On The Factor Group $K(D_n \times C_3 \text{When } n = 2^h)$ حول الزمرة الكسريه $\operatorname{cf}(\operatorname{Dn} \times \operatorname{C}_3, \mathbf{Z})/R$ ($\operatorname{Dn} \times \operatorname{C}_3$ عندما عددزوجي

HuseinHadiAbass

Basmaa Mohammed zwen

msc- hussien@yahoo.com

basmazwen@yahoo.com

AL-Kufa University \ College of Education for Girls Department of Mathematics

Abstract

Let D_n be the dihedral group and C_3 be the cyclic group of order 3 . Let $cf(Dn \times C_3, Z)$ be the abelian group of Z-valued class function of the group $Dn\times C_3$. The intersection of $cf(Dn\times C_3,Z)$ with the group of generalized characters of $Dn \times C_3$ which is denoted by $R(D_n \times C_3)$ is a normal subgroup of the group $cf(Dn \times C_3, Z)$ denoted by \overline{R} $(Dn \times C_3)$. The factor group $cf(Dn \times C_3, Z)/R$ $(Dn\times C_3)$ is a finite abelian group denoted by $K(Dn\times C_3)$.

In this paper, we prove that the rational valued characters table of the group $D_{3^h} \times C_3$ is equal to the tensor product of the rational valued characters table of D_{2h} and the rational valued

characters table of the cyclic group C_3 . Also, we find that $K(D_{2^h} \times C_3) = \bigoplus_{i=1}^2 K(D_{2^h}) \bigoplus_{i=1}^{h+3} C_3$.

لتكن $D_n \times C_3$ زمرة ثنائي السطوح و C_3 الزمرة الدوارة ذات الرتبة $D_n \times C_3$. لتكن $D_n \times C_3$ الزمرة الابدالية لدوال الصف $D_n \times C_3$. ان تقاطع $D_n \times C_3$ مع زمرة كل الشواخص العمومية للزمرة $D_n \times C_3$. \overline{R} ويرمز لها بالرمز $R(Dn \times C_3, Z)$ تكون زمرة جزئية سوية من الزمرة $R(Dn \times C_3, Z)$ ويرمز لها بالرمز . K($Dn \times C_3$) الزمرة الكسرية (\overline{R} ($Dn \times C_3$) تكون زمرة ابدالية منتهية ويرمز لها بالرمز (\overline{R} ($Dn \times C_3$) بُرُّ هنا في هذا البحث ان جُدُول الشواخص ذات القبم النسبية للزمرة \mathbf{C}_3 يساوي حاصل الضرب الممتد لجدول جو بي الشواخص ذات القيم النسبية للزمرة D_{2^h} الشواخص ذات القيم النسبية للزمرة D_{2^h} الشواخص ذات القيم النسبية للزمرة D_{2^h} الشواخص ذات القيم النسبية للزمرة E_{2^h} E_{2^h}

$$K(D_{2^h} \times C_3) = \bigoplus_{i=1}^{2} K(D_{2^h}) \bigoplus_{i=1}^{h+3} C_3$$

1.Introduction

Let G be a finite group, two elements of G are said to be Γ - conjugate if the cyclic subgroups they generate are conjugate in G, this defines an equivalence relation on G. Its classes are called Γ -classes. The Z-valued class function on the group G, which is constant on the Γ classes forms a finitely generated abelian group cf(G,Z) of a rank equal to the number of Γ classes. The intersection of cf(G,Z) with the group of all generalized characters of G, R(G) is a normal subgroup of cf(G,Z) denoted by R(G), then cf(G,Z)/R(G) is a finite abelian factor group which is denoted by K(G). Each element in $\overline{R}(G)$ can be written as $u_1\theta_1 + u_2\theta_2 + \dots + u_l\theta_l$,

where l is the number of Γ - classes, u_1 , u_2 ,, $u_l \in Z$ and $\theta_i = \sum_{\sigma \in Gal} \frac{\sigma(\chi_i)}{Q(\chi_i)/Q}$,where χ_i is an irreducible character of the group G and σ is any element in Galios group $Gal(Q(\chi_i)/Q)$. Let $\equiv *(G)$ denotes the $l \times l$ matrix which corresponds to the θ_i 's and columns correspond to the Γ - classes of G. This matrix expresses $\overline{R}(G)$ basis in terms of the cf(G,Z) basis.

We can use the theory of invariant factors to obtain the direct sum of the cyclic Z-module of orders the distinct invariant factors of $\equiv *(G)$ to find the cyclic decomposition of K(G).

In 1982, M.S.Kirdar [10] studied the factor group K(Cn) .In 1994, H.H.Abass [3] studied the factor

cf(Q2m,Z) $/\overline{R}$ (Q2m) .In 2005, N.S.Jasim [12] studied the factor group cf(G,Z)/ \overline{R} (G) for the special linear group SL(2,p). In 2010,H.H.Abass and M.S.Mahdi [4] studied the Factor Group K(Dnh) when n is an Odd Number. In 2011, H.H.Abass and K.A.Layith [6] studied the Factor Group

 $K(Dnh \times C2)$ when n is an Odd Number

The aim of this paper is find the rational valued characters table of the group $D_{2^h} \times C_3$ and the cyclic decomposition of the group $K(D_{2^h} \times C_3)$.

2.Preliminaries

In this section, we review definitions and some results which will be used in later section

Definition(2.1):[8]

The set of all $n \times n$ non-singular matrices over the field F forms group under the operation of the matrix multiplication, this group is called the **general lineargroup** of the dimension n over the field K, denoted by GL (n, K).

Definition(2.2):[2]

A matrix representation of a group G is a homomorphism T from G into GL (n,K), n is called the degree of matrix representation T.

Definition(2.3):[8]

The trace of square matrix A is the sum of the elements on the main diagonal; we denote the trace of A by tr(A).

Definition (2.4): [2]

A matrix representation T: $G \rightarrow GL(n, K)$ is said to be reducible if T is equivalent to the matrix representation of the form

$$\begin{bmatrix} T_1(g) & V(g) \\ 0 & T_2(g) \end{bmatrix}$$

Where T_1 , T_2 are matrices of representations over Kof the dimension $m \times m$, $(n-m) \times (n-m)$ respectively , V(g) is a matrix of the dimension $(n-m) \times (m)$ such that 0 < m < n.

Otherwise, T is called an irreducible matrix representation.

Moreover , if we could remove the off-diagonal block , i.e V(g) = 0 for all $g \in G$,then T is called completely reducible matrix representation

Definition (2.5): [7]

Let T be a matrix representation of a group G over the field K, *the character* χ of a matrix representation T is the mapping χ : G \rightarrow K defined by $\chi(g)$ =Tr(T(g)) for all g \in G,where Tr(T(g)) refers to the trace of the matrix T(g) and $\chi(1)$ is the degree of χ .

Remark (2.6) :[8]

(I) A finite group G has a finite number of conjugacy classes and a finite number of distinct k-irreducible characters, the group character of a group representation is constant on a conjugacy class, the values of the characters can be written as a table known *the characters table* which is denoted by \equiv (G).

(II) If $C_n = \langle r \rangle$ is the cyclic group of order n generated by r and $\omega = e^{2\pi i/n}$ is the primitive n-th root of unity, then $\equiv (C_n) =$

CL_{α}	[1]	[r]	$[r^2]$	•••	$[r^{n-1}]$
$ CL_{\alpha} $	1	1	1	•••	1
$ C_G(C_\alpha) $	n	n	n	•••	n
χ_1	1	1	1	•••	1
χ ₂	1	ω	ω^2	•••	ω^{n-1}
χ ₃	1	ω^2	ω 4	•••	ω^{n-2}
:	:	:	:	•••	•
χ_n	1	ω^{n-1}	ω^{n-2}	•••	ω

Table(2.1)

Theorem (2.7): [11]

- 1-Sum of characters is a character.
- 2- Product of characters is a character.

Theorem (2.8):[8]

Let $T_1: G_1 \rightarrow GL(n, K)$ and $T_1: G_2 \rightarrow GL(m, K)$ are two irreducible representations of the group G_1 and G_2 with characters χ_1 and χ_2 respectively. Then the tensor product $T_1 \otimes T_1$ is irreducible representation of the group $G_1 \times G_2$ with character $\chi_1 \chi_2$.

Definition (2.9):[9]

A rational valued character θ of G is a character whose values are in the set of integers Z, i.e $\theta(g) \in Z$, for all $g \in G$.

Proposition (2.10):[10]

The rational valued characters $\theta_i = \sum_{\sigma \in Gal \ (Q \ (\chi_i) \ /Q \)} \sigma(\chi_i)$ form basis for \overline{R} (G), where χ_i are the

irreducible characters of G and their numbers are equal to the number of all distinct Γ - classes of G.

3.The Factor Group K(G)

In this section, we study the factor K(G) and discuss the cyclic decomposition of the factor groups $K(C_n)$ and $K(D_n)$.

Definition (3.1):[8]

Let M be a matrix with entries in a principal ideal domain R. A k-minor of M is the determinant of $k \times k$ ubmatrix preserving rows and columns order.

Definition (3.2):[9]

A k-th determinant divisor of the matrix M is the greatest common divisor (g.c.d) of all the k-minors of M. This is denoted by $D_{k}(M)$.

Theorem (3.3):[8]

Let M be an k×k matrix with entries in a principal domain R. Then there exists matrices P and W such that:

- 1- P and W are invertible.
- 2- PMW = D.
- 3- D is diagonal matrix.
- 4- If we denote D_{ii} by d_i then there exists a natural number m; $0 \le m \le k$ such that j > m implies $d_i \ne 0$ and $1 \le j \le m$ implies $d_i \mid d_{i-1}$.

Definition (3.4):[9]

Let M be a matrix with entries in a principal domain R, be equivalent to a matrix D = diag {d1, d2,

..., d_m , 0, 0, ..., 0} such that $d_j \mid d_{j-1}$ for $1 \le j < m$. We call D the invariant factors matrix of

M and d_1, d_2, \dots, d_m the invariant factors of M.

Proposition(3.5):[10]

Let A and B be two non-singular matrices of the rank n and m respectively, over a principal ideal domain R . Then the invariant factor matrices of $A \otimes B$ equals $D(A) \otimes D(B)$, where D(A) and D(B) are the invariant factor matrices of A and B respectively.

Proposition(3.6):[10]

Let H and L be p_1 -group and p_2 -group respectively ,where P_1 and P_2 are distinct primes. Then $\equiv *(H \times L) = \equiv *(H) \otimes \equiv *(L)$.

Remark (3.7):[10]

Suppose cf(G,Z) is of the rank r, the matrix expressing the \overline{R} (G)basis in terms of the cf(G,Z) = Z^r basis is $\equiv^*(G)$. Hence by theorem (2.4), we can find two matrices P and Q with a determinant ± 1 such that $P.\equiv^*(G).Q = D(\equiv^*(G)) = \operatorname{diag}\{d_1, d_2, \dots, d_r\}, d_i = \pm D_i (\equiv^*(G)) / \pm D_{i-1} (\equiv^*(G))$.

Theorem (3.8):[10]

Let P be a prime number, then

$$K(G) = \bigoplus \sum C_{d_i}$$
 Such that $d_i = \pm D_i (\equiv^*(G)) / \pm D_{i-1} (\equiv^*(G))$.

Theorem (3.9):[10]

$$|K(G)| = \det(\equiv^*(G))$$

Proposition (3.10): [10]

The rational valued characters table of the cyclic group $C_{p^s} = \langle r \rangle$ of the rank s+1 where p is a prime number which is denoted by $(\equiv^* (C_{p^s}))$, is given as follows:

Γ-classes	[1]	$[r^{p^{S-1}}]$	$[r^{p^{S-2}}]$	$[r^{p^{S-3}}]$		$[r^{p^2}]$	$[r^p]$	[r]
θ_1	$p^{s-1}(p-1)$	- p ^{s-1}	0	0		0	0	0
θ_{2}	$p^{s-2}(p-1)$	$p^{s-2}(p-1)$	- p ^{s-2}	0	•••	0	0	0
θ_3	$p^{s-3}(p-1)$	$p^{s-3}(p-1)$	$p^{s-3}(p-1)$	- p ^{s-3}	•••	0	0	0
I	I	ŀ	!	İ	٠.	i	i	İ
θ_{s-1}	p(p-1)	p(p-1)	p(p-1)	p(p-1)	•••	p(p-1)	-p	0
θ_{s}	p-1	p-1	p-1	p-1	•••	p-1	p-1	-1
θ_{s+1}	1	1	1	1		1	1	1

Table (3.1)

Where its rank s+1 represents the number of all distinct Γ -classes

Proposition (3.11): [10]

If p is a prime number , then $D(\equiv^*(C_p^s)) = diag\{p^s, p^{s-1}, \dots, p, 1\}$.

Theorem (3.12):[10]

Let p be a prime number. Then $K(C_p^s) = \bigoplus_{i=1}^s C_{p^i}$

Definition (3.13):[8]

For a fixed positive integer $n \ge 3$, *the dihedral group D_n* is a certain non-abelian group of the order 2n. In general can write it as: $D_n = \{ S^j \ r^k : 0 \le k \le n-1 \ , \ 0 \le j \le 1 \}$

which has the following properties $r^n = 1$, $Sr^k S = r^{-k}$, $(Sr^k)^2 = 1$

Remark (3.14):

The group $D_n \times C_3$ is the direct product group of the dihedral group D_n and the cyclic group C_3 of order 3

Proposition (3.15): [3]

The rational valued character table of the dihedral D_n when $n=2^h$ can be given by $\equiv *(D_{2^h})=$

Γ-classes	[1]	$r^{2^{h-1}}$	$r^{2^{h-2}}$	$r^{2^{h-3}}$		$[r^2]$	[r]	[s]	[sr]
θ_1	2^{h-1}	-2^{h-1}	0	0	•••	0	0	0	0
θ_2	2^{h-2}	2^{h-2}	-2^{h-2}	0	•••	0	0	0	0
θ_3	2^{h-3}	2^{h-3}	2^{h-3}	- 2 ^{h-3}	•••	0	0	0	0
:	:	:	:	:	٠	:	:	:	:
θ_{h-1}	2	2	2	2	•••	-2	0	0	0
$\theta_{\scriptscriptstyle h}$	1	1	1	1		1	-1	-1	1
θ_{h+1}	1	1	1	1	•••	1	1	1	1
θ_{h+2}	1	1	1	1		1	1	-1	-1
θ_{h+3}	1	1	1	1	•••	1	-1	1	-1

Table (3.2)

Theorem (3.16):[3]

The invariant factors matrix of $\equiv^*(D_n)$ when n is an even number and $n=2^h$ can be given by $D(\equiv^*(D_{2^h})) = diag\{2^{h+1}, -2^{h-1}, -2^{h-2}, \ldots, -2, -2, -2, -1\}$.

Theorem (3.17):[3]

The cyclic decomposition of the group $K(D_n)$ when $n=2^h$ can be given by : $K(D_{2^h}) = K(C_{2^{h-1}}) \oplus C_{2^{h+1}} \oplus C_2 \oplus C_2$

Example(3.18):

To find the cyclic decomposition of the group $K(D_{32})$ by theorem(3.17)

$$K(D_{32}) \ = K(D_{2^5}) \ = K(C_{2^{5\text{--}1}}) \oplus \ C_{2^{5\text{+-}1}} \oplus \ C_2 \oplus C_{2^-} = K(C_{2^4}) \oplus \ C_{2^6} \oplus \ C_2 \oplus C_2$$

By theorem(3.12) we can write $K(C_{2^4})$ as follows:

$$K(C_{24}) = C_{24} \oplus C_{23} \oplus C_{22} \oplus C_{2} = C_{16} \oplus C_{8} \oplus C_{4} \oplus C_{2}$$

Then
$$K(D_{2^4}) = C_{16} \oplus C_8 \oplus C_4 \oplus C_2 \oplus C_{64} \oplus C_2 \oplus C_2 = C_{64} \oplus C_{16} \oplus C_8 \oplus C_4 \oplus C_{16} \oplus C_{1$$

4. The Main Results

In this section, we find the general form of the rational valued characters table of the group $D_n \times C_3$, when $n=2^{\it h}$

Theorem(4.1):

The rational valued character table of the group $D_{2^h} \times C_3$ is equal to the tensor product of the rational valued characters table of the group D_{2^h} and the rational valued characters table of the group C_3 ; that is

$$\equiv^* (D_{2^h} \times C_3) = \equiv^* (D_{2^h}) \otimes \equiv^* (C_3).$$

Proof:

Since the group D_{2^h} is a 2-group and the group C_3 is a 3-group and g.c.d(2,3)= 1, then by proposition (3.8), we have

$$\equiv^* (D_{2^h} \times C_3) = \equiv^* (D_{2^h}) \otimes \equiv^* (C_3).$$

Example (4.2):

To findthe rational valued characters table of the group $D_{2^5} \times C_3$. By proposition (3.17) the rational valued characters table of D_{32} is equal to $\equiv *(D_{32})=$

Γ-classes	[1]	$[r^{16}]$	$[r^8]$	$[r^4]$	$[r^2]$	[r]	[S]	[<i>Sr</i>]
Θ_1	16	-16	0	0	0	0	0	0
θ_{2}	8	8	-8	0	0	0	0	0
θ_3	4	4	4	-4	0	0	0	0
θ_4	2	2	2	2	-2	0	0	0
θ_5	1	1	1	1	1	-1	-1	1
θ_{6}	1	1	1	1	1	1	1	1
θ_7	1	1	1	1	1	1	-1	-1
θ_8	1	1	1	1	1	-1	1	-1

Table(4.1)

And by proposition (3.12) the rational valued characters table of C_3 is equale to

$$\equiv^* (C_3) =$$

	[1']	[r']
$ heta_{\scriptscriptstyle m l}'$	2	-1
$ heta_2'$	1	1

Table (4.2) Then $\equiv^* (D_{32} \times C_3) =$

Γ- Clases	[1,1']	[1, r']	$[r^{16},1']$	$[r^{16},r']$	$[r^8,1']$	$[r^8,r']$	$[r^4,_{\mathbf{l'}}]$	$[r^4,r']$
$\theta_{(1.1)}$	32	-16	-32	16	0	0	0	0
$\theta_{(1.2)}$	16	16	-16	-16	0	0	0	0
$\theta_{(2.1)}$	16	-8	16	-8	-16	8	0	0
$\theta_{(2.2)}$	8	8	8	8	-8	-8	0	0
$\theta_{(3.1)}$	8	-4	8	-4	8	-4	-8	4
$\theta_{(3.2)}$	4	4	4	4	4	4	-4	-4
$\theta_{(4.1)}$	4	-2	4	-2	4	-2	4	-2
$\theta_{(4.2)}$	2	2	2	2	2	2	2	2
$\theta_{(5.1)}$	2	-1	2	-1	2	-1	2	-1
$\theta_{(5.2)}$	1	1	1	1	1	1	1	1
$\theta_{(6.1)}$	2	-1	2	-1	2	-1	2	-1
$\theta_{(6.2)}$	1	1	1	1	1	1	1	1
$\theta_{(7.1)}$	2	-1	2	-1	2	-1	2	-1
$\theta_{(7.2)}$	1	1	1	1	1	1	1	1
$\theta_{(8.1)}$	2	-1	2	-1	2	-1	2	-1
$\theta_{(8.2)}$	1	1	1	1	1	1	1	1

Table(4.3)

$[r^2,1']$	$[r^2,r']$	[r ,1']	[r,r']	[S,1']	[S ,r']	$[Sr_{,1'}]$	$[Sr,_{r'}]$
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
-4	2	0	0	0	0	0	0
-2	-2	0	0	0	0	0	0
2	-1	-2	1	-2	1	2	-1
1	1	-1	-1	-1	-1	1	1
2	-1	2	-1	2	-1	2	-1
1	1	1	1	1	1	1	1
2	-1	2	-1	-2	1	-2	1
1	1	1	1	-1	-1	-1	-1
2	-1	2	-1	-2	1	-2	1
1	1	1	1	-1	-1	-1	-1

Theorem(4.3):

The cyclic decomposition of $K(D_n \times C_3)$, when $n=2^h$ is equal to

$$K(D_n \times C_3) = \bigoplus_{i=1}^2 K(D_n) \bigoplus_{i=1}^{h+3} C_3$$

Proof:

By theorem (3.18)

$$D(\equiv *(D_{2^h})) = diag\{2^{h+1}, -2^{h-1}, -2^{h-2}, \dots, -2, -2, -2, -1\}$$

And by proposition (3.13)

$$D(\equiv * (C_3)) = diag \{3,1\}$$

From theorem (4.1) and proposition (3.7) we have

$$D(\equiv^* (D_{\gamma^h} \times C_3)) = D(\equiv^* (D_{\gamma^h}) \otimes \equiv^* (C_3)) = D(\equiv^* (D_{\gamma^h})) \otimes D(\equiv^* (C_3))$$

=
$$diag\{2^{h+1}, -2^{h-1}, -2^{h-2}, \dots, -2, -2, -2, -1\} \otimes diag\{3, 1\}$$

$$= \{3.2^{h+1}, 3(-2^{h-1}), 3(-2^{h-2}), \dots, 3(-2), 3(-2), 3(-2), 3(-1), 2^{h+1}, -2^{h-1}, -2^{h-2}, \dots, -2, -2, -2, -1\}$$

By theorem (3.10), we get

$$K(D_{2^h} \times C_3) = C_{32^{h+1}} \oplus C_{32^{h-1}} \oplus C_{32^{h-2}} \oplus ... \oplus C_{3.2} \oplus C_{3.2} \oplus C_{3.2} \oplus C_{3.2}$$

$$\oplus\, C_{\scriptscriptstyle 2^{h+1}} \oplus C_{\scriptscriptstyle 2^{h-1}} \oplus C_{\scriptscriptstyle 2^{h-2}} \oplus \ldots \oplus C_{\scriptscriptstyle 2} \oplus C_{\scriptscriptstyle 2} \oplus C_{\scriptscriptstyle 2} \ .$$

$$= C_{2^{h+1}} \oplus C_{2^{h-1}} \oplus C_{2^{h-2}} \oplus \ldots \oplus C_2 \oplus C_2 \oplus C_2$$

$$\oplus \, C_{2^{h+1}} \oplus C_{2^{h-1}} \oplus C_{2^{h-2}} \oplus ... \oplus C_2 \oplus C_2 \oplus C_2 \oplus C_2 \oplus C_3$$

By theorem (3.14), we have

$$K(C_{2^{h-1}}) = C_{2^{h-1}} \oplus C_{2^{h-2}} \oplus ... \oplus C_2$$

From theorem (3.19), we have

$$K(D_{2^h}) = K(C_{2^{h-1}}) \oplus C_{2^{h+1}} \oplus C_2 \oplus C_2$$

This implies

$$K(D_{2^h} \times C_3) = \bigoplus_{i=1}^{2} K(D_{2^h}) \bigoplus_{i=1}^{h+3} C_3$$

Example(4.4):

To find the cyclic decomposition of $K(D_{16}\times C_3)$ and $K(D_{32}\times C_3)$:

 $K(D_{16} \times C_3) = K(D_2^4 \times C_3)$

From theorem (3.4)

$$K(D_{2^4} \times C_3) = \bigoplus_{i=1}^{2} K(D_{2^4}) \bigoplus_{i=1}^{h+3} C_3$$

By theorem (3.19)

$$K(D_{2^4}) = K(C_{2^3}) \oplus C_{2^5} \oplus C_2 \oplus C_2$$

Then,
$$K(D_{2^4} \times C_3) = \bigoplus_{i=1}^{2} [K(C_{2^3}) \oplus C_{2^5} \oplus C_2 \oplus C_2] \bigoplus_{i=1}^{7} C_3$$

$$= \bigoplus_{i=1}^{2} \left[C_{2^3} \oplus C_{2^2} \oplus C_2 \oplus C_2 \oplus C_2 \right] \bigoplus_{i=1}^{7} C_3$$

$$=\bigoplus_{i=1}^2 C_{2^5} \bigoplus_{i=1}^2 C_{2^3} \bigoplus_{i=1}^2 C_{2^2} \bigoplus_{i=1}^6 C_2 \bigoplus_{i=1}^7 C_3$$

To find $K(D_{32} \times C_3)$ by theorem (4.3)

$$K(D_{32} \times C_3) = K(D_{2^5} \times C_3) = \bigoplus_{i=1}^{2} K(D_{2^5}) \bigoplus_{i=1}^{8} C_3$$

By theorem (3.19)

$$K(D_{32}) = K(D_{2^5}) = K(C_{2^{5-1}}) \oplus C_{2^{5+1}} \oplus C_2 \oplus C_2$$
$$= K(C_{2^4}) \oplus C_{2^6} \oplus C_2 \oplus C_2$$

$$K(D_{32} \times C_3) = \bigoplus_{i=1}^{2} \left[K(C_{2^4}) \oplus C_{2^6} \oplus C_2 \oplus C_2 \right]_{i=1}^{8} C_3$$

Then,

$$=\bigoplus_{i=1}^{2} \left[C_{2^{6}} \oplus C_{2^{4}} \oplus C_{2^{3}} \oplus C_{2^{2}} \oplus C_{2} \oplus C_{2} \oplus C_{2} \oplus C_{2} \right]_{i=1}^{8} C_{3}$$

$$=\bigoplus_{i=1}^2 C_{32} \bigoplus_{i=1}^2 C_{16} \bigoplus_{i=1}^2 C_8 \bigoplus_{i=1}^2 C_4 \bigoplus_{i=1}^6 C_2 \bigoplus_{i=1}^8 C_3.$$

References

- [1] A.M. Basheer, "Representation Theory of Finite Groups", AIMS, South Africa, 2006.
- [2] C.Curits and I.Reiner," Methods of Representation Theory with Application to Finite Groups and Order", John wily & sons, New york, 1981.
- [3] H.H. Abass, "On The Factor Group of Class Functions Over The Group of Generalized Characters of D_n", M.Scthesis, Technology University, 1994.
- [4] H.H. Abass and M.S.Mahdi , "The Cyclic Decomposition of The Factor Group $cf(D_{nh})/\overline{R}$ (D_{nh}) when n is an Odd Number " , J.ofkufa for Mathematics and Computer .Vol.1,No.1 ,April , pp 65-80 ,2010.
- [5] H.H. Abass and M.A.AL-Moneem ,"On ArtinCokernal of The Group D_{nh} when n is an Odd Number" , J. Kerbala University . Vol.8 ,No.4 scientific , PP407-428 , 2010.
- [6] H.H. Abass and K.A.Layith , "The Cyclic Decomposition of The Factor Group $cf(D_{nh}\times C_2,Z)/\overline{R}$ ($D_{nh}\times C_2$) when n is an Odd Number " , J.ofBasrah Researches (science) Vol.37, No.4 ,PP 206-220 , 2011.
- [7] I. M. Isaacs, "On Character Theory of Finite Groups", Academic press, New york, 1976.
- [8] J. P. Serre, "Linear Representation of Finite Groups", Springer Verlag, 1977.
- [9] K.Sekigvchi, "Extensions and The Irreducibilities of The Induced Characters of Cyclic p-Group", Hiroshima math Journal, p 165-178, 2002.
- [10] M. S. Kirdar, "The Factor Group of The Z-Valued Class Function Modulo the Group of The Generalized Characters", Ph. D. Thesis, University of Birmingham, 1982.
- [11] N. R. Mahamood "The Cyclic Decomposition of the Factor Group $cf(Q_{2m},Z)/\overline{R}$ (Q_{2m}) ", M.Sc. thesis, University of Technology, 1995.
- [12] N. S. Jasim, "Results of The Factor Group $cf(G,Z)/\overline{R}$ (G)", M.Sc. thesis, University of Technology, 2005.