\Omega \times R$ and satisfy $|h_{lryr}| \leq \beta_{lr} + d_{lr} |y_r|$, and $|\bar{h}_{lrwr}| \leq \bar{\beta}_{lr} + \bar{d}_{lr} |w_r|$ with $d_{lr}, \bar{d}_{lr} \geq 0$, $\beta_{lr}, \bar{\beta}_{lr} \in L_2(\Omega)$, r = 1, 2, 3, 4 and l = 0, 1, 2.

Theorem 4: With Presumptions (1,2 and 3), the Hamiltonian is defined by:

$$\begin{split} \chi\left(x,\vec{y},\vec{z},\vec{w}\right) &= z_1\left(\rho_1\left(x\right) - a_1\left(x,y_1\right)\right)h_{01}\left(x,\ y_1\right) + \bar{h}_{01}\left(x,\ w_1\right) + \\ z_2\left(\rho_2\left(x\right) - a_2\left(x,y_2\right)\right) + h_{02}\left(x,\ y_2\right) + \bar{h}_{02}\left(x,\ w_2\right) + z_3(\left(\rho_3(\left(x\right) - a_3\left(x,y_3\right)\right) + h_{03}\left(x,\ y_3\right) + \bar{h}_{03}\left(x,\ w_3\right) + z_4\left(\rho_4\left(x\right) - a_4\left(x,y_4\right)\right) + \\ h_{04}\left(x,\ y_4\right) + \bar{h}_{04}\left(x,\ w_4\right) \end{split}$$

The QAES of (1)-(5) are given by

$$C_1 z_1 + c_1 z_1 - \sigma_1 z_2 - \sigma_2 z_3 - \sigma_3 z_4 + z_1 a_{1y_1} (x, y_1) = h_{01y_1} (x, y_1)$$
(14)

$$C_{2}z_{2} + \sigma_{1}z_{1} + c_{2}z_{2} - \sigma_{4}z_{3} + \sigma_{5}z_{4} + z_{2}a_{2y_{2}}(x, y_{2}) = h_{02y_{2}}(x, y_{2})$$

$$(15)$$

$$C_3 z_3 + \sigma_2 z_1 + \sigma_4 z_2 + c_3 z_3 + \sigma_6 z_4 + z_3 a_{3y_3} (x, y_3) = h_{03y_3} (x, y_3)$$
(16)

$$C_4 z_4 - \sigma_3 z_1 - \sigma_5 z_2 - \sigma_6 z_3 + c_4 z_4 + z_4 a_{4y_4} (x, y_4) = h_{04y_4} (x, y_4)$$
(17)

$$\frac{\partial z_r}{\partial n} = 0 \quad , \ \forall \ r = 1, 2, 3, 4 \ on \ \partial\Omega \tag{18}$$

Then the FD of H_0 is given by

$$\dot{\vec{H}}_{0}(\vec{w})\Delta\vec{w} = \int_{\partial\Omega} \chi_{\vec{w}}^{\prime T} \cdot \Delta\vec{w} d\omega, \text{ where } \chi_{\vec{w}}^{\prime} = \begin{pmatrix} \chi_{w_{1}}^{\prime}(x, \vec{y}, \vec{z}, \vec{w}) \\ \chi_{w_{2}}^{\prime}(x, \vec{y}, \vec{z}, \vec{w}) \\ \chi_{w_{3}}^{\prime}(x, \vec{y}, \vec{z}, \vec{w}) \\ \chi_{w_{4}}^{\prime}(x, \vec{y}, \vec{z}, \vec{w}) \end{pmatrix} = \begin{pmatrix} z_{1} + \bar{h}_{01w_{1}} \\ z_{2} + \bar{h}_{02w_{2}} \\ z_{3} + \bar{h}_{03w_{3}} \\ z_{4} + \bar{h}_{04w_{4}} \end{pmatrix}$$

Where $\vec{y} = (y_1, y_2, y_3, y_4), \vec{z} = (z_1, z_2, z_3, z_4), and \vec{w} = (w_1, w_2, w_3, w_4).$

Proof: The WF of the QAEs (14)-(18) is:

$$C_{1}(z_{1}, v_{1}) + (c_{1}z_{1}, v_{1})_{\Omega} - (\sigma_{1}z_{2}, v_{1})_{\Omega} - (\sigma_{2}z_{3}, v_{1})_{\Omega} - (\sigma_{3}z_{4}, v_{1})_{\Omega} + (z_{1}a_{1y_{1}}(x, y_{1}), v_{1})_{\Omega} = (h_{01y_{1}}(x, y_{1}), v_{1})_{\Omega},$$

$$(19)$$

$$C_{2}(z_{2},v_{2}) + (\sigma_{1}z_{1},v_{2})_{\Omega} + (c_{2}z_{2},v_{2})_{\Omega} - (\sigma_{4}z_{3},v_{2})_{\Omega} + (\sigma_{5}z_{4},v_{2})_{\Omega} + (z_{2}a_{2}y_{2}(x,y_{2}),v_{2})_{\Omega} = (h_{0}z_{2}y_{2}(x,y_{2}),v_{2})_{\Omega},$$

$$(20)$$

$$C_{3}(z_{3}, v_{3}) + (\sigma_{2}z_{1}, v_{3})_{\Omega} + (\sigma_{4}z_{2}, v_{3})_{\Omega} + (c_{3}z_{3}, v_{3})_{\Omega} + (\sigma_{6}z_{4}, v_{3})_{\Omega} + (z_{3}a_{3y_{3}}(x, y_{3}), v_{3})_{\Omega} = (h_{03y_{3}}(x, y_{3}), v_{3})_{\Omega},$$

$$C_{4}(z_{4}, v_{4}) - (\sigma_{3}z_{1}, v_{4})_{\Omega} - (\sigma_{5}z_{2}, v_{4})_{\Omega} - (\sigma_{6}z_{3}, v_{4})_{\Omega} + (c_{4}z_{4}, v_{4})_{\Omega} + (z_{4}a_{4y_{4}}(x, y_{4}), v_{4})_{\Omega} = (h_{04y_{4}}(x, y_{4}), v_{4})_{\Omega},$$

$$(21)$$

Adding the above four equality, using $\vec{v}=\Delta\vec{y}$, to get

$$C_{1}(z_{1},\Delta y_{1}) + (c_{1}z_{1},\Delta y_{1})_{\Omega} - (\sigma_{1}z_{2},\Delta y_{1})_{\Omega} - (\sigma_{2}z_{3},\Delta y_{1})_{\Omega} - (\sigma_{3}z_{4},\Delta y_{1})_{\Omega} + C_{2}(z_{2},\Delta y_{2}) + (\sigma_{1}z_{1},\Delta y_{2})_{\Omega} + (c_{2}z_{2},\Delta y_{2})_{\Omega} - (\sigma_{4}z_{3},\Delta y_{2})_{\Omega} + (\sigma_{5}z_{4},\Delta y_{2})_{\Omega} + C_{3}(z_{3},\Delta y_{3}) + (\sigma_{2}z_{1},\Delta y_{3})_{\Omega} + (\sigma_{4}z_{2},\Delta y_{3})_{\Omega} + (c_{3}z_{3},\Delta y_{3})_{\Omega} + (\sigma_{6}z_{4},\Delta y_{3})_{\Omega} + C_{4}(z_{4},\Delta y_{4}) - (\sigma_{3}z_{1},\Delta y_{4})_{\Omega} - (\sigma_{5}z_{2},\Delta y_{4})_{\Omega} - (\sigma_{6}z_{3},\Delta y_{4})_{\Omega} + (c_{4}z_{4},\Delta y_{4})_{\Omega} + (z_{1}a_{1y_{1}}(x,y_{1}),\Delta y_{1})_{\Omega} + (z_{2}a_{2y_{2}}(x,y_{2}),\Delta y_{2})_{\Omega} + (z_{3}a_{3y_{3}}(x,y_{3}),\Delta y_{3})_{\Omega} + (z_{4}a_{4y_{4}}(x,y_{4}),\Delta y_{4})_{\Omega} = (h_{01y_{1}}(x,y_{1}),\Delta y_{1})_{\Omega} + (h_{02y_{2}}(x,y_{2}),\Delta y_{2}) + (h_{03y_{3}}(x,y_{3}),\Delta y_{3})_{\Omega} + (h_{04y_{4}}(x,y_{4}),\Delta y_{4})_{\Omega}$$

$$(23)$$

Using the QSVS \vec{y} in the WF of the QNES (9)-(12) resp. once and once again the QSVS $\vec{y} + \Delta \vec{y}$ resp. Then subtracting each obtained equation from the other, and then using $\vec{v} = \vec{z}$ in the resulting equation, to obtain

$$C_{1}(\Delta y_{1}, z_{1}) + (c_{1}\Delta y_{1}, z_{1})_{\Omega} + (\sigma_{1}\Delta y_{1}, z_{1})_{\Omega} + (\sigma_{1}\Delta y_{2}, z_{1})_{\Omega} + (\sigma_{2}\Delta y_{3}, z_{1})_{\Omega} + (\sigma_{3}\Delta y_{4}, z_{1})_{\Omega} + C_{2}(\Delta y_{2}, z_{2}) + (c_{2}\Delta y_{2}, z_{2})_{\Omega} - (\sigma_{1}\Delta y_{1}, z_{2})_{\Omega} + (\sigma_{4}\Delta y_{3}, z_{2})_{\Omega} - (\sigma_{5}\Delta y_{4}, z_{2})_{\Omega} + C_{3}(\Delta y_{3}, z_{3}) + (c_{3}\Delta y_{3}, z_{3})_{\Omega} - (\sigma_{2}\Delta y_{1}, z_{3})_{\Omega} - (\sigma_{4}\Delta y_{3}, z_{3})_{\Omega} - (\sigma_{6}\Delta y_{4}, z_{3})_{\Omega} + C_{4}(\Delta y_{4}, z_{4}) + (c_{4}\Delta y_{4}, z_{4})_{\Omega} + (\sigma_{3}\Delta y_{1}, z_{4})_{\Omega} + (\sigma_{5}\Delta y_{2}, z_{4})_{\Omega} + (\sigma_{6}\Delta y_{3}, z_{4})_{\Omega} + (a_{1}(y_{1} + \Delta y_{1}) - a_{1}(y_{1}), z_{1})_{\Omega} + (a_{2}(y_{2} + \Delta y_{2}) - a_{2}(y_{2}), z_{2})_{\Omega} + (a_{3}(y_{3} + \Delta y_{3}) - a_{3}(y_{3}), z_{3})_{\Omega} + (a_{4}(y_{4} + \Delta y_{4}) - a_{4}(y_{4}), z_{4})_{\Omega} = (\Delta w_{2}, z_{2})_{\Omega} + (\Delta w_{2}, z_{2})_{\Omega} + (\Delta w_{3}, z_{3})_{\Omega} + (\Delta w_{4}, z_{4})_{\Omega}$$

$$(24)$$

From Presumptions (P1&P3) on a_r ($\forall r = 1, 2, 3, 4$), and Proposition 1, the FD of a_r exists, i.e.

$$\int_{\Omega} \left(a_r(x, y_r + \Delta y_r) - a_r(x, y_r) \right) z_r dx = \left(a_{ry_r}, \Delta y_r, z_r \right) + \tilde{\delta}_r(\Delta \vec{w}) \|\Delta \vec{w}\|_{\partial \Omega}$$

By replacing this result in (24), to obtain

$$C_{1}(\Delta y_{1}, z_{1}) + (c_{1}\Delta y_{1}, z_{1})_{\Omega} + (\sigma_{1}\Delta y_{1}, z_{1})_{\Omega} + (\sigma_{2}\Delta y_{3}, z_{1})_{\Omega} + (\sigma_{3}\Delta y_{4}, z_{1})_{\Omega} + C_{2}(\Delta y_{2}, z_{2}) + (c_{2}\Delta y_{2}, z_{2})_{\Omega} - (\sigma_{1}\Delta y_{1}, z_{2})_{\Omega} + (\sigma_{4}\Delta y_{3}, z_{2})_{\Omega} - (\sigma_{5}\Delta y_{4}, z_{2})_{\Omega} + C_{3}(\Delta y_{3}, z_{3}) + (c_{3}\Delta y_{3}, z_{3})_{\Omega} - (\sigma_{2}\Delta y_{1}, z_{3})_{\Omega} - (\sigma_{4}\Delta y_{2}, z_{3})_{\Omega} - (\sigma_{6}\Delta y_{4}, z_{3})_{\Omega} + C_{4}(\Delta y_{4}, z_{4}) + (c_{4}\Delta y_{4}, z_{4})_{\Omega} + (\sigma_{3}\Delta y_{1}, z_{4})_{\Omega} + (\sigma_{5}\Delta y_{2}, z_{4})_{\Omega} + (\sigma_{6}\Delta y_{3}, z_{4})_{\Omega} + (a_{1}y_{1}\Delta y_{1}, z_{1})_{\Omega} + \tilde{\delta}_{1}(\Delta \tilde{w}) \|\Delta \tilde{w}\|_{\partial\Omega} + (a_{2}y_{2}\Delta y_{2}, z_{2})_{\Omega} + \tilde{\delta}_{2}(\Delta \tilde{w}) \|\Delta \tilde{w}\|_{\partial\Omega} + (a_{3}y_{3}\Delta y_{3}, z_{3})_{\Omega} + \tilde{\delta}_{3}(\Delta \tilde{w}) \|\Delta \tilde{w}\|_{\partial\Omega} + (a_{4}y_{4}\Delta y_{4}, z_{4})_{\Omega} + \tilde{\delta}_{4}(\Delta \tilde{w}) \|\Delta \tilde{w}\|_{\partial\Omega} = (\Delta w_{2}, z_{2})_{\Omega} + (\Delta w_{2}, z_{2})_{\Omega} + (\Delta w_{3}, z_{3})_{\Omega} + (\Delta w_{4}, z_{4})_{\Omega}$$

$$(25)$$

Subtracting (23) from (25), it gives

$$\sum_{r=1}^{4} (h_{0ry_r}(x, y_r), \Delta y_r)_{\Omega} + \check{\delta}_5(\Delta \vec{w}) \|\Delta \vec{w}\|_{\partial \Omega} = \sum_{r=1}^{4} (\Delta w_r, z_r)_{\partial \Omega}$$
(26)

with

$$\check{\delta}_5(\Delta \vec{w}) \| \Delta \vec{w} \|_{\partial \Omega} = \sum_{r=1}^4 \check{\delta}_r(\Delta \vec{w}) \| \Delta \vec{w} \|_{\partial \Omega}$$

From Presumption 3 and Lemma 1,

$$H_{0}(\vec{w} + \overrightarrow{\Delta w}) - H_{0}(\vec{w}) = \sum_{r=1}^{4} \int_{\Omega} h_{0ry_{r}}(x, y_{1}) \Delta y_{r} \, dx + \sum_{r=1}^{4} \int_{\partial \Omega} \bar{h}_{0rw_{r}}(x, w_{r}) \Delta w_{r} \, d\omega + \check{\delta}_{6}(\overrightarrow{\Delta w}) \| \overrightarrow{\Delta w} \|_{\partial \Omega}$$
(27)

where $\check{\delta}_6(\overrightarrow{\Delta w}) \to 0$ and $\|\overrightarrow{\Delta w}\|_{\partial\Omega} \to 0$ as $\overrightarrow{\Delta w} \to 0$. From (26) and (27), it yields

$$H_{0}(\vec{w} + \Delta w) - H_{0}(\vec{w}) = \sum_{r=1}^{4} \int_{\partial\Omega} \left(z_{r} + \bar{h}_{0rw_{r}} \right) \Delta w_{r} \, d\omega + \check{\delta}_{7}(\overrightarrow{\Delta w}) \| \overrightarrow{\Delta w} \|_{\partial\Omega}$$

where $\check{\delta}_{7}(\overrightarrow{\Delta w}) \| \overrightarrow{\Delta w} \|_{\partial\Omega} = \check{\delta}_{6}(\overrightarrow{\Delta w}) \| \overrightarrow{\Delta w} \|_{\partial\Omega} - \sum_{r=1}^{4} \check{\delta}_{r}(\overrightarrow{\Delta w}) \| \overrightarrow{\Delta w} \|_{\partial\Omega}$ (28)

But from definition of the FD of H_0 , we obtain

$$H_0(\vec{w} + \overrightarrow{\Delta w}) - H_0(\vec{w}) = H_0(\vec{w})\overrightarrow{\Delta w} + \check{\delta}_7(\overrightarrow{\Delta w}) \|\overrightarrow{\Delta w}\|_{\partial\Omega}$$
(29)

Finally, (28) & (29), gives

$$\vec{H}_{0} (\vec{w}) \cdot \overrightarrow{\Delta w} = \int_{\partial \Omega} \chi_{\vec{W}}^{\prime T} \cdot \overrightarrow{\Delta w} d\omega \text{ where}$$

$$\chi_{\vec{w}}^{\prime} = \begin{pmatrix} \chi_{w_{1}}^{\prime}(x, \vec{y}, \vec{z}, \vec{w}) \\ \chi_{w_{2}}^{\prime}(x, \vec{y}, \vec{z}, \vec{w}) \\ \chi_{w_{3}}^{\prime}(x, \vec{y}, \vec{z}, \vec{w}) \\ \chi_{w_{4}}^{\prime}(x, \vec{y}, \vec{z}, \vec{w}) \end{pmatrix} = \begin{pmatrix} z_{1} + \bar{h}_{01w_{1}} \\ z_{2} + \bar{h}_{02w_{2}} \\ z_{3} + \bar{h}_{03w_{3}} \\ z_{4} + \bar{h}_{04w_{4}} \end{pmatrix}$$

Theorem 5: The NCTH for optimality

i) Under the Presumptions 1,2 and 3, if $\vec{w} \in \vec{U}_A$ is a QBOCV, then there exist "multiplies" $\gamma_l \in R, l = 0, 1, 2$ with $\gamma_0, \gamma_2 \ge 0, \sum_{l=0}^2 |\gamma_l| = 1$, for which the following Kuhn-Tucker-Lagrange conditions(K-T-L-C) are held (for $\overrightarrow{\Delta w} = \vec{u} - \vec{w}$)

$$\int_{\partial\Omega} \chi_{\vec{w}}^{T} \cdot \Delta \vec{w} d\omega \ge 0, \forall \vec{u} \in \vec{U},$$
(30a)

where $\bar{h}_{rw_r} = \sum_{l=0}^{2} \gamma_l \bar{h}_{lrw_r}, z_r = \sum_{l=0}^{2} \gamma_l z_{rl}, (r = 1, 2, 3, 4)$ in the definition of the χ (Theorem 4), and also (30b)

$$\gamma_2 H_2(w) = 0, \tag{30}$$

ii) Inequality (30a) is equivalent to

$$\chi_{\vec{w}}^{T} \cdot \vec{w} = \min_{\vec{u} \in \vec{U}_A} \chi_{\vec{w}}^{T} \cdot \vec{u} \quad \text{a. e. on } \partial\Omega.$$
(31)

i) From Lemma 2, $H_l(\vec{w})$ is continuous "in an open neighbored "and it is ρ – **Proof:** local continuous at each $\vec{w} \in \vec{U}$ for each l = 0, 1, 2 for each ρ . Also from Theorem 2, $H_l(\vec{w})$ has a continuous FD (for each l = 0, 1, 2) at each $\vec{w} \in \vec{U}$, hence $H_l(\vec{w})$ is ρ - differentiable there for each ρ . Since $\vec{w} \in \vec{U}_A$ is QBOCV, then by the K-T-L-C with $\gamma_l \in R$, l = 0, 1, 2, with $\gamma_0 \ge 0$, $\gamma_2 \ge 0$, $\sum_{l=0}^{2} |\gamma_l| = 1$, one has

$$\left(\left(\gamma_0 \dot{\vec{H}_0'}(\vec{w}) + \gamma_1' \, \vec{H}_1'(\vec{w}) + \gamma_2 \, \dot{\vec{H}_2'}(\vec{w}) \right), (\vec{u} - \vec{w}) \right)_{\partial\Omega} \ge 0, \forall \vec{u} \in \vec{U}$$
(32a)

and

$$\gamma_2 \mathbf{H}_2(\vec{w}) = 0 \tag{32b}$$

Utilizing Theorem 4, to find the FD of H_l , for l = 0, 1, 2, in (32a), with setting $\Delta w_r = u_r - w_r$, for r = 1, 2, 3, 4, to get

$$\sum_{r=1}^{4} \int_{\partial\Omega} \left[(\gamma_0 z_{0r} + \gamma_1 z_{1r} + \gamma_2 z_{2r}) + (\gamma_0 \bar{h}_{0rw_r} + \gamma_1 \bar{h}_{1rw_r} + \gamma_2 \bar{h}_{2rw_r}) \Delta w_r \right] d\omega \ge 0$$

$$\Rightarrow \sum_{r=1}^{4} \int_{\partial\Omega} \left[z_r + \bar{h}_{rw_r} \Delta w_r \right] d\omega \ge 0, \text{ with } z_r = \sum_{l=0}^{2} \gamma_l z_{rl}, \bar{h}_{rw_r} = \sum_{l=0}^{2} \gamma_l \bar{h}_{lrw_r} \Rightarrow$$

$$\int_{\partial\Omega} \chi_{\vec{w}}^{\prime T} \cdot \overrightarrow{\Delta w} d\omega \ge 0, \forall \vec{u} \in \vec{U}, \overrightarrow{\Delta w} = \vec{u} - \vec{w}.$$

ii) First, let $\vec{U} = \{\vec{u} \in L_2(\partial\Omega, R) \mid u_r(x) \in W_r$, a.e. on $\partial\Omega\}$, with $W_r \subset R, \mu$ is a Lebesgue measure on $\partial\Omega, \{\vec{w}_n\}$ be a dense sequence in \vec{U}_A and let $S \subset \partial\Omega$ be a measurable set, s.t.

$$\vec{u}(x) = \begin{cases} \vec{w}_n(x), \text{ if } x \in S \\ \vec{w}(x), \text{ if } x \notin S \end{cases}$$

Hence (30a) becomes

$$\int_{S} \chi_{\vec{w}}^{T} \cdot (\vec{w}_n - \vec{w}) \, ds \ge 0, \text{ for each } S \subset \partial \Omega$$

Then from Egorov's Theorem [13] once get that

$$\chi_{\vec{w}}^{T} \cdot (\vec{w}_n - \vec{w}) \ge 0$$
, a.e. on $\partial \Omega$. hence

 $\chi'_{\vec{w}}(x, \vec{y}, \vec{z}, \vec{w}) \cdot (\vec{w}_n - \vec{w}) \ge 0$, in $Q = \bigcap_n Q_n$, where $Q_n = \partial \Omega - \partial \Omega_n$ with $\mu(\partial \Omega_n) = 0$. And this hold for each n, since Q is independent of n and

$$\mu(\partial\Omega/Q) = \mu\left(\bigcup_{n=1}^{\infty}\partial\Omega_n\right) = 0$$

But $\{\vec{w}_n\}$ is dense in \vec{U} , then

$$\chi_{\vec{w}}^{\prime T} \cdot (u - \vec{w}) \ge 0 \text{ in } Q, \text{ i.e. a. e. on } \partial\Omega, \text{ or} \\ \chi_{\vec{w}}^{\prime T} \cdot \vec{w} = \min_{\vec{u} \in \vec{U}_A} \chi_{\vec{w}}^{\prime T} \cdot \vec{u}, \text{ a. e. on } \partial\Omega.$$

The converse is obtained directly.

Theorem 6: In addition to the Presumptions 1,2, and 3), if a_r, h_{1r} are affine w.r.t. y_r, \bar{h}_{1r} is affine w.r.t. w_r, ρ_r is bounded for each x, and $h_{lr}, \bar{h}_{lr}(r = 1, 2, 3, 4, l = 0, 2)$ are convex w.r.t. y_r and w_r resp. for each x. Then the NCTH in Theorem 5, with $\gamma_0 > 0$ is also sufficient.

Proof: From proof of Theorem 5, one has that

$$\int_{\partial\Omega} \chi'_{\vec{w}}\left(x, z_r, w_r\right) \cdot \overrightarrow{\Delta w} d\omega \ge 0, \forall r = 1, 2, 3, 4, \forall \vec{u} \in \vec{U}$$

Now, assume $\vec{w} \in \vec{U}_A$, and let $H(\vec{w}) = \sum_{l=0}^2 \gamma_l H_l(\vec{w}), \forall r = 1, 2, 3, 4$. then

$$\vec{H}(\vec{w})\overrightarrow{\Delta w} = \sum_{l=0}^{2} \gamma_{l} \dot{\vec{H}}_{l}(\vec{w}) \overrightarrow{\Delta w} = \sum_{l=0}^{2} \sum_{r=1}^{4} \int_{\partial \Omega} \gamma_{l} \left(z_{rl} + h_{lrw_{r}} \right) \Delta w_{r} d\omega$$
$$= \int_{\partial \Omega} \chi'_{\vec{w}}(x, \vec{z}, \vec{w}) \cdot \overrightarrow{\Delta w} d\omega \ge 0$$

From the Presumptions on a_r , $\forall r = 1, 2, 3, 4$.

$$a_r(x, y_r) = a_{r1}(x)y_1 + a_{r2}(x)$$

Let w_r and $\bar{w}_r(\forall r = 1, 2, 3, 4)$ are given QBCV, hence $y_r = y_{rw_r}$ and $\bar{y}_r = \bar{y}_{r\bar{w}_r}$, $(\forall r = 1, 2, 3, 4)$ are their conforming QSVS (Theorem 1), i.e.

$$C_1y_1 + c_1y_1 + \sigma_1y_2 + \sigma_2y_3 + \sigma_3y_4 + a_{11}(x)y_1 + a_{12}(x) = \rho_1(x),$$
(33a)

$$C_2 y_2 - \sigma_1 y_1 + c_2 y_2 + \sigma_4 y_3 - \sigma_5 y_4 + a_{21}(x) y_2 + a_{22}(x) = \rho_2(x), \tag{33b}$$

$$C_3y_3 - \sigma_2y_1 - \sigma_4y_2 + c_3y_3 - \sigma_6y_4 + a_{31}(x)y_3 + a_{32}(x) = \rho_3(x), \tag{33c}$$

$$C_4 y_4 + \sigma_3 y_1 + \sigma_5 y_2 + \sigma_6 y_3 + c_4 y_4 + a_{41}(x) y_4 + a_{42}(x) = \rho_4(x), \tag{33d}$$

$$\frac{\partial y_r}{\partial n_r} = \sum_{i,j=1}^2 c_{rij} \frac{\partial \partial_r}{\partial x_j} \cos\left(n_r, x_i\right) = w_r, \forall r = 1, 2, 3, 4$$
(33e)

and

$$C_1 \bar{y}_1 + c_1 \bar{y}_1 + \sigma_1 \bar{y}_2 + \sigma_2 \bar{y}_3 + \sigma_3 \bar{y}_4 + a_{11}(x) \bar{y}_1 + a_{12}(x) = \rho_1(x), \tag{34a}$$

$$C_{2}\bar{y}_{2} - \sigma_{1}\bar{y}_{1} + c_{2}\bar{y}_{2} + \sigma_{4}\bar{y}_{3} - \sigma_{5}\bar{y}_{4} + a_{21}(x)\bar{y}_{2} + a_{22}(x) = \rho_{2}(x), \tag{34b}$$

$$C_{3}y_{3} - \sigma_{2}y_{1} - \sigma_{4}y_{2} + c_{3}y_{3} - \sigma_{6}y_{4} + a_{31}(x)y_{3} + a_{32}(x) = \rho_{3}(x)$$

$$(34c)$$

$$C_{3}z_{4} + a_{31}(x)z_{3} + a_{32}(x) = \rho_{3}(x)$$

$$(34c)$$

$$C_4 y_4 + \sigma_3 y_1 + \sigma_5 y_2 + \sigma_6 y_3 + c_4 y_4 + a_{41}(x) y_4 + a_{42}(x) = \rho_4(x), \tag{34d}$$

$$\frac{\partial \bar{y}_r}{\partial n_r} = \sum_{i,j=1}^2 c_{rij} \frac{\partial \bar{y}_r}{\partial x_j} \cos\left(n_r, x_i\right) = \bar{w}_r, \forall r = 1, 2, 3, 4$$
(34e)

Multiplying (33) by $\alpha \in [0,1]$ and (34) by $(1-\alpha)$, then combining the obtained equalities from each pair of ((33), (34)), we get

$$C_{1}(\alpha y_{1} + (1 - \alpha)\bar{y}_{1}) + c_{1}(\alpha y_{1} + (1 - \alpha)\bar{y}_{1}) + \sigma_{1}(\alpha y_{2} + (1 - \alpha)\bar{y}_{2}) + \sigma_{2}(\alpha y_{3} + (1 - \alpha)\bar{y}_{3}) + \sigma_{3}(\alpha y_{4} + (1 - \alpha)\bar{y}_{4}) + a_{11}(x)(\alpha y_{1} + (1 - \alpha)\bar{y}_{1}) + a_{12}(x) = \rho_{1}(x)$$
(35a)

$$C_{2} (\alpha y_{2} + (1 - \alpha)\bar{y}_{2}) - \sigma_{1} (\alpha y_{1} + (1 - \alpha)\bar{y}_{1}) + c_{2} (\alpha y_{2} + (1 - \alpha)\bar{y}_{2}) + \sigma_{4} (\alpha y_{3} + (1 - \alpha)\bar{y}_{3}) - \sigma_{5} (\alpha y_{4} + (1 - \alpha)\bar{y}_{4}) + a_{21}(x) (\alpha y_{2} + (1 - \alpha)\bar{y}_{2}) + a_{22}(x) = \rho_{2}(x)$$
(35b)

$$C_{3} (\alpha y_{3} + (1 - \alpha)\bar{y}_{3}) - \sigma_{2} (\alpha y_{1} + (1 - \alpha)\bar{y}_{1}) - \sigma_{4} (\alpha y_{2} + (1 - \alpha)\bar{y}_{2}) + c_{3} (\alpha y_{3} + (1 - \alpha)\bar{y}_{3}) - \sigma_{6} (\alpha y_{4} + (1 - \alpha)\bar{y}_{4}) + a_{31}(x) (\alpha y_{3} + (1 - \alpha)\bar{y}_{3}) + a_{32}(x) = \rho_{3}(x)$$
(35c)

$$C_{4}\left(\alpha y_{4} + (1-\alpha)\bar{y}_{4}\right) + \sigma_{3}\left(\alpha y_{1} + (1-\alpha)\bar{y}_{1}\right) + \sigma_{5}\left(\alpha y_{2} + (1-\alpha)\bar{y}_{2}\right) + \sigma_{6}\left(\alpha y_{3} + (1-\alpha)\bar{y}_{3}\right) + c_{4}\left(\alpha y_{4} + (1-\alpha)\bar{y}_{4}\right) + a_{41}(x)\left(\alpha y_{4} + (1-\alpha)\bar{y}_{4}\right) + a_{42}(x) = \rho_{4}(x)$$
(35d)

$$\frac{\partial}{\partial n_r} \left(\alpha y_r + (1-\alpha)\bar{y}_r \right) = \sum_{i,j=1}^2 c_{rij} \frac{\partial}{\partial x_j} \left(\alpha y_r + (1-\alpha)\bar{y}_r \right) \cos\left(n_r, x_i\right) = \left(\alpha w_r + (1-\alpha)\bar{w}_r \right),$$

$$\forall r = 1, 2, 3, 4 \tag{35e}$$

It means the QBCV $\vec{\bar{w}} = (\bar{w}_1, \bar{w}_2, \bar{w}_3, \bar{w}_4)$ with $\bar{w}_r = \alpha w_r + (1 - \alpha) \bar{w}_r$, has QSVS

$$\overline{\bar{y}}_r = y_{r\bar{w}_r} = y_{r(\alpha w_r + (1-\alpha)\bar{w}_r)} = \alpha y_{rw_r} + (1-\alpha)y_r\bar{w}_r = \alpha y_r + (1-\alpha)\bar{y}_r, \text{ for each } r = 1, 2, 3, 4, \text{ i.e.}$$

$$C_{1}\bar{\bar{y}}_{1} + c_{1}\bar{\bar{y}}_{1} + \sigma_{1}\bar{\bar{y}}_{2} + \sigma_{2}\bar{\bar{y}}_{3} + \sigma_{3}\bar{\bar{y}}_{4} + a_{11}(x)\bar{\bar{y}}_{1} + a_{12}(x) = \rho_{1}(x)$$
(36a)

$$C_2 \bar{y}_2 - \sigma_1 \bar{y}_1 + c_2 \bar{y}_2 + \sigma_4 \bar{y}_3 - \sigma_5 \bar{y}_4 + a_{21}(x) \bar{y}_2 + a_{22}(x) = \rho_2(x)$$
(36b)
$$C_2 \bar{y}_2 - \sigma_1 \bar{y}_1 + c_2 \bar{y}_2 + \sigma_4 \bar{y}_3 - \sigma_5 \bar{y}_4 + a_{21}(x) \bar{y}_2 + a_{22}(x) = \rho_2(x)$$
(36b)

$$C_3\bar{y}_3 - \sigma_2\bar{y}_1 - \sigma_4\bar{y}_2 + c_3\bar{y}_3 - \sigma_6\bar{y}_4 + a_{31}(x)\bar{y}_3 + a_{32}(x) = \rho_3(x)$$
(36c)

$$C_4 \bar{y}_4 + \sigma_3 \bar{y}_1 + \sigma_5 \bar{y}_2 + \sigma_6 \bar{y}_3 + c_4 \bar{y}_4 + a_{41}(x) \bar{y}_4 + a_{42}(x) = \rho_4(x)$$
(36d)

$$\frac{\partial \bar{y}_r}{\partial n_r} = \sum_{i,j=1}^{2} c_{rij} \frac{\partial \bar{y}_r}{\partial x_j} \cos\left(n_r, x_i\right) = \overline{\bar{w}}_r, \forall r = 1, 2, 3, 4$$
(36e)

i.e. the operator $w_r \to y_{rw_r}$ is convex-linear w.r.t. (y_r, w_r) resp., for each $x \in \Omega$, and for each r =1, 2, 3, 4.

Also, from the Presumptions on $h_{1r}(x, y_r)$ and $\bar{h}_{1r}(x, y_r)$ for each r = 1, 2, 3, 4 one gets that $H_l(\vec{w})$ is convex w.r.t. (\vec{y}, \vec{w}) for each $x \in \Omega$, and so $H(\vec{w})$ is convex w.r.t (\vec{y}, \vec{w}) . On the other hand $H_l(\vec{w})$, for each l = 0, 1, 2 has the FD and continuous for each $\vec{w} \in \vec{U}$, and \vec{U} is convex. hence

$$\dot{\vec{H}}(\vec{w})\overrightarrow{\Delta w} \ge 0$$

Thus, $H(\vec{w})$ has a minimum at \vec{w} , i.e.

$$H(\vec{w}) \le H(\vec{u}), \forall \ \vec{u} \in \vec{U}$$

$$\Rightarrow \sum_{l=0}^{2} \gamma_{l} H_{l}(\vec{w}) \le \sum_{l=0}^{2} \gamma_{l} H_{l}(\vec{u})$$
(37)

Now, let $\vec{u} \in \vec{U}_{\vec{A}}$, then (37) becomes

$$\gamma_0 H_0(\vec{w}) + \gamma_2 H_2(\vec{w}) \le \gamma_0 H_0(\vec{u}), \forall \ \vec{u} \in \vec{U},$$

and from (30b),

$${}_0H_0(\overrightarrow{w}) \le \gamma_0 H_0(\overrightarrow{u}), \forall \overrightarrow{u} \in \overrightarrow{U} \Longrightarrow H_0(\overrightarrow{w}) \le H_0(\overrightarrow{u}), \forall \overrightarrow{u} \in \overrightarrow{U}$$

i.e. \vec{w} is a QBOC for the problem.

CONCLUSION

The existence theorem for a QBOCV that satisfies the EINC of the problem is established and proven under appropriate assumptions. The mathematical formulation of the AQEs associated with the QNES is derived, along with the Fréchet derivative for the CF and the EINC. Finally, the NCTH and SCTH for optimality are formulated and proven through the application of the Kuhn-Tucker-Lagrange Theorem.

SUPPLEMENTARY MATERIAL

None.

AUTHOR CONTRIBUTIONS

Alaa Khneab: Conceptualization, methodology, writing—original draft preparation, writing—review and editing, validation. Jamil Al-Hawasy: Conceptualization, methodology, writing—original draft preparation, writing—review and editing, validation, formal analysis, resources, visualization, supervision, and project administration. Ion Chryssoverghi: Validation.

FUNDING

None.

DATA AVAILABILITY STATEMENT

None.

ACKNOWLEDGMENTS

None.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

- N. Grigorenko, E. Grigorieva, P. Roi, and E. Khailov, "Optimal control problems for a mathematical model of the treatment of psoriasis," *Computational Mathematics and Modeling*, vol. 304, pp. 352–362, Oct. 2019. doi: 10.1007/s10598-019-09461-y.
- [2] I. Syahrini, R. Masabar, A. Aliasuddin, S. Munzir, and Y. Hazim, "The application of optimal control through fiscal policy on indonesian economy," *The Journal of Asian Finance, Economics and Business*, vol. 8, no. 3, pp. 741–750, 2021. doi: 10.13106/jafeb.2021.vol8.no3.0741.

- G. Rigatos and M. Abbaszadeh, "Nonlinear optimal control for multi-dof robotic manipulators with flexible joints," Optimal Control Applications and Methods, vol. 42, no. 6, pp. 1708–1733, 2021. doi: 10.1002/oca.2756.
- [4] L. Kahina, P. Spiteri, F. Demim, A. Mohamed, A. Nemra, and F. Messine, "Application optimal control for a problem aircraft flight," *Journal of Engineering Science and Technology Review*, vol. 11, no. 156, pp. 156–164, 2018. doi: 10.25103/jestr.111.19.
- [5] E. Casas and K. Kunisch, "Optimal control of semilinear elliptic equations in measure spaces," SIAM Journal on Control and Optimization, vol. 52, no. 1, pp. 339–364, 2014. doi: 10.1137/13092188X.
- [6] F. Toyoğlu, "On the solution of an optimal control problem for a hyperbolic system," Applied Computational Mathematics, vol. 7, no. 3, pp. 75–82, 2018. doi: 10.11648/j.acm.20180703.11.
- [7] M. H. Farag, "On an optimal control constrained problem governed by parabolic type equations," *Palestine Journal of Mathematics*, vol. 4, no. 1, pp. 136–143, 2015.
- [8] Y. H. Rashid, J. Al-Hawasy, and I. Chryssoverghi, "Classical continuous constraint boundary optimal control vector problem for triple nonlinear parabolic system," *Al-Mustansiriyah Journal of Science*, vol. 34, no. 2, pp. 95–102, 2023. doi: 10.23851/mjs.v34i2.1272.
- F. J. Naji, J. A. A. Al-Hawasy, and I. Chryssoveghi, "Quaternary boundary optimal control problem dominating by quaternary nonlinear parabolic system," *Al-Mustansiriyah Journal of Science*, vol. 34, no. 3, pp. 86–101, 2023. doi: 10.23851/mjs.v34i3.1286.
- [10] J. A. Al-Hawasy and L. H. Ali, "Constraints optimal control governing by triple nonlinear hyperbolic boundary value problem," *Journal of Applied Mathematics*, vol. 2020, no. 1, p. 8 021 635, 2020. doi: 10.1155/2020/8021635.
- [11] L. H. Ali and J. A. Al-Hawasy, "Boundary optimal control for triple nonlinear hyperbolic boundary value problem with state constraints," *Iraqi Journal of Science*, vol. 62, no. 6, pp. 2009–2021, 2021. doi: 10.24996/ijs.2021.62.
 6.27.
- [12] A. S. Khneab and J. A. A. Al-Hawasy, "Quaternary boundary optimal control controlled by quaternary nonlinear elliptic system," Accepted in the ICMAICT_2024, Erbil-Iraq.
- I. Chryssoverghi, "Nonconvex optimal control of nonlinear monotone parabolic systems," Systems & Control Letters, vol. 8, no. 1, pp. 55–62, 1986. doi: 10.1016/0167-6911(86)90030-7.