On Zero-Symmetric Left Centrally Prime Near-Rings Adil Kadir Jabbar* and Abdulrahman Hamed Majeed** *College of Science-University of Sulaimani **College of Science-University of Baghdad #### <u>Abstract</u> Our aim in this paper is: to give some properties of zero-symmetric left centrally prime near-rings, then looking for those conditions which make zero-symmetric left centrally prime near-rings abelian, so that several conditions are given under which zero-symmetric left centrally prime near-rings become abelian. # Introduction A left near-ring is a set N together with two binary operations (+) and (.) such that: <u>i:</u> (N,+) is a group (not necessarily abelian). **<u>ii:</u>** (N,.) is a semigroup. **<u>iii:</u>** for all $a, b, c \in N$, a.(b+c) = a.b + a.c. (left distributive law). (Pilz, 1983). Let N be a left near-ring then: N is called a left prime near-ring if for $x, y \in N, xNy = \{0\}$ implies x = 0or y = 0, (Argac, 2004), and it is called a zero-symmetric left near-ring if 0a = 0, for all $a \in N$ (Pilz, 1983), also N is said to be a left abelian nearring if (N,+) is an abelian group, (Kandasamy, 2002). An additive mapping $D: N \to N$ is called a derivation on N D(ab) = D(a)b + aD(b), for all $a, b \in N$ (Wang, 1994), and a derivation $D: N \to N$ is called a Daif 1-derivation if for all $x, y \in N$ we have D([x, y]) = xy - yx, (Bell and Mason, 1992), and it is called a Daif 2 – derivation if D([x, y]) = -xy + yx, for all $x, y \in N$ (Deng, Yenigul and Argac, 1998). Finally if S is a multiplicative system in N then we say zero commutator if $[S, N] = \{0\},\$ $[S,N] = \{[s,a]: s \in S, a \in N\}, \text{ and } Z(N) \text{ will denote the center of } S$ N. Finally N is called a 2-torsion free if for $x \in N$, 2x = 0 implies that x = 0 (Vukman, 2001). # Section 1: Construction of the left near-ring N_S In this section we try to localize zero-symmetric left near-ring at multiplicative systems which have zero commutators. Let N be a zero-symmetric left near-ring and S a multiplicative system in N such that $[S, N] = \{0\}$. We define a relation (\sim) on $S \times N$ as follows: for $(a, s), (b, t) \in N \times S, (a, s) \sim (b, t)$ if and only if there exists $k \in S$ such that k(at-bs)=0, or equivalently (at-bs)k=0, (since $[S,N]=\{0\}$). It can be show that (~) is an equivalence relation on $N\times S$. Now let us denote the equivalence class of (a,s) in $N\times S$ by a_S , and the set of all equivalence classes determined by this quivalence relation by N_S , that is $a_S=\{(b,t)\in N\times S: (a,s)\sim (b,t)\}$ and $N_S=\{a_S: (a,s)\in N\times S\}$. On N_S we define addition (+) and multiplication (.) as: $$a_S + b_t = (at + bs)_{St}$$, and $a_S \cdot b_t = (ab)_{St}$, for all $a_S \cdot b_t \in N_S$. It can be shown that the addition and multiplication as defined above are well-defined and $(N_S^-,+,\cdot)$ forms a left near-ring. Next we mention that all rings under consideration are with non zero center Z(R), and the proofs of the followibg theorems can be found in the indicated references. # **Theorem (A):** (Cho, 2001) Let D be a derivation on a zero-symmetric left prime near-ring N and let $a \in N$. If for all $x \in N$ we have aD(x) = 0 (or D(x)a = 0), then either a = 0 or D = 0. # **Theorem (B): (**Cho, 2001) Let N be a zero-symmetric left prime near-ring with nonzero derivations D_1 and D_2 on N such that $D_1(x)D_2(y) = -D_2(x)D_1(y)$, for all $x, y \in N$, then N is an abelian near-ring. # **Theorem (C):** (Cho, 2001) Let N be a zero-symmetric left prime near-ring of 2 -torsion free and let D_1 and D_2 be derivations on N with the condition $D_1(a)D_2(b)=D_2(b)D_1(a)$, for all $a,b\in N$, then D_1D_2 is a derivation on N if and only if either $D_1=0$ or $D_2=0$. ## **Theorem (D):** (Cho, 2001) Let N be a zero-symmetric left prime near-ring of 2 –torsion free, and let D be a derivation on N such that $D^2 = 0$ then D = 0. # Theorem (E): (Deng, Yenigul and Argac, 1998) Let n be a positive integer and N an n-torsion free zero-symmetric left prime near-ring and $D: N \to N$ is a derivation on N with $D^n(N) \subseteq Z(N)$. If $D(Z(N)) \neq \{0\}$ then $D^n(Z(N)) \neq \{0\}$ and (N, +) is an abelian group. # **Theorem (F):** (Bell & Mason, 1992) If N is a zero symmetric left prime near-ring admitting a nonzero Daif 1—derivation, then (N,+) is abelian, and if N is 2—torsion free, then N is a commutative ring.(Note that a zero-symmetric left near-ring N is called abelian if the addition (+) is commutative and it is called commutative if the multiplication (.) is commutative). Now we introduce the following definitions: # **Definitions** Let N be a left near-ring. We say N is a left centrally prime near-ring if N_S is a left prime near-ring for each multiplicative system S in N with $[S, N] = \{0\}$. Also we say a derivation $D: N \to N$ is a centrally zero derivation if $D(S) = \{0\}$ for each multiplicative system S in N with $[S, N] = \{0\}$. Before giving the main results of this paper we prove some propositions which will lead to the proofs of the main theorems. # **Prop.** (1): If N is a left near-ring with $D: N \to N$ is a centrally-zero derivation then $D_*: N_S \to N_S$ defined by $D_*(a_S) = (D(a))_S$, for all $a_S \in N_S$, is a derivation on N_S . (We call the derivation D_* the induced derivation by D). # **Proof:** For all $a_S \in N_S$, where $a \in N, s \in S$, we have $D(a) \in N$ and hence $D_*(a_S) = (D(a))_S \in N_S$ and if $a_S = b_t \in N_S$, where $a, b \in N, s, t \in S$, there exists $u \in S$ such that u(at - bs) = 0 or uat = ubs. Then atu = bsu (since $[S, N] = \{0\}$). Hence D(atu) = D(bsu) or D(a)tu = D(b)su. So u(D(a)t) = u(D(b)s). Hence u(D(a)t - D(b)s) = 0 which means $$(D(a))_S = (D(b))_t . \text{Hence } D_*(a_S) = D_*(b_t) \text{ and so } D_* \text{ is a}$$ mapping. Next we have $$D_*(a_S + b_t) = D_*((at + bs)_{St}) = (D(at + bs))_{St} = (D(a)t + D(b)s)_{St} = (D(a)t)_{St} + (D(b)s)_{ts} = (D(a))_{St} + (D(b))_{t} s_S = (D(a))_{St} + (D(b))_{t} = D_*(a_S) + D_*(b_t) \text{ and also } D_*(a_Sb_t) = D_*((ab)_{St}) = (D(ab))_{St} = (aD(b))_{St} + (D(a)b)_{St} = a_S(D(b))_{t} + (D(a))_{St} = a_SD_*(b_t) + D_*(a_S)b_t.$$ Hence D_* is a derivation on $N_S \spadesuit$. #### **Prop.** (2): Let N be a left near-ring and S a multiplicative system in N such that $[S, N] = \{0\}$. If n is a positive integer such that N is an n-torsion free then so is N_S . ## **Proof:** Since N is a left near-ring so N_S is a left near-ring. To show N_S is an n-torsion free. Let $na_S=0$, for $a_S\in N_S$ then $a_S+a_S+a_S+...+a_S=0$ (n times) or $(a+a+a+...+a)_S=0$ (n times). Thus there exists $t\in S$ such that t(a+a+a+...+a)=0. Hence ta+ta+...+ta=0, that is n(ta)=0 and N being n-torsion free, we get ta=0. Then $a_S=t_ta_S=(ta)_{tS}=0_{tS}=0$. Hence N_S is an n-torsion free left near-ring \blacklozenge . # **Prop.** (3): Let N be a left near-ring and S a multiplicative system in N with $[S, N] = \{0\}$. If $D: N \to N$ is a centrally zero Daif 1-derivation (resp.a centrally zero Daif 2-derivation) on N then so is the induced derivation $D_*: N_S \to N_S$. #### **Proof:** Let D be a Daif 1-derivation. Then by **Prop.** (1), D_* is a derivation on N_S . Now we show D_* is a Daif 1-derivation.Let $a_S, b_t \in N_S$, where $a,b \in N$ and $s,t \in S$, then $D_*([a_S,b_t]) = D_*(([a,b])_{St}) = (D([a,b]))_{St} = (ab-ba)_{St} = (ab)_{St} - (ba)_{tS} = a_Sb_t - b_ta_S$ and thus D_* is a Daif 1-derivation.If D is a Daif 2-derivation then a similar argument to prove that D_* is a Daif 2-derivation \blacklozenge . # **Prop.** (4): Let N be a left near-ring such that Z(N) has no proper zero divisors and S is a multiplicative system in N. Then $S = Z(N) - \{0\}$ is a multiplicative system in N. #### **Proof:** Clearly $0 \notin S$.Let $a,b \in S$.So $a,b \in Z(N)$ and $a \neq 0,b \neq 0$. Hence $ab \in Z(N)$. Now if ab = 0. As Z(N) contains no proper zero divisors we get a = 0 or b = 0 which is a contradiction. Thus $ab \neq 0$ which, in consequence, implies that $ab \in Z(N) - \{0\} = S$. Hence $S = Z(N) - \{0\}$ is a multiplicative system in $N \blacklozenge$. # **Prop.** (5): If N is a zero-symmetric left near-ring and S is a multiplicative system in N such that $[S,N]=\{0\}$ then N_S is also a zero-symmetric left near-ring. #### **Proof:** The proof is simple. # **Prop.** (6): Let N be a left near-ring and S a multiplicative system in N with $[S,N]=\{0\}$. Then $(Z(N))_S\subseteq Z(N_S)$. #### **Proof:** Note that Z(N) is a subnear-ring of N and $S \subseteq Z(N)$ so we can consider S as a multiplicative system in the near-ring Z(N) which allows talking about $(Z(N))_{\mathbb{C}}$. If $a_S \in (Z(N))_S$, where $a \in Z(N)$, $s \in S$. To show $a_S \in Z(N_S)$. Let $x_t \in N_S$, where $x \in N, t \in S$. Then we have [a, x] = 0. Hence $[a_S, x_t] = a_S x_t - x_t a_S = (ax - xa)_{St} = ([a, x])_{St} = 0_{St} = 0$ which means $[a_S, N_S] = \{0\}$. That is $a_S \in Z(N_S)$. So that $(Z(N))_S \subseteq Z(N_S)$. # Section 2: Some properties of zero symmetric left centrally prime near-rings Now we give some properties of zero-symmetric left centrally prime near-rings. ## Theorem (1): Let N be a zero-symmetric left centrally prime near-ring in which Z(N) has no proper zero divisors and $D: N \to N$ be a centrally zero derivation on N and $a \in N$. If aD(x) = 0 (or D(x)a = 0), for all all $x \in N$, then either a = 0 or D = 0. #### **Proof:** By **Prop.** (4), $S = Z(N) - \{0\}$ is a multiplicative system in N, where $[S, N] = \{0\}$, and by **Prop.** (5), N_S is zero-symmetric. Now consider the induced derivation $D_*: N_S \to N_S$, on N_S . Since $S \neq \phi$ so fix an $S \in S$. Now $a_S \in N_S$. If aD(x)=0, for all $x\in N$, then for all $x_t\in N_S$, where $x\in N, t\in S$, we have $a_SD_*(x_t)=a_S(D(x))_t=(aD(x))_{St}=0_{St}=0$, and if D(x)a=0, for all $x\in N$, then by the same technique we get $D_*(x_t)a_S=0$, for all $x_t\in N_S$. Hence N_S is a zero-symmetric left prime near-ring with D_* a derivation on N_S and $a_S\in N_S$ such that $a_S D_*(x_t) = 0 (or D_*(x_t) a_S = 0)$, for all $x_t \in N_S$ (as aD(x) = 0 or (D(x)a = 0), for all $x \in N$). Hence by (**Theorem A**), we get $a_S = 0$ or $D_* = 0$. If $a_S = 0$ then there exists $u \in S$ such that ua = 0. So $0 \neq u \in S \subseteq Z(N)$. As Z(N) contains no proper zero divisors we get a = 0. If $D_* = 0$.Let $x \in N$ be any element, then $x_S \in N_S$.Hence $(D(x))_S = D_*(x_S) = 0$. So that there exists $v \in S$ such that vD(x) = 0, and as Z(N) contains no proper zero divisors we get D(x) = 0. This result is true for all $x \in N$ which means D = 0. ## Theorem (2): Let N be a zero-symmetric left centrally prime near-ring of 2 -torsion free in which Z(N) has no proper zero divisors. If D and D' are two centrally zero derivations on N such that D(a)D'(b) = D'(b)D(a), for all $a,b \in N$, then DD' is a derivation on N if and only if D=0 or D'=0. **Proof:** If D=0 or D'=0 then DD'=0 which is a derivation on N. Conversely, let DD' be a derivation on N. Since Z(N) has no proper zero divisors so by **Prop.** (4), $S=Z(N)-\{0\}$ is a multiplicative system in N. Then by **Prop.** (5), N_S is a zero-symmetric. Hence N_S is a zero-symmetric left prime near-ring, also by **Prop.** (2), N_S is a 2-torsion free. Now consider the induced derivations D_* and D_*' on N_S . To show D_*D_*' is a derivation on N_S . Clearly D_*D_*' is a mapping. Now let $a_S, b_t \in N_S$, then $$\begin{split} &D_*D_*'(a_S+b_t) = D_*D_*'((at+bs)_{st}) = D_*(D'(at+bs))_{st} = \\ &(DD'(at+bs))_{st} = (DD'(at) + DD'(bs))_{st} = ((DD'(a))t)_{st} + ((DD'(b))s)_{st} = \\ &(DD'(a))_st_t + (DD'(b))_ts_s = (DD'(a))_s + (DD'(b))_t = \\ &D(D'(a))_s + D(D'(b))_t = D_*(D'(a))_s + D_*(D'(b))_t = D_*D_*'(a_S) + D_*D_*'(b_t). \end{split}$$ Hence D_*D_*' is an additive mapping. Also we have $$\begin{split} &D_*D_*'(a_Sb_t^{}) = D_*D_*'((ab)_{St}^{}) = D_*(D'(ab))_{St} = (DD'(ab))_{St} = \\ &(aDD'(b) + DD'(a)b)_{St} = (aDD'(b))_{St} + (DD'(a)b)_{St} = \\ &a_S(DD'(b))_t + (DD'(a))_Sb_t = a_SD_*D_*'(b_t) + (D_*D_*'(a_S))b_t. \end{split}$$ Thus D_*D_*' is a derivation on N_S . Now for all $a_S, b_t \in N_S$ we have $D_*(a_S)D_*'(b_t) = (D(a))_S(D'(b))_t = (D(a)D'(b))_{St} = (D'(b)D(a))_{tS} = (D'(b)D(a))_{tS} = (D'(b))_t(D(a))_S = D_*'(b_t)D(a_S)$. Thus N_S is a 2- torsion free zero-symmetric left prime near-ring with D_*, D_*' derivations on N_S such that D_*D_*' is a derivation on N_S and $D_*(a_S)D_*'(b_t) = D_*'(b_t)D_*(a_S)$, for all $a_S, b_t \in N_S$. Hence by (**Theorem C**), we get $D_* = 0$ or $D_*' = 0$ If $D_* = 0$, then as Z(N) contains no proper zero divisors we get D = 0 (as the same argument in **Theorem 1**), and if $D'_* = 0$ then $D' = 0 \spadesuit$. ## Theorem (3): Let N be a zero-symmetric left centrally prime near-ring of 2 –torsion free in which Z(N) has no proper zero divisors. If $D: N \to N$ is a centrally zero derivation on N such that $D^2 = 0$ then D = 0. #### **Proof:** Clearly $S=Z(N)-\{0\}$ is a multiplicative system in N .(since Z(N) has no proper zero divisors). Then (from **Prop.** (5) and **Prop.**(2)), N_S is a zero-symmetric left prime near-ring of 2-torsion free. Now let $D_*:N_S\to N_S$ be the induced derivation on N_S . Then if $a_S\in N_S$ is any element, then by **Prop.** (1), we get $D_*^2(a_S)=0$. Thus we get $D_*^2=0$. Hence by (**Theorem D**), we get $D_* = 0$ which gives D = 0 (as Z(N) contains no proper zero divisors) \blacklozenge . # Section 3: Zero-symmetric left centrally prime near-rings which are abelian In this section we look for those conditions under which a zero-symmetric left centrally prime near-ring becomes abelian and we give below a sequence of theorems in each a condition is given that makes a zero-symmetric left centrally prime near-ring an abelian near-ring. #### Theorem (4): Let N be a zero-symmetric left centrally prime near-ring in which Z(N) has no proper zero divisors and if D and D' are two nonzero centrally zero derivations on N and D(a)D'(b) = -D'(a)D(b), for all $a,b \in N$ then N is an abelian near-ring. #### **Proof:** Since Z(N) has no proper zero divisors so by **Prop.** (4), $S = Z(N) - \{0\}$ is a multiplicative system in N for which $[S, N] = \{0\}$, also by **Prop.** (5), N_S is zero-symmetric. Hence N_S is a zero-symmetric left prime near-ring. Now consider the induced derivations D_* and D_*' on N_S . To show $D_* \neq 0$. Let $D_* = 0$. If $x \in N$ is any element and by fixing an $s \in S$ (since $S \neq \phi$), we get $(D(x))_S = D_*(x_S) = 0$. Hence there exists $t \in S$ such that tD(x) = 0. Since Z(N) is without proper zero divisors and $t \neq 0$ (because $0 \notin S$) so D(x) = 0. The last result is true for all $x \in N$ which means that D = 0 which is a contradiction. Hence $D_* \neq 0$. In a similar way we can get $D'_* \neq 0$. Now for all $a_u, b_v \in N_S$, where $a, b \in N$ and $u, v \in S$, we have $D_*(a_u)D_*'(b_v) = (D(a))_u(D'(b))_v = (D(a)D'(b))_{uv} = (-D'(a)D(b))_{uv} = (-D'(a))_u(D(b))_v = -(D'(a))_u(D(b))_v = -D_*'(a_u)D_*(b_v)$. Thus N_S is a zero-symmetric left prime near-ring and D_* , D_*' are nonzero derivations on N_S such that $D_*(a_u)D_*'(b_v) = -D_*'(a_u)D_*(b_v)$, for all $a_u, b_v \in N_S$. Hence by (**Theorem B**), we get that N_S is an abelian left near-ring. It remains to show that N is abelian. So let $x, y \in N$, then $x_S, y_S \in N_S$ and $x_S + y_S = y_S + x_S$. Hence $(x + y)_S = (y + x)_S$. That is $(x + y, s) \sim (y + x, s)$ and hence there exists $r \in S$ such that r((x + y)s - (y + x)s) = 0 or rs((x + y) - (y + x)) = 0. Since Z(N) has no proper zero divisors and $0 \neq rs \in S = Z(N) - \{0\}$) so we get (x + y) - (y + x) = 0 or x + y = y + x. Hence N is a left abelian near-ring \blacklozenge . #### Theorem (5): Let n be a positive integer such that N is an n-torsion free zero-symmetric left centrally prime near-ring in which Z(N) has no proper zero divisors and $D: N \to N$ is a centrally zero derivation on N with $D^n(N) \subseteq Z(N)$. If $D(Z(N)) \neq \{0\}$ then $D^n(Z(N)) \neq \{0\}$ and (N,+) is a left abelian near-ring. # **Proof:** Since Z(N) has no proper zero divisors so by **Prop.** (4), $S = Z(N) - \{0\}$ is a multiplicative system in N with $[S, N] = \{0\}$. Also by **Prop.** (2) and **Prop.** (5), N_S is an n-torsion free zero-symmetric left prime near-ring. Now consider the induced derivation $D_*: N_S \to N_S$ on N_S . Hence by (**Theorem E**), we get $D_*^n(Z(N_S)) \neq \{0\}$ and $(N_S, +)$ is an abelian left near-ring.Let $D^n(Z(N)) = \{0\}$. If $\alpha \in D_*^n(Z(N_S))$ we get $\beta \in Z(N_S)$ such that $\alpha = D_*^n(\beta)$ but then $\beta = \gamma_W$ for $\gamma \in N, w \in S$. To show $\gamma \in Z(N)$. Let $x \in N$, then $x_W \in N_S$. Hence $\beta x_W - x_W \beta = 0$ or $\gamma_W x_W - x_W \gamma_W = 0$ which means that $(\gamma x - x \gamma)_{WW} = 0$. So there exists $\delta \in S$ such that $\delta(\gamma x - x \gamma) = 0$. As Z(N) contains no proper zero divisors we get $\gamma x - x \gamma = 0$ or $\gamma x = x \gamma$. Thus $\gamma \in Z(N)$ and $D^n(\gamma) = 0$. Now $\alpha = D_*^n(\beta) = D_*^n(\gamma_W) = (D^n(\gamma))_W = 0_W = 0$. So $D_*^n(Z(N_S)) = \{0\}$. This is a contradiction. Thus $D^n(Z(N)) \neq \{0\}$. It remains to show N is an abelian left near-ring, so let $\lambda, \theta \in N$ then $\lambda_S, \theta_S \in N_S$ and N_S being abelian so $\lambda_S + \theta_S = \theta_S + \lambda_S$ or $(\lambda + \theta)_S = (\theta + \lambda)_S$ and hence there exists $\sigma \in S$ such that $\sigma((\lambda + \theta) - (\theta + \lambda)) = 0$ and since Z(N) has no proper zero divisors so $(\lambda + \theta) - (\theta + \lambda) = 0$ or $\lambda + \theta = \theta + \lambda$. Hence (N, +) is an abelian left near-ring \blacklozenge . #### Theorem (6): If N is a zero-symmetric left centrally prime near-ring with Z(N) has no proper zero divisors, and it admits a nonzero centrally zero Daif 1-derivation, then (N, +) is abelian. #### **Proof:** Since Z(N) has no proper zero divisors so by **Prop.** (4), $S = Z(N) - \{0\}$ is a multiplicative system in N, and from **Prop.** (5), we get N_S is a zero-symmetric left prime near-ring.Let D_* be the induced derivation on N_S . Then from **Prop.** (3), we get that D_* is a Daif 1-derivation. Hence N_S is a zero-symmetric left prime near-ring and D_* is a Daif 1-derivation on N_S . Thus from (**Theorem F**), we get that $(N_S, +)$ is abelian and as Z(N) has no proper zero divisors (N, +) is an abelian group \blacklozenge . # **References** - Argac,N.,(2004): On Near-Rings with two-sided α derivations, Turk.J.Math.,Vol.28, pp.195-204. - Bell H.E. and Mason G., (1992): On derivations in near-rings and rings, Math.J.Okayama Univ.Vol.34, pp.135-144. - Cho.Y.Uk.,(2001): some conditions on derivations in prime nearrings, J.Korea Soc. Math. Educ.Ser.B: Pure Appl.Math.Vol.8,145-152. - Deng, Q., Yenigul, M.S. and Argac, N., (1998): On commutativity of near-rings with derivations, Mathematical Proceedings of the Royal Irish Academy, Vol. 98, pp.217-222. - Kandasamy, W.B.V., (2002): Smarandache Near-Rings, American Research Press, Rehoboth. - Pilz,G.,(1983): Near-Rings, North-Holland Publishing Company Amsterdam. New York .Oxford. - Vukman J.,(2001): Centralizers on semiprime rings, Comment.Math. Univ.Carolinae.Vol.42,pp.237-245. - Wang X.K.,(1994): Derivations in Prime near-rings,Proceedings of American Mathematical Society.Vol.121, pp.361-366. # حول الحلقات المقتربة اليسارية والاولية مركزيا ذات التناظر الصفري عادل قادر جبار * و عبد الرحمن حميد مجيد ** * كلية العلوم ــ جامعة بغداد ** كلية العلوم ــ جامعة بغداد ## الخلاصة في هذا البحث قدمنا تعريف الحلقات المقتربة اليسارية والاولية مركزياذات التناظر الصفري حيث تمكننا من برهان بعض النتائج الاولية والتي قادتنا الى الحصول على بعض من خواص هذه الحلقات و من ثم الحصول على شروط عديدة والتي يجعل كل واحد منها من الحلقة المقتربة اليسارية والاولية مركزيا ذات التناظر الصفري البلية.