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Abstract

The best spectral CG-algorithm which is introduced by (Birgin &Martinez) and
(Andrei. N) is modified in this paper by a hybrid search direction to overcome the
lackness positive definiteness of the matrix defining the search direction.Two
successive scalar parameters are introduced in this paper which are satisfy QN-like
condition. These parameters are combined in such away to give a hybrid scaled search
direction.The new proposed algorithm is still global convergent both theoretically and
numerically.Computational results for (43) unconstrained test functions(Andri.N)show
that the new algorithm substantially outperform the well- known(Andrei.N) scaled
algorithm including the spectral (Birgin & Martinez) algorithm .

Introduction

Our problem is the following unconstrained optimization problem :
min - f (x) (1.1

xeR"
where a function f : R" — R is smooth and it’s gradient g(x)=Vf(x) Is
available.lterative methods are widely used for solving (1.1) and it’s form
IS giving by

X = Xy +akdk

, k=01,.. ..(1.2)
where X, € R" is the k-th approximation to the solution, «, >O0is a
step-size.and d, eR" is a search direction and satisfy the
(Wolfe,1969,1971) conditions:

f(x +ad)-f(x)<o0.d ~..(1.3)
Vi (x, +,d,)"d, >0,0,d, ..(1.4)
where 0< o, <o, <1

There are many kinds of iterative method,the most effective iterative
method for solving (1.1l)are the Newton and Quasi-Newton methods
because they have fast rate of convergence property.

69



Journal of Kirkuk University —Scientific Studies , vol.2, No0.1,2007

However, they need matrices,this makes it difficult to apply these
methods to a large scale problem,recently,the limited memory BFGS
method is used to overcome this difficulty;variable —metric algorithm begin

with an estimate X; to the minimiser X.,,and a numerical estimate H, of
the inverse Hessian matrix G™(x).A sequence of points X, is then defined
by :

X =X —a H 9y
where & is a scalar chosen so as to reduce the value of f(x) at each
iteration.The matrix H, is updated by :

Hy = H, —Hykg;—y:;':kwkkaI P, ifi ..(15)
with

S, =X — X and Y, =0,,, — 0,

W, = (Yx HYi)s, = (¢ YOH, Y, ...(1.6)

where @, , p, arescalars

The updating is perform so that :

Hi1 Y = oSy .(1.7)

This condition is commonly satisfied with p, = p =1, Vk and is then called
the Quasi-Newton (QN) condition; with this restriction of (1.2) we have so
called (Broyden family).For a quadratic function, G™ is constant and
satisfies s, =Gy, for any corresponding y, and S, ; Cleary the objective
of such updating formula is that H, tends ( in some sense) to the inverse
Hessian G7*(x,). For a general function. It is well-known that if f is a
quadratic and exact line search are carried out then after n iterations,
H,., = G *.Perhaps,the strongest result concerning the convergence of the

H-matrices towards G for quadratic function is that of (Oren and
Luenberger) .
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Original Algorithm (Andrei, N.)

step(1): Let x, e R" , and the parameters 0< o, <o, <1. Compute f(x,)and
g, =VFf(x,).Set d, =—g, and «, =1/|g,|. Set k=0.

Step(2): Compute «, satisfy the wolfe conditions (1.3) and (1.4).Update
the variables.Compute f(X,.;) , 9y.; and s, =X, — X4,
Ye = Ok — G -

Step(3): Test for the continuation of iterations. If this test is satisfied,then
the iterations are stopped, else set k=k+1.

.
Step(4): Compute 6, using a spectral 6, ,, = Sﬁl or an anticipative
k Yk

1
9k+1 =
7k+1
Where y,,, IS given by :
2 1
Va =W?[f(xk+l)_ f(xk)_akg:dk] or
k Yk k
2 1 .
Vi = d7d (@ -1 )2 [f(Xe)— f(x)— (v, —m7)9,d, ], where
k Yk k k
Ny = ! iz[f(xk)— f(x.,)+a.9.d, +0],selectareal 5§>0.

gldk ay

Step(5): Compute the search direction by :

k Sk YeSc ) Y S Yk Sk
Step(6): Compute the initial guess of the step-length as :
o, = o, |di ], /|dy ], -
With this initialization compute «, satisfying wolfe conditions
(1.3) and (1.4).Update the variables X, , = X, + «,d, .Compute

Ok Yi Vi | QS OrY
diis :_0k+lgk+1+0k+l[¥Jyk _|:(1+0k+l¥j P O (s (2]

f(X.1), 9 and s, =x. =X, Yy =041 — 0,
Step(7): Store: =6, ,s=s, and y=Yy,.

Step(8): Test for the continuation of iterations.If this test is satisfied,then
the iterations are stopped, else set k=k+1.

Step(9): Restart. If the powel restart criterion ‘g[ﬂgk‘ >0.2|g,.,|" orthe

angle restart criterion dy g,,, >—107||d,||,|9,..|, are satisfied,then

71



Journal of Kirkuk University —Scientific Studies , vol.2, No0.1,2007

go to step(4); otherwise continue with step(10) .
Step(10): Compute:

TS B T T T
v:6gk—9[ng y +||1r 2|93y M}s

y's y's Jy's y's

T S B T T T
w=ey —0 Py +||14e LT YaS g YiaY g

y's 7 yTs Jy's s
and

(G S IW+ (WS, , —(1+ YW ] 0 Ss
VSt YeaScs ) YeaSis
Step(11): Compute the initial guess of the step-length as :
o = oy |dy s, /d ], -
With this initialization compute «, satisfying wolfe conditions
(1.3) and (1.4) . Update the variables x, , =x, +«,d, .Compute
f (%) 5 G and Sk = Xer =X v Y =01 — G-

Step(12): Test for the continuation of iterations.If this test is satisfied,then
the iterations are stopped, else set k=k+1 and go to step(9).

The new hybrid parameters for the search direction
For solving unconstrained optimization problem (1.1) we can use an
iterative process,initialized with x, and d, =—g, , X, =X, +,d,

Ay ==6ca9ia + Ay ...(3.1)
if o=1,then we get the classical conjugate gradient(CG) algorithms
according to the value of g, .On other hand if g, =0 then we get another

class of algorithms according to the selection 4,,.There are two
possibilities for 6 ,: a positive scalar or a positive definite matrix.If
0., =1we have steepest descent algorithm.If 6, ., =G™ or an approximation

of it then we get the Newton or Quasi-Newton algorithm. Respectively ,
therefore we assume that 6., =0 is selected in a Quasi-Newton manner and

B. =0 then (2.1) represents a combination between (QN) and (CG). To
determine ¢,,, consider the following procedure:Let d,,=-H,,.0,.,
d., =-H,,9.., Where H,, is the inverse Hessian or an approximation of
an inverse Hessian which satisfies Quasi-Newton condition.
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and d; =-6,,9,,+44d, let —H,,9,,, =—6..9..+ B,
multiply both sides by y, ,we get —yiH,,,0,.; = =61 Yx G + %S Yi Sk s

where  ( HiaVi =5S¢) - ~ O Sk = O Vi Gicar + A By Ve S or
T T _ + Ts

o, . Z@_Fakﬂk ):k S 9. - (94 OT‘k:Bkyk) K ...(3.2)
k D Y 9k yk gk+l

dk+l =619+ ﬁkdk
.
For CG algorithm if g, = % then

=
k Yk

;

O Y
T

Sk Yk

-
—_ gk+1sk
- _9k+1gk+l+ ST Yk

k yk
A,y =S 0y (because ELS).

Uy.sS Yoy
SO Yk Y Y =S¢ 0y O 0,,100,.Y, = @+ S$ S0 —

k Jk k Jk

dk+1 = _9k+1gk+1 + Sk

o Sk Vit Vi YidSk Gk

O ST 9 ~G3
From the two new values of the parameters of the scaled parameters

defined in (3.2) and (3.3), we are going to propose a new hybrid scaled

parameter from the linear combination of the two parameters defined

earlier I (3.2) and (3.3) as follows:

Outlines of the new proposed algorithm:

step(1): Let x, eR"; d, =-g, ; and k=0.

Step(2): Compute «, satisfy the wolfe conditions (1.3) and (1.4).
Compute f(X.,) s Gwa » S, and 'y, .

Step(3): Test for the convergence . If |g,.,|<1x10™° stop , else continue.

Step(4): Compute the new scalar parameters using

ﬂ — (gk+l +f‘kﬁk yk)sk _from (3.2)
Y 9k
* T T T
0k+1 — (Sk ylfr + yk ka)Sk gk+l , from (33)
(S Vi) (Vi Gia)
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set 0k+1 = /,i’k+1 Hk_+l+ (l - /1k+l) 0k+l
Where 4, ,, is the optimal step size parameter computed from the

line search procedure .
Step(5): Compute the new search direction by :

Ay =619 + Bidy
Step(6): Compute «, which satisfies (1.3) and (1.4) and defined by

o = a|dy |, /d], -
Update the variables x ., = x, +«,d, . Compute f(x,,,), 9., and

n

Sk = Xr =X 1 Y = Fis = Gir O
Step(7): Restart i |g7,,0,|>0.2g,..|" or d{g,.,>-107d,,|g,.], are

satisfied,then go to step(4) .
Step(8): Set k=k+1 and continue.

Some theoretical results:

Theorem(1):
Suppose that ¢, in (1.2) satisfies the Wolfe conditions (1.3) and (1.4),then

the direction d,,, given by (2.1) is a descent direction.
Proof: since d,=-g,, we have g,d, =—||go||2 <0 , multiplying (2.1) by
Opats we have

[0l Gea” (V7 S)% + 20,1 (911 Vi (OT. 1S ) (Vi i) —

T —
gk+ldk+1 - T

(Y S
(g-kr+lsk)2(y-krsk)_9k+l(y;— yk)(g;(r+lsk)2]'

Applying the in equality uTVS%(”u”Z +|v|*) to the second term of the right

hand side of the above equality,with u=(s/y,)g,,, and v=(g,..s.)y. We

get . gT d < (g;—JrlSk)z
' k+1¥k+l —
Yk Sk

But, by Wolfe condition (1.4), y,s, >0, therefore , g,.d,, <0 for every
k=0,1,... ,which completes the proof #

Theorem (2):
Assume that f is strongly convex .If at every step of the conjugate
gradient (1.2) with d, ,, given by (2.1) and the step length «, selected to
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Satisfy the Wolfe conditions (1.3) and (1.4), then either g, =0 for some Kk,
or limg, =0.

k—o

Proof: Suppose g, =0 for all k. By strong convexity we have

Yed, =(9; —9)" d, ZluakHdkHZ' .-(3.4)
Since g,d, <0

By theorem (1), therefore , the assumption g, =0 implies d, #0. Since

a, >0, from (3.4) it follows that y;d, >0. But f is strongly convex ,
therefore fis bounded from below. Now, summing over k the first Wolfe

condition (1.3) we have Zakgldk > —o0, Considering the lower bound for

. . 1_02‘g:dk‘ . . . .
o, given in asz, o, <1 and having in view that d, is a
k
descent direction, it follow that
ora|” _
Z ...(3.5)
=
(9¢.a8)° : : :
from g[ﬂdms-% ,using the inequality of Cauchy and
Y Sk
T 2 2 2 2
Vs, 2 s >0 weget gld,, s (G o ol I Joe]
visc s u
Therefore ,from (3.5) it follows that
Jo”
Z ...(3.6)
ol

inserting in (3.6) the upper bound of d, given by

2 2|_ 2 1 2L 2
||dk+1||<(y+ﬂ—+ﬂjngk+l|| or ||dk+1||<(—+—+ jngmn m>0 we get

m mu
2 2
2o <
k=0

which completes the proof #
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Numerical results

The comparative test involves(43) well-known standard test functions
(given in the Appendix) with different dimensions. The results are given in
the Table (1) is specifically quoting the number of function evaluations
(NOF) and the number of gradient evaluations (NOG) . All programs are
written in FORTRAN 90 language and for all cases the stopping criterion is
taken to be |g,.,| <1x10°°. The results are given in table (1): this table shows

also that there are several test functions which are not working by the
original algorithm. From table (2) we conclude that the new proposed
algorithm has an improvement against the original algorithm in about
(%25)NOI(number of iterations) and (%37) (NOF+NOG) according to our
numerical results done in this work.
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Table 1: Comparison between(New Algorithm and Original algorithm)

Original algorithm

New algorithm

Test Function N NOI NOF+NOG NOI NOF+NOG
Extended 1000 69 98 47 73
Trigonometric 5000 30 54 29 56
9000 38 66 36 61
1000 32 55 30 55
Extended white & Holst | 5000 32 60 29 55
9000 32 58 33 56
3000 14 24 11 21
5000 11 20 10 19
Extended Beale 2000 11 20 10 18
9000 11 20 9 17
1000 4 9 4 9
Raydan2 7000 4 9 4 9
9000 4 9
Diagonal? 1000 246 372 235 371
9000 895 1326 752 1180
Diagonal3 1000 OVERFLOW | OVERFLOW 3001 25419
Hager 1000 OVERFLOW | OVERFLOW 326 9148
Generalized 1000 26 49 26 49
Tridiagonal-1 7000 42 534 32 315
1000 9 18 9 15
Trz’l‘;‘;g‘:]z?l 5000 12 21 9 17
9000 8 16 9 15
1000 4 8 4 8
Diagonal4 5000 4 8 4 8
9000 4 8 4 8
1000 24 176 21 36
5000 39 554 24 43
Extended PSC1 7000 42 812 26 47
9000 35 384 28 144
1000 41 97 45 96
3000 51 102 44 93
Extended Powel £000 29 107 44 99
9000 48 97 45 105
1000 4 10 19 22
. 5000 6 12 10 12
Full Hessian FH1 2000 5 11 11 12
9000 OVERFLOW | OVERFLOW 11 14
1000 OVERFLOW | OVERFLOW 550 1066
Full Hessian FH2 5000 OVERFLOW | OVERFLOW 1445 2624
9000 OVERFLOW | OVERFLOW 1869 3450
1000 56 125 55 117
Extended Marators 3000 50 101 56 109
9000 53 107 53 107
Total 2046 5557 1837 | 3479
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Table 2: Percentage Performance of the new proposed algorithm
against the original algorithm

Tools Original algorithm New algorithm
NOI %100 %75
NOF+NOG %100 %63
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Appendix

All the test functions used in this paper are from general literature:
1.Extended Trigonometric Function

n/2

f(x)= Z(_13+ Xoiig + (5= X5 )Xg —2)X5 )% + (=29 + Xy + (X5 +1) —14)X, )7,

X, =[0.5-2,0.5,-2,...,0.5,-2]
2.Extended White & Holst Function

f(x)= i“n —Zn:cos X; } +i(l—cosx;)—sin xi} , %X, =[0.2,0.2,...,0.2]

j=1

3.Extended Beale Function

f(x)= iz‘,(l-S —Xp 1 (L= %5))* + (225 = Xy, (1= %5))* +(2.625 - X5, (1= Xx3))*

i=1
X, =[10.8,...1,0.8]
4. Raydan2 Function

fm=g®wm—m , Xo = [L1,...1]
5. Diagonal2 Function
f(x) = an:(exp(xi)—?) , X, =[L/11/2,...1/n]
6. Diagonal3 Function
f(x)= an:(exp(xi) —isin(x;) : X, =[11,...1]
7.Hager Function
100=2 @00) —ix) X =[L...1]
8. Generalized Tridiagonal -1 Function

F00= 200+ %0 =B 406 % 4D* %X =[22..2]
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9. Extended Tridiagonal -1 Function

n/2

f(x)= Z(Xi—Z +2% =3)% + (Xyy — X +D* X =[2,2,....2]

10. Diagonal4 Function

n/2

f(x)= Z%(x%l +oxs) X, =[L1,...1]

i=1

11. Generalized PC1 Function
n-1
FO) =D (X5 + X5 + %, X,1)® +sin? (X, ) +c0s? (X)), X, =[30.1,...,3,0.1]
i=1

12. Extended Powell Function

n/4
f(x)= Z(X4i—3 +10%4; 5)% +5(X4i 3 = X ) + Xy p = 2% 4) " +10(X4 5 = X)*

i=1
X, =[3-101,...,3-1,0]1]
13. Full Hessian FH1 Function

f(x) = (%, —3)* +Zn:(x1 ~3-2(X, + X, +..+X%)?)* , X,=[0.10.1...,0.1]

i=2

14. Full Hessian FH2 Function

f(X)Z(X1—5)2+Zn: (X + X+t X)), X, =[0.1,0.1,...,0.1]
i=2
15. Extended Maratos Function

n/2
FO) =D Xy +C(X5, + X5 —1)° X, =[1.1,0.1,,...,1.1,0.1]

i=1
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