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Abstract 
In this paper, a comparison between the limited memory BFGS algorithm, LBFGS developed by Nocedal (1980) 

and free self-scaling VM algorithm called (MBFGS) algorithm has been investigated. 

The free self-scaling VM algorithms is the best due to its low storage requirement and also able to solve large-

scale test problems with 10
6
 variables successfully while the other method fail to converge in this accuracy. 

1. Introduction 
Quasi-Newton (QN) methods for unconstrained 

optimization are a class of numerical techniques for 

solving the following problem 

minx )(xf                                             (1) 

where )(xf  is a nonlinear real-valued function and 

x  is an n-dimensional real vector. At the kth  

iteration, an approximation point kx  and an nxn   

matrix kH  are available. The methods proceed by 

generating a sequence of approximation points due to 

the equation 

kkkk dxx 1                                (2) 

Where k  is calculated to satisfy certain line search 

conditions and kd  is a descent direction. 

One important feature of QN methods is the 

choice of the matrix kH . The methods require kH  

to be positive definite and satisfy the QN equation 

kkkk syH 1 , 0k                      (3) 

Where, kkk xxs  1 and kkk ggy  1  with 

g  the gradient of f . One of the best known QN 

methods is the BFGS method that was proposed 

independently by Broyden [1], Fletcher [2], Goldfarb 

[3] and Shanno [4]. The BFGS update is defined by 

the equation 
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With 1k . 

The BFGS update has been used successfully in many 

production codes for solving unconstrained 

optimization problems. In practice, we observe from 

numerical results of many other papers (see Luksan 

[5] for instance) that the BFGS out-performed many 

QN updates in solving practical problems. 

Our interest here is the limited memory extension to 

the QN methods, which will suit for the solution of 

large-scale optimization problems.  

Limited memory QN methods has been considered by 

Nocedal [6], where it is called the SQN method. The 

user specifies the number m  of QN (BFGS, for 

instance) corrections that are to be kept, and provides 

a sparse symmetric and positive definite matrix 0H , 

which approximates the inverse Hessian of f . 

During the first m  iterations the method is identical 

to the QN method. For mk  , kH  is obtained by 

applying m  QN updates to 0H  using information 

from the m  previous iterations. The limited memory 

BFGS method (LBFGS) by Nocedal uses the inverse 

BFGS formula in the form 
T

kkkkk

T

kk ssVHVH 1                      (5) 

where 
T

kkkkk

T

kk syIVsy         ,/1       (6) 

(see Dennis and Schnabel [7].) 

2. Updating BFGS algorithm: [8] 

To improve the performance of the BFGS 

updates, Biggs [9] first suggested a self-adjustable 

value for the parameter k . Based upon non-

quadratic models, he derived the parameter k  as 

kk t/1                                                    (7) 

where 
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Hence, a modified BFGS update can be defined by 

T

kkkk

T

kk

T

kk

k

T

k

kk

T

k

k

k

T

k

kk

syHHys

ss
ys

yHy

ys
HH
















 

1
1

       (9) 

and a new modified BFGS update can be written as: 

yysy TT

k /                 (10)  and 
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A more useful form of (9) when apply to large-scale 

problems can be written as follows: 
T

kkkkkk

T

k ssvHvH  k1                (12) 
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Therefore, given any initial approximate inverse 

Hessian 0H , a recursive formula for (12) at any 

iteration k  can be expressed as follows: 
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3.Convergence of the BFGS method: 

a. The Global Convergence of the BFGS method: 

We study the global convergence of BFGS, with a 

practical line search, when applied to a smooth 

convex function from an arbitrary starting point 

0x and from any initial Hessian approximation 0B  

that is symmetric and positive definite. 

Theorem (1): Let 0B  be any symmetric positive 

definite initial matrix, and let 0x  be a starting point. 

Then the sequence  kx  converges to the minimizer 

*x  of f . 

 

Proof: Let we define 
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where 


kG is the average Hessian defined as: 
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square root is well defined. Therefore there exists a 

square root 
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kG . Therefore, by defining 

kkk sGz )2/1( , and using the property: 
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we have: 
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by computing the trace of the BFGS approximation 

k

T

k

T

kk

kk

T

k

k

T

kkk

kk
sy

yy

sBs

BssB
BB 1 .        (20) 

we obtain that 
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and let we define: 
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so that k  is the angle between ks  and kk sB .we 

then obtain that: 
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from (14) and (15) we have: 
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we now combine the trace and determinant by 

introducing the following function of a positive 

definite matrix B: 

))ln(det()()( BBtraceB               (25) 

where ln (.) denotes the natural logarithm. It is not 

difficult to show that 0)( B . 

by using (14), (15), (21)-(25), we have that: 
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Now, since the function 0ln1)(  ttth  is 

non-positive for all 0t , the term inside the square 

brackets is non-positive, and thus 
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where we can assume constant 1ln  mMc  to 

be positive, without loss of generality. 

Note from the form kkkk fBs  1  of the quasi-

Newton iteration that kcos  defined by (22) is the 

angle between the steepest descent direction and the 

search direction. 

we know that the sequence kf  generated by the 

line search algorithm is bounded away from zero only 

if 0cos j . 

Assume that 0cos j . Then there exist 01 k  

such that for all kj  , 

we have 

cj 2cosln 2  , 

where c  is the constant defined above. Using the 

inequality in (27) we find the following relation to be 

true for all 1kk  : 
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However, the right hand side is negative for large k , 

giving a contradiction. 

therefore, there exists a subsequence of indices  kj  

such that  0cos   jk , and implies that 

0inflim  kf . 

since the problem is strongly convex, this enough to 

prove that *xxk  . 

b. Superlinear convergence of BFGS method: 

Theorem (2): suppose that f  is twice continuously 

differentiable, and that the iterates generated by the 

BFGS algorithm converge to a minimizer *x . 

Suppose that  
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k xx  hold. Then kx  converges to 

*x  at a superlinear rate. 

Proof: from the following relation: 
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we have from the triangle inequality,  
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by squaring (29) and using (30), we obtain 
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by combining (30) and (31), we obtain also that: 
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since *xxk  , we have that 0k , and thus 

by (32) there exists a positive constant 


 cc  such 

that the following inequalities hold for all large k : 
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we again make use of the nonpositiveness of the 

function ttth ln1)(  . 
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from (36) the right hand side converges to 0, we get 
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And hence the rate of convergence is superlinear. 

  

4. Modified BFGS method: 
Based upon the recursive formula (13) and limited 

memory updating procedures developed by Nocedal 

[6], we can now state a limited memory modified 

BFGS algorithm with inexact line searches as follows 

[10]: 

Algorithm 1: New BFGS method 

Step 1. Choose 0x , 2/10 '   , 

1'   ,and initial matrix IH 0 , Set 0k . 
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(the steplength 1k  is tried first). 
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with k  calculated by (7). 
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In order to obtain the new steps and a new algorithms 

for the modified BFGS we suggest the following:   

To calculate the approximation inverse Hessian, H  

using (37), we need additional 
^

m  storage for  . We 

try to avoid this by introducing new updating formula 

in Step 3 of Algorithm 1 as follows: 
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By doing so, we only need to calculate k  instead of 
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Step 4. Set 1 kk , and go to Step 2. 

 

Algorithm 2: MBFGS method (the new 

modified BFGS algorithm): 

step 1: Choose 0x as initial point, and initial matrix 

IH 0  

step 2: Let 00  , 0k , repeat. 
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step 4: Compute kkk xxs  1 , kkk ggy  1 . 

step 5: Compute kH  from 
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step 6: If 1kg  then stop, otherwise, put 

1 kk  and Goto step (3). 

As can be seen from Tables 1-10, the problems 

especially problems with large number of variables, 

the number of iterations required by the new MBFGS 

algorithm is less than the corresponding numbers 

required by LBFGS. This indicates that the new 

method is a better choice for solving large-scale 

optimization problems. 

4.1: Another family of VM updates was proposed by 

bigges (1971) for use in function minimization 

algorithms. Biggs family takes non-quadratics of the 

objective function into account in order to obtain a 

better approximation to B  than that given by either 

DFP or BFGS updates. 

However, Bigges (1973) observed that a more 

accurate estimate of this curvature can be obtained 

using for independent pieces of information which 

are available along kv , namely the function values 

and directional derivatives at the two successive 

points. The following cubic model of f  along kv  

was contructed by bigges for which: 

.
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and the updating formula kH  has the form: 
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(40) 

where: 
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Table (4.1) A: (Comparison between standard 

LBFGS method and MBFGS using Rosen test 

function (2≤n≤100000) 

Rosen LBFGS   1  MBFGS 

Function NOI 
Function 

Value 
NOI 

Functio

n Value 

n=2 39 7.1D-17 29 7.5D-17 

n=4 37 1.5D-13 28 8.2D-16 

n=8 38 1.3D-12 27 5.5D-14 

n=10 37 2.0D-14 27 4.8D-14 

n=40 35 1.7D-16 29 1.2D-13 

n=100 35 2.1D-13 29 1.3D-13 

n=1000 37 3.4D-12 23 5.5D-15 

n=5000 35 1.1D-9 32 2.8D-14 

n=10000 37 6.8D-13 29 2.5D-12 

n=100000 36 6.9D-10 31 2.3D-10 

Total 366  284  
 

Table (4.1) B: Percentage performance of the new 

modification against the standard ethod using 

Rosen function 

Tools BFGS  1  MBFGS 

NOI 100% 77.6% 
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Table (4.2) A: (Comparison between standard 

LBFGS method and MBFGS using Shallow test 

function (2≤n≤100000) 

Shallow LBFGS   1  MBFGS 

Function NOI 
Function 

Value 

NO

I 

Function 

Value 

n=2 12 2.0D-11 11 1.6D-13 

n=4 13 2.6D-14 12 1.3D-11 

n=8 13 1.4D-13 14 1.1D-13 

n=10 12 1.7D-11 13 9.4D-16 

n=40 14 5.0D-13 11 2.1D-9 

n=100 13 1.0D-11 11 5.3D-16 

n=1000 14 1.2D-11 11 5.4D-8 

n=5000 13 5.7D-8 11 2.0D-15 

n=10000 13 7.5D-10 14 1.9D-8 

n=100000 12 2.0D-8 10 4.2D-8 

Total 129  118  
 

Table (4.2) B: Percentage performance of the new 

modification against the standard method using 

Shallow function 

Tools BFGS  1  MBFGS 

NOI 100% 91.47% 

Table (4.3) A: (Comparison between standard 

LBFGS method and MBFGS using Cubic test 

function (2≤n≤100000) 

Cubic LBFGS   1  MBFGS 

Function NOI 
Function 

Value 
NOI 

Function 

Value 

n=2 38 1.6D-19 17 2.6D-14 

n=4 37 2.7D-13 18 1.6D-18 

n=8 36 2.8D-16 22 1.0D-9 

n=10 37 4.7D-18 22 4.4D-18 

n=40 36 2.1D-14 23 3.2D-14 

n=100 39 6.8D-13 20 4.4D-14 

n=1000 38 1.1D-11 19 1.2D-14 

n=5000 38 3.9D-10 23 2.2D-12 

n=10000 40 5.1D-13 22 3.1D-13 

n=100000 40 2.7D-11 21 2.3D-10 

Total 379  207  

Table (4.3) B: Percentage performance of the new 

modification against the standard method using 

Cubic function 

Tools BFGS  1  MBFGS 

NOI 100% 54.62% 
 

Table (4.4) A: (Comparison between standard 

LBFGS method and MBFGS using Wood test 

function (2≤n≤100000) 

Wood LBFGS   1  MBFGS 

Function NOI 
Function 

Value 
NOI 

Function 

Value 

n=2 17 9.0D+3 13 9.0D+3 

n=4 94 2.0D-17 91 2.7D-15 

n=8 92 8.9D-13 30 2.2D-15 

n=10 135 9.0D+3 116 9.0D+3 

n=40 93 1.1D-12 27 1.0D-14 

n=100 89 1.2D-11 23 5.5D-16 

n=1000 95 3.8D-14 27 2.6D-13 

n=5000 95 1.4D-10 27 1.0D-10 

n=10000 91 1.3D-10 25 3.2D-12 

n=100000 90 5.8D-9 25 1.3D-14 

Total 891  404  
 

Table (4.4) B: Percentage performance of the new 

modification against the standard method using 

Wood function 

Tools LBFGS  1  MBFGS 

NOI 100% 45.34% 

Table (4.5) A: (Comparison between standard 

LBFGS method and MBFGS using Edgar test 

function (2≤n≤100000) 

Edgar LBFGS   1  MBFGS 

Function NOI 
Function 

Value 
NOI 

Function 

Value 
n=2 7 2.3D-11 7 3.0D-11 

n=4 7 1.9D-10 6 1.9D-11 

n=8 8 1.0D-12 6 6.2D-12 

n=10 8 2.4D-13 6 1.2D-12 

n=40 8 2.6D-10 7 6.3D-11 

n=100 8 2.7D-9 9 9.1D-13 

n=1000 8 6.5D-9 7 1.5D-9 

n=5000 8 2.8D-8 7 4.4D-8 

n=10000 8 3.7D-7 8 1.3D-10 

n=100000 8 6.0D-7 7 1.5D-6 

Total 78  70  
 

Table (4.5) B: Percentage performance of the new 

modification  against the standard method using 

Edgar function 

Tools LBFGS  1  MBFGS 

NOI 100% 89.74% 

 

Table (4.6) A: (Comparison between standard 

LBFGS method and MBFGS using Powell test 

function (2≤n≤100000) 

Powell LBFGS   1  MBFGS 

Function NOI 
Function 

Value 
NOI 

Function 

Value 

n=2 --- --- --- --- 

n=4 --- --- --- --- 

n=8 51 1.6D-11 39 1.4D-11 

n=10 49 1.0D-10 39 1.4D-11 

n=40 36 4.8D-10 39 5.3D-10 

n=100 56 3.4D-11 44 4.8D-12 

n=1000 54 2.8D-10 49 1.1D-11 

n=5000 46 1.9D-11 44 8.8D-12 

n=10000 60 1.4D-10 47 4.1D-14 

n=100000 67 4.1D-10 56 2.9D-12 

Total 419  357  
 

Table (4.6) B: Percentage performance of the 

new modification  against the standard 

method using Powell function 

Tools LBFGS  1  MBFGS 

NOI 100% 85.2% 
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Table (4.7) A: (Comparison between standard 

LBFGS method  and MBFGS using Pen2 test 

function (2≤n≤100000) 
Pen2 

LBFGS   1  MBFGS 

Function 
NOI 

Function 

Value 
NOI 

Function 

Value 

n=2 3 5.0D-6 6 5.0D-6 

n=4 3 1.0D-5 2 1.0D-5 

n=8 7 2.0D-5 5 2.0D-5 

n=10 7 2.5D-4 6 2.5D-4 

n=40 8 1.2D-4 5 1.2D-4 

n=100 8 2.5D-4 6 2.5D-4 

n=1000 8 2.5D-3 6 2.5D-3 

n=5000 8 1.2D-2 5 1.2D-2 

n=10000 8 2.5D-2 7 2.5D-2 

n=100000 8 2.5D-1 6 2.5D-1 

Total 68  54  
 

Table (4.7) B: Percentage performance of the 

new modification against the standard 

method using Pen2 function 

Tools LBFGS  1  MBFGS 

NOI 100% 79.41% 
 

Table (4.8) A: (Comparison between standard 

LBFGS method and MBFGS using Dixon test 

function (2≤n≤100000) 
Dixon 

LBFGS   1  MBFGS 

Function 
NOI 

Function 
Value 

NOI 
Function 

Value 

n=2 10 6.1D-13 7 5.7D-16 

n=4 17 2.1D-11 12 2.1D-14 

n=8 40 6.6D-11 22 2.5D-11 

n=10 53 4.7D-11 26 1.5D-11 

n=40 212 5.0D-1 31 3.4D-10 

n=100 185 5.0D-1 32 2.2D-10 

n=1000 205 5.0D-1 27 7.5D-9 

n=5000 191 5.0D-1 50 6.3D-8 

n=10000 171 5.0D-1 74 4.8D-8 

n=100000 178 5.0D-1 74 9.5D-7 

Total 1262  355  
 

Table (4.8) B: Percentage performance of the 

new modification against the standard 

method using Dixon function 

Tools LBFGS  1  MBFGS 

NOI 100% 28.13% 
 

Table (4.9) A: (Comparison between standard 

LBFGS method and MBFGS using Fox test 

function (2≤n≤100000) 
Fox LBFGS   1  MBFGS 

Function 
NOI 

Functio

n Value 
NOI 

Function 

Value 

n=2 12 -5.1D-1 8 -5.1D-1 

n=4 10 -1.0D0 8 -1.0D0 

n=8 12 -2.0D0 8 -2.0D0 

n=10 12 -2.0D0 8 -2.0D0 

n=40 13 -1.0D+1 11 -1.0D+1 

n=100 12 -2.5D+1 8 -2.5D+1 

n=1000 13 -2.5D+2 11 -2.5D+2 

n=5000 12 -1.2D+3 10 -1.2D+3 

n=10000 13 -2.5D+3 11 -2.5D+3 

n=100000 12 -2.5D+4 10 -2.5D+4 

Total 121  93  
 

Table (4.9) B: Percentage performance of the 

new modification against the standard 

method using Fox function  

Tools LBFGS  1  MBFGS 

NOI 100% 76.86% 
 

Table (4.10) A: (Comparison between 

standard LBFGS method and MBFGS using 

Non-Diagonal test function (2≤n≤100000) 
Non-

Diagonal 
LBFGS   1  MBFGS 

Function 
NOI 

Function 

Value 
NOI 

Function 

Value 

n=2 27 7.1D-16 21 2.2D-13 

n=4 32 4.9D-15 34 5.5D-16 

n=8 34 1.5D-13 25 4.4D-16 

n=10 36 2.0D-15 27 3.3D-13 

n=40 36 4.5D-11 30 2.3D-12 

n=100 36 1.6D-15 34 1.8D-15 

n=1000 40 7.3D-15 32 1.0D-15 

n=5000 44 2.1D-14 27 9.2D-13 

n=10000 44 2.8D-12 31 1.6D-19 

n=100000 44 1.6D-13 36 5.1D-15 

Total 373  297  
 

Table (4.10) B: Percentage performance of 

the new modification 

 against the standard method using Non-

Diagonal function 
Tools LBFGS  1  MBFGS 

NOI 100% 79.62% 

5. Numerical Results: 
All routines are written in FORTRAN 77 and 

computational results are obtained on a Pentium IV 

machine. The required accuracy is set as 10
−6

. That is, 

convergence is assumed if the following criterion is 

satisfied at the point kx   

 kk xg ,1max10 6  
         (42) 

where .  is the 2l  (Euclidean) norm. 

A total of 10 standard functions have been chosen for 

evaluation purposes. Several of these functions are 

given by Gill and Murray [11]. Each function is 

tested with ten different dimensions, namely, 

n=2,4,8,10,40, 100, 1000, 5000, 10000, and 100000, 

m=5. 

All test functions are tested with a single standard 

starting point. 

NOI denotes the number of iteration. 

The line search is based on backtracking, using 

quadratic and cubic modeling of )(xf in the 

direction of search. 

As can be seen from Tables 1-10 for most of the 

problems especially problems with large number of 

variables, the number of iterations required by the 

new MBFGS algorithm is less than the corresponding 

numbers required by LBFGS. This indicates that the 

new method is a better choice for solving large-scale 

optimization problems.  
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For the obtained numerical results, we have from 

tables (4.1)-(4.10) that taking NOI as the standard 

tool for comparison neglecting NOF because it 

depends up on NOI under the condition of using the 

cubic fitting technique as a linear search subprogram. 

The improvement percentage of the new method is 

between (28-91)%. 

6: Conclusions: 

We have presented a limited modified BFGS method 

for solving unconstrained large-scale optimization 

problems. The proposed algorithm generates quasi-

Newton directions using a modified BFGS method 

suggested by Biggs [9]. This modified BFGS method 

is then extended to the limited memory version. In 

order to save storage, the modification is only applied 

to the last corrections. Numerical results indicate an 

overall improvement on the number of iteration and 

function/gradient evaluation. 

References: 
[1] C.G. Broyden, “The convergence of a class of 

double-rank minimization algorithms”, J. Inst. Maths 

Applics., 6 (1970), 76-90. 

[2] R. Fletcher, “A new approach to variable metric 

algorithm”, Computer Journal,13, (1970), 392-399. 

[3] D. Goldfarb,“A family of variable metric methods 

derived by variational means, Mathematics of 

Computations”,24 (1970),23-26. 

[4] D.F. Shanno, “Conditioning of quasi-Newton 

methods for function minimization”, Mathematics of 

Computation 24, (1970), 647-656. 

[5] L. Luksan, “Computational experience with 

known variable metric updates, Journal of 

Optimization Theory and Applications”, 83 (1994), 

27-47. 

[6] J. Nocedal, “Updating quasi-Newton matrices 

with limited storage, Mathematics of Computation”, 

35 (1980), 773-782. 

[7] J.E. Dennis, Jr. & R.B. Schnabel, “Numerical 

methods for unconstrained optimization and 

nonlinear equations”, Prentice-Hill Inc., New Jersey, 

1983. 

[8] Malik Abu Hassan, Leong Wah June, & Mansor 

Monsi “Convergence of A Modified BFGS Method” 

Volume 22, Number 1, (2006), pp. 17–24. 

[9] M.C. Biggs, “A note on minimization algorithms 

which make use of non-quadratic properties of the 

objective function”, J. Inst. Maths Applics., 12 

(1973), 337-338. 

[10] Malik Hj. Abu Hassan, Mansor B. Monsi & 

Leong Wah June, “limited modified BFGS method 

for large-scale optimization, matematika”, (2001), 

Jilid 17,bil.1, hlm. 15–23 

[11] P.E. Gill & W. Murray, “Conjugate-gradient 

methods for large scale nonlinear optimization”, 

Technical report SOL 79-15, Department of 

Operation Research, Stanford University, Stanford, 

1979. 

 

 

 

 

مثلية ( ذات القياس الحر في الأVMوخوارزمية المتري المتغير) LBFGSمقارنة بين خوارزميات 

 غير المقيدة
 اء الدين محمدعمر به

 قسم الرياضيات ، كلية العلوم ، جامعة كويه ، اربيل ، العراق
 ( 8000/  5/   82  تاريخ القبول: ---- 8009/  9 /  82  تاريخ الاستلام:) 

 الملخص
( وأوار ميية الملييرل المل ييير واللي  سييميت أوار مييية  ل 0920المطييورم مية قبييل  وسييي ال ) LBFGSفي  ذيياا الب يم، لييم المبار يية بيية أوار مييية  ل 

MBFGS. 
10الأوار مية المبلر ة ذ  المفضلة  سبة الى قلة الأي ة المطلوبية وكيالد قي رللا حليى  يل المسياال اات البييا  العيال  ل يل اليى 

مية المل ييرات  6
 ول حلى  ف  ال قة.ب جاح بي ما الطريبة الثا ية لفشل ف  ال  

 


