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Abstract

In this paper, a comparison between the limited memory BFGS algorithm, LBFGS developed by Nocedal (1980)
and free self-scaling VM algorithm called (MBFGS) algorithm has been investigated.

The free self-scaling VM algorithms is the best due to its low storage requirement and also able to solve large-
scale test problems with 10° variables successfully while the other method fail to converge in this accuracy.

1. Introduction

Quasi-Newton (QN) methods for unconstrained
optimization are a class of numerical techniques for
solving the following problem

min, T (X) 1)

where f(X) is a nonlinear real-valued function and
X is an n-dimensional real vector. At the Kth
iteration, an approximation point X, and an NXn

matrix H, are available. The methods proceed by

generating a sequence of approximation points due to
the equation

X = Xy + A0y )
Where A, is calculated to satisfy certain line search

conditions and d, is a descent direction.

One important feature of QN methods is the
choice of the matrix H, . The methods require H,
to be positive definite and satisfy the QN equation
HiaYe = s >0 ®3)
Where, S, = X, ,; —X.and Y, =0,,; — 0, with
g the gradient of f . One of the best known QN

methods is the BFGS method that was proposed
independently by Broyden [1], Fletcher [2], Goldfarb
[3] and Shanno [4]. The BFGS update is defined by
the equation

Heo =H+
TH
1 (ak +M SkSI (4)
T Sk k
Sk Y

_SkyIHk - HkYkSI

with o, =1.

The BFGS update has been used successfully in many
production codes for solving unconstrained
optimization problems. In practice, we observe from
numerical results of many other papers (see Luksan
[5] for instance) that the BFGS out-performed many
QN updates in solving practical problems.

Our interest here is the limited memory extension to
the QN methods, which will suit for the solution of
large-scale optimization problems.

Limited memory QN methods has been considered by
Nocedal [6], where it is called the SQN method. The

Ya.

user specifies the number m of QN (BFGS, for
instance) corrections that are to be kept, and provides

a sparse symmetric and positive definite matrix H
which approximates the inverse Hessian of f .
During the first M iterations the method is identical
to the QN method. For K > m, H, is obtained by

applying m QN updates to H0 using information

from the M previous iterations. The limited memory
BFGS method (LBFGS) by Nocedal uses the inverse
BFGS formula in the form

L Y :VkT H,V, +pksksl 5)
where
P =1yese, Vi=l-pYse 6

(see Dennis and Schnabel [7].)
2. Updating BFGS algorithm: [8]

To improve the performance of the BFGS
updates, Biggs [9] first suggested a self-adjustable

value for the parameter «, . Based upon non-

quadratic models, he derived the parameter ¢, as

a, =1/t, @)
where
6
te = (F(% ~ F (X +51 G )-2 (®)
Sk Y

Hence, a modified BFGS update can be defined by
1 TH
Heo=H +—= (ak + e - Y Jsks[
Sy Y Sk Yk ©)
-s. Y He —H i8¢
and a new modified BFGS update can be written as:

a.=Yy'sly'y (10) and
1
H.,=H, +——*
sy,

2
(1J ROALINTS NG CEv
oy S Yx

=S Ve He —H,y,s¢
A more useful form of (9) when apply to large-scale
problems can be written as follows:

T T
H,.. =vi HV + 0,8, (12)
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Therefore, given any initial approximate inverse
Hessian H,, a recursive formula for (12) at any
iteration K can be expressed as follows:
Hyey =V Vg ) H VgV, )

+ Py (Vg -V )SySg (VyenVy )

+ay o, (Vg V5 )88, (Ve )
(13)

+akpksks-kr
3.Convergence of the BFGS method:
a. The Global Convergence of the BFGS method:
We study the global convergence of BFGS, with a
practical line search, when applied to a smooth
convex function from an arbitrary starting point

X, and from any initial Hessian approximation B0
that is symmetric and positive definite.
Theorem (1): Let B, be any symmetric positive

definite initial matrix, and let X, be a starting point.

Then the sequence {Xk} converges to the minimizer
X* of f.

Proof: Let we define

T
S
m, =@. (14)
Sk Sk
T
|\/|k :M. (15)
Y Sk
such that
T Th-
S s, G, s
ykk=kkk2m (16)

S SeSy

where G, is the average Hessian defined as:
1

G, = .[Vz f (X, +fakpk)dr}
0

and we know that G, is positive definite, so its
square root is well defined. Therefore there exists a
-(1/2 AT
square root G, ™% satisfying:
- _~-112) ~-(1/2)
G, =G, ¥ G W2,

z, = Gk’(llz)sk , and using the property:

Therefore, by defining

Yo =G o, =G5, (17)

we have:
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_ T
yISk _ (Gk(1/2)sk) Gk(1/2)sk
yTy (G—(1/2) )T G G W2
k 7k ko Sk kO S (18)
Lz
=

2, Gy z,
then
T TA~-
2, G,z
Yi Sk Zy Z

by computing the trace of the BFGS approximation
B, 5S¢ By N Yi Ve

B :
T T
S BySy Y Sk

kel — Bk - (20)

we obtain that
trace(B, ,) =trace(B,)

B IBsi|’ . Iyl 1)
ScBiSk VS
and let we define:

(22)

so that @, is the angle between S, and B, S, .we
then obtain that:

[Besi’ _ [Bes s

T 2
5: By s, (SI B, S, ) 23)
Sk BiSi %
Is.|°  cos® 6,
from (14) and (15) we have:
T
S
det(B,.,) = det(B, ). Lk
) k Sk (24)
S, S m
Tk—k = det(B, ).—
Sk BiSi Ok

we now combine the trace and determinant by
introducing the following function of a positive
definite matrix B:

¢(B) = trace(B) — In(det(B)) (25)

where In (.) denotes the natural logarithm. It is not
difficult to show that ¢(B) > 0.

by using (14), (15), (21)-(25), we have that:

Ya
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A«
cos’ 6,
—In(det(B,))—Inm, +Inq,
=p(B,)+(M, —Inm, -1)

i
cos” 6, cos” 6,

»(B,1) =0(B)+M, -

(26)

+|1-

+Incos” 6,
Now, since the function h(t) =1—t+Int<0 is

non-positive for all t > 0, the term inside the square
brackets is non-positive, and thus
0<o(By,;) <(B,)+ck +

k 2
+2,,Incos® 6,

where we can assume constant C=M —Inm—1 to
be positive, without loss of generality.

=—a, B_'Vf, of the quasi-

(27)

Note from the form S,

Newton iteration that COS 6, defined by (22) is the

angle between the steepest descent direction and the
search direction.

we know that the sequence ||ka|| generated by the
line search algorithm is bounded away from zero only
if cos@; — 0.

Assume that c0S@; — 0. Then there exist k; >0

such that forall j >k,

we have

Incos® 6, <—2c,

where C is the constant defined above. Using the
inequality in (27) we find the following relation to be
true forall K > K;:

Ky k
0<¢(B,)+ck+Y Incos® 6, + »_ (-2c)
= et} (28)

kl
=¢(B,)+ Y Incos? §; + 2ck, —ck
j=1
However, the right hand side is negative for large K,
giving a contradiction.
therefore, there exists a subsequence of indices {Jk }

such that {COSQJk 25>0}, and implies that

liminf||Vf, | - 0.

since the problem is strongly convex, this enough to
prove that X, —> X™*.

b. Superlinear convergence of BFGS method:

Theorem (2): suppose that f is twice continuously
differentiable, and that the iterates generated by the

BFGS algorithm converge to a minimizer X™*.
Suppose that

Yay
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Z”Xk —X*||< oo hold. Then X, converges to
k=1

X at a superlinear rate.

Proof: from the following relation:

Yy — Sk

- <cCg (29)

we have from the triangle inequality,

Y|~

Sk

SkI<ce

Sl —

<ce, s,

y

=

so that

L-ce)|s,

<ly ) <@+ce)s.| o

by squaring (29) and using (30), we obtain
2 _T

_zyk S~k+

(1_é5k)2 Sk

2 O
_Zyk Sk+

Yk

IN

2 2 2

<cC 6‘k2

Sk

and therefore
T 2 2

2

2y, s, > (l-2ce, +C g2 +1-C &)

Sy

2

= 2(1—(;gk) S,

it follows from the definition of My that
_T

_ : .
my = Jx “>1-ce, (1)

Sk

by combining (30) and (31), we obtain also that:
2

Y«

<1+c<9k

My =

, (32)
Y, Sk 1-C&
since X, — X, we have that & — 0, and thus

by (32) there exists a positive constant C > C such
that the following inequalities hold for all large K :
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2¢

M, <1+ g <1+Ce, (33)

1-ceg,
we again make use of the nonpositiveness of the
function h(t) =1-t+Int.

therefore we have

%— In(1—x)= h(lij <0

now for K large enough we can assume that

ce, <1/2, and therefore

In(l—Cgka _C_g" >-2Ce,.  (34)
l-cg,

this relation and (31) imply that for sufficiently large

K , we have

Inm, > In(l—cekj > —Zégk > —2C¢, .
we can get from (26), (33) and (34)

0< ¢(Bk+;) S(p(l?;k)+3cgk +1Incos? ék+

0y

cos’ 6,

Qy

+11- +1In

cos’ 6,
(35)

by using (35) and using i”xk —X*||<oo we
k=1

have:

iln L TS 4

20| cos® @, cos’ 6,

<@(By)+3c) &) <+
j=0
since the term in the square brackets is non positive,

and since 1/cos® 0; 20 forall j,we obtain:

limin — =0,
77 cos? 6,
. q; q;
liml1-——+Inh——1|=0
—0
: cos’ 6, cos’ 6,
which imply that
limcos®; =1, limcosq; =1 (36)
J—ox® J—ox©

From (23), we have
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2

G*_llz(Bk _G*)SkHZ H(Bk— I)Sk

2 2
Gl%s N
6+ S,
TP ~ - -~ .
B, S| —2s; B, s +S, S,
SI Sk
~2 ~
G —-2q,+1
cos &/
from (36) the right hand side converges to 0, we get
i (B, =G.)s,| o
S

And hence the rate of convergence is superlinear.

4. Modified BFGS method:

Based upon the recursive formula (13) and limited
memory updating procedures developed by Nocedal
[6], we can now state a limited memory modified
BFGS algorithm with inexact line searches as follows
[10]:

Algorithm 1: New BFGS method

Step 1. 0<p <1/2,

B < B <1,andinitial matrix H, =1,Set k =0.
Step 2. Compute
d, =-H,g,.and X, ,; =X + 4, d,

Choose Xy s

where A, satisfies

f(x +244d) < f(x)+B40:d,
a(x +4d,)"d, > pg.d,

(the steplength A, =1 is tried first).

Step 3. Let m=min{m,k—1} Update H, for

M-+1 times by using the pair {yj 'S }k ~ i.e.let
j=k-m

H

k+1

= (V:"'V:,;)Ho(vk,r;"“vk)

T

ta .p vV
k-m" k-m

T

v . )s .s

k-m+1” k-m  k-m

S

k-m+2 k-m+1 k-m+1

(v,...v,)

+a (v, ..v" s’

k-m+1" k-m+1

V)

k-m+2

+akpksk5: (37)
with ¢, calculated by (7).

yav
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In order to obtain the new steps and a new algorithms
for the modified BFGS we suggest the following:
To calculate the approximation inverse Hessian, H

using (37), we need additional m storage for o . We
try to avoid this by introducing new updating formula
in Step 3 of Algorithm 1 as follows:

Hk+1 = (VI"'VL%)HO(Vk%““\/k)

T T T

+ AV v .S . .

pk—m( k k-m+1" k-m k-m k-m+1 k)

T T T

+ Ve v )s o s L (VoL LY

pk—m+1( k k-m+2 k-m+1 k-m+1 k-m+2 k)

T
+ &, PSSk (38)

By doing so, we only need to calculate ¢, instead of

a ., ~ .., Therefore formula (38) is

k—m k—m+1
preferred.
Step 4. Set K =k +1, and go to Step 2.

Algorithm 2: MBFGS method (the new
modified BFGS algorithm):

step 1: Choose X, as initial point, and initial matrix
H, =1

step 2: Let &, >0, k =0, repeat.

step 3 Compute d, =-H,g,, and
X = X + A4y,

where A, satisfies the following conditions:

(X +A4d) < F(x)+ B A4 9,d,

9(x, +4d,)"d, > pg.d,

step 4: Compute S, = X1 — X Y = 0va — 9
step 5: Compute H, from

Hk+l:Hk+ Tl *

Sk Yk

1) yH
(_] SYHY o
@, Sk Yk

S Y Hie = Hie iy

.
st a, = ykTyk
Yk Sk

and

He =V VY DH Vs V)
+p sV VS oS (Ve L, V)
+ Pea Ve VDS oSk, Vi Vy)
+a, P, S, St

Ya¢
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step 6: If ||9k+1||<<9 then stop, otherwise, put

k =k +1 and Goto step (3).

As can be seen from Tables 1-10, the problems
especially problems with large number of variables,
the number of iterations required by the new MBFGS
algorithm is less than the corresponding numbers
required by LBFGS. This indicates that the new
method is a better choice for solving large-scale
optimization problems.

4.1: Another family of VM updates was proposed by
bigges (1971) for use in function minimization
algorithms. Biggs family takes non-quadratics of the
objective function into account in order to obtain a
better approximation to B than that given by either
DFP or BFGS updates.

However, Bigges (1973) observed that a more
accurate estimate of this curvature can be obtained
using for independent pieces of information which

are available along V,, namely the function values
and directional derivatives at the two successive
points. The following cubic model of f along Vv,
was contructed by bigges for which:
T
=— :_/k Yk . (39)
4Vk Oya t 2Vk Oy _6( fk+l - fk)

and the updating formula H, has the form:

Pk

T

g Howe, v

H Bigges — + +W, W . (40
e TRy, TPy, e 49
where:
T 1/2 Vk Hkyk
Wk:(kakyk) T T (41)
ViYe o Y HiYe

Table (4.1) A: (Comparison between standard
LBFGS method and MBFGS using Rosen test

function (2<n<100000)
Rosen LBFGS p=1 MBFGS

. Function Functio
Function NOI Value NOI n Value
n=2 39 7.1D-17 29 7.5D-17
n=4 37 1.5D-13 28 8.2D-16
n=8 38 1.3D-12 27 5.5D-14
n=10 37 2.0D-14 27 4.8D-14
n=40 35 1.7D-16 29 1.2D-13
n=100 35 2.1D-13 29 1.3D-13
n=1000 37 3.4D-12 23 5.5D-15
n=5000 35 1.1D-9 32 2.8D-14
n=10000 37 6.8D-13 29 2.5D-12
n=100000 36 6.9D-10 31 2.3D-10

Total 366 284

Table (4.1) B: Percentage performance of the new
modification against the standard ethod using
Rosen function
Tools BFGS p=1

NOI 100%

MBFGS
77.6%
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Table (4.2) A: (Comparison between standard
LBFGS method and MBFGS using Shallow test

ISSN: 1813 - 1662

Table (4.4) B: Percentage performance of the new
modification against the standard method using

function (2<n<100000) Wood function
Shallow | LBFGS p=1 MBFGS Tools LBFGS p=1 | MBFGS
Function NOI Function | NO | Function
Value | Value NOI 100% 45.34%
n=2 12 20D-11 | 11 | 1.6D-13 -
n=a 13 56D14 | 12 | 13D-11 Table (4.5) A: (Comparison between standard
n=8 13 14D13 | 14 | 1.1D-13 LBFGS method and MBFGS using Edgar test
n=10 12 | 1.7D-11 | 13 | 9.4D-16 function (2=n=100000)
n=40 14 50D-13 | 11 2.1D-9 Edgar LBFGS p=1 MBEGS
n=100 13 10D-11 | 11 | 5.3D-16
n=1000 14 12D-11 | 11 5.4D-8 . Function Function
n=5000 13 | 57/D8 | 11 | 2.0D15 Function | NOT| = ai0e | NOV | value
n=10000 13 7.5D-10 14 1.9D-8 n=2 7 2.3D-11 7 3.0D-11
n=100000 12 20D-8 | 10 4.2D-8 —
Total 129 118 n=4 7 | 19D-10 | 6 | 1.9D-11
Table (4.2) B: Percentage performance of the new ”fS 8 1.0D-12 6 6.2D-12
modification against the standard method using n=10 8 2.4D-13 6 1.2D-12
Shallow function n=40 8 2.6D-10 7 6.3D-11
Tools BFGS p=1 MBFGS n=100 8 2.7D-9 9 9.1D-13
NOI 100% 91.47% n=1000 8 6.5D-9 7 1.5D-9
Table (4.3) A: (Comparison between standard n=5000 8 28D-8 7 4.4D-8
LBFGS metfrl‘l‘l’l‘it"’i‘(';‘: ('\2"<'1F<C15030‘33'0“)9 Cubic test n=10000 8 | 3707 | 8 | 13D10
Cubi LBFGS p =1 MBFGS 100000 8 6.0b-7 / 1.5D-6
ubic P = _ Total 78 70
Function NOI Fg/naciﬂgn NOI Fs/”aﬁﬂgn Table (4.5) B: Percentage performance of the new
=2 38 | 16D19 | 17 5 6D-14 modification against the standard method using
n=4 37 | 2.7D-13 | 18 | 1.6D-18 Edgar function
n=8 36 | 2.8D-16 | 22 | 1.0D9 Tools LBFGS p=1 MBFGS
n=10 37 | 47D-18 | 22 4.4D-18 3 5
n=40 36 | 21D-14 | 23 3.2D-14 NOI 100% 89.74%
n=100 39 | 6.8D-13 | 20 4.4D-14 -
n=1000 38 11D-11 19 12D-14 Table (4.6) A: (Comparison between standard
n=5000 38 3.9D-10 23 22D-12 LBFGS method and MBFGS using Powell test
n=10000 40 | 51D-13 | 22 | 3.D-13 function (2<n<100000)
n=100000 40 | 27D-11 | 21 2.3D-10 Powell LBFGS p=1 MBFGS
Total 379 207 _ _
Table (4.3) B: Percentage performance of the new Function | NOI Fl\‘/”a‘ih'g” NOI F%”a‘iﬂg”
modification against the standard method using o
Cubic function =
Tools BFGS p=1 MBFGS n=8 51 | 16D-11 | 39 | L4D-l
NOI 100% 54.62% n=10 49 1.0D-10 39 | 1.4D-11
Table (4.4) A: (Comparison between standard n=40 36 4.8D-10 39 5.3D-10
LBFGS method e'md MBFGS using Wood test n=100 56 3.4D-11 44 4.8D-12
function (2<n<100000)
Wood Leres p =1 MBEGS n=1000 54 2.8D-10 49 1.1D-11
Function NOI Fuvnction NOI Function n=5000 46 1.9D-11 44 8.8D-12
alue Value
- 7 T 90D:3 3 9.0D+3 n=10000 60 1.4D-10 47 4.1D-14
n=4 94 | 2.0D-17 91 | 2.7D-15 n=100000 | 67 4.1D-10 56 2.9D-12
n=8 92 | 89D-13 30 [ 2.2D-15
n=10 135 | 9.0D+3 | 116 | 9.0D+3 Total 419 357
n=40 93 | 11D-12 | 27 | 1.0D-14 Table (4.6) B: Percentage performance of the
n=100 89 | 12011 | 23 | 55D-16 new modification against the standard
2;;888 gg f‘igig ;; iggig method using Powell function
n=10000 91 | 13D-10 | 25 | 32D-12 Tools LBFGS p=1 MBFGS
n=100000 90 5.8D-9 25 | 1.3D-14 o 0
Total 891 208 NOI 100% 85.2%

Yde
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Table (4.7) A: (Comparison between standard
LBFGS method and MBFGS using Pen2 test

ISSN: 1813 - 1662

Table (4.9) B: Percentage performance of the
new modification against the standard

function (2<n<100000) method using Fox function
Pen2 LBrGs p =1 MBFGS Tools LBFGS p=1 MBFGS
Function Function Function NOI 100% 76.86%
NOI Value NOI Value .
=2 3 50D6 6 50D6 Table (4.10) A: (Comparison between _
n=4 3 1.0D-5 2 1.0D-5 standard LBFGS method and MBFGS using
n=8 I 2.0D-5 5 2.0D-5 Non-Diagonal test function (2<n<100000)
n=10 7 25D-4 6 25D-4 Non-
n=40 8 12D-4 5 12D-4 A | LBFGS p=1 MBFGS
n=100 8 2.5D-4 6 2.5D-4 lagona : i
n=1000 3 25D3 6 25D3 Function NOI Function NOI Function
n=5000 8 1.2D-2 5 1.2D-2 Value Value
n=10000 8 25D-2 7 25D-2 n=2 27 7.1D-16 21 | 2.2D-13
n=100000 8 25D-1 6 25D-1 n=4 32 4.9D-15 34 | 5.5D-16
Total 68 54 n=8 34 1.5D-13 25 | 4.4D-16
Table (4.7) B: Percentage performance of the n=10 36 | 20D-15 | 27 | 3.3D-13
- . n=40 36 4.5D-11 30 | 2.3D-12
new modification against the standard =
hod using Pen2 f . n=100 36 1.6D-15 34 | 1.8D-15
method using Pen2 function n=1000 | 40 | 7.3D-15 | 32 | 1.0D-15
Tools LBFGS p=1 MBFGS n=5000 44 | 21D-14 | 27 | 9.2D-13
NOI 100% 79.41% n=10000 44 2.8D-12 31 1.6D-19
- - n=100000 | 44 1.6D-13 36 | 5.1D-15
Table (4.8) A: (Comparison between standard Total 373 297

LBFGS method and MBFGS using Dixon test

Table (4.10) B: Percentage performance of
the new modification
against the standard method using Non-
Diagonal function

Tools

LBFGS p=1

MBFGS

NOI

100%

79.62%

function (2<n<100000)
Dixon Leres p =1 MBFGS
Function Function Function

NOI Value NOI Value

n=2 10 6.1D-13 7 5.7D-16
n=4 17 2.1D-11 12 2.1D-14
n=8 40 6.6D-11 22 2.5D-11
n=10 53 4.7D-11 26 1.5D-11
n=40 212 5.0D-1 31 3.4D-10
n=100 185 5.0D-1 32 2.2D-10
n=1000 205 5.0D-1 27 7.5D-9
n=5000 191 5.0D-1 50 6.3D-8
n=10000 171 5.0D-1 74 4.8D-8
n=100000 178 5.0D-1 74 9.5D-7
Total 1262 355

Table (4.8) B: Percentage performance of the

new modification against the standard
method using Dixon function

Tools

LBFGS p=1

MBFGS

NOI

100%

28.13%

Table (4.9) A: (Comparison between standard

LBFGS method and MBFGS using Fox test

function (2<n<100000)

Fox LBFGS p=1 MBFGS
Function Functio Function

NOI n Value NOI Value
n=2 12 -5.1D-1 8 -5.1D-1
n=4 10 -1.0D0 8 -1.0D0
n=8 12 -2.0D0 8 -2.0D0
n=10 12 -2.0D0 8 -2.0D0
n=40 13 -1.0D+1 11 -1.0D+1
n=100 12 -2.5D+1 8 -2.5D+1
n=1000 13 -2.5D+2 11 -2.5D+2
n=5000 12 -1.2D+3 10 -1.2D+3
n=10000 13 -2.5D+3 11 -2.5D+3
n=100000 12 -2.5D+4 10 -2.5D+4
Total 121 93

Yan

5. Numerical Results:

All routines are written in FORTRAN 77 and
computational results are obtained on a Pentium IV
machine. The required accuracy is set as 10 °. That is,
convergence is assumed if the following criterion is

satisfied at the point X,
o] <207 xmax [

where |||| is the |2 (Euclidean) norm.

(42)

A total of 10 standard functions have been chosen for
evaluation purposes. Several of these functions are
given by Gill and Murray [11]. Each function is
tested with ten different dimensions, namely,
n=2,4,8,10,40, 100, 1000, 5000, 10000, and 100000,
m=5.

All test functions are tested with a single standard
starting point.

NOI denotes the number of iteration.

The line search is based on backtracking, using

quadratic and cubic modeling of f(X)in the

direction of search.

As can be seen from Tables 1-10 for most of the
problems especially problems with large number of
variables, the number of iterations required by the
new MBFGS algorithm is less than the corresponding
numbers required by LBFGS. This indicates that the
new method is a better choice for solving large-scale
optimization problems.
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For the obtained numerical results, we have from
tables (4.1)-(4.10) that taking NOI as the standard
tool for comparison neglecting NOF because it
depends up on NOI under the condition of using the
cubic fitting technique as a linear search subprogram.
The improvement percentage of the new method is
between (28-91)%.

6: Conclusions:
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