Indirect Spectrophotometric Method for Determination of Amoxicillin Trihydrate in Aqueous Solution and Pharametrical Samples

Rana Salman Abbood

Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq (Received: 19 / 5 / 2011 ---- Accepted: 28 / 6 / 2011)

Abstract

A spectrophotometric method for determination of amoxicillin trihydrate (AT) in microgram level depending on its ability to reduce the yellow absorption of (Γ_3) at λ_{max} : 351 nm. The optimum conditions such as concentration of reactants, time of sitting, order of addition, were studied to get a high sensitivity ($\epsilon = \circ, A \times 10^{\circ}$ L. mol⁻¹. cm⁻¹, with wide range of calibration curve (2- 40) µg.ml⁻¹, good stability (more than 24 hr.), repeatability (RSD%: 0.356-0.505%) and recovery (99.8 – 100.3%). This method was used for quantity assessment of five AT drug products with good precision and accuracy using standard addition method.

Key Words: Spectrophotometric method, amoxicillin trihydrate, standard addition method.

Introduction

Amoxicillin Trihydrate (AT) is (2S, 5R, 6R) -6- [(R) -2- Amino -2- (*p*-hydroxyphenyl) acetamido] -3,3- dimethyl -7- oxo -4- thia -1- azabicyclo [3.2.0]

heptane -2-carboxylic acid trihydrate $[C_{16}H_{19}N_3O_5S_{\cdot3}H_2O,\ MW:\ 419.46\ g/mol],\ and\ the structure as in (Fig. 1):$

Fig. 1: Structure of Amoxicillin Trihydrate.

Amoxicillin Trihydrate is semi synthetic antibiotic with a broad spectrum of bactericidal activity against many gram-positive and gram- negative microorganisms.^(1,2)

It has been determined quantitatively by different techniques including UV spectrophotometer⁽³⁻⁷⁾, HPLC⁽⁸⁾, HPTLC⁽⁹⁾, RP-HPLC^(10,11), fluorimetric method⁽¹²⁾, In-vitro evaluation pH-sensitive⁽¹³⁾ and using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and partial least squares (PLS)⁽¹⁴⁾.

This paper reports a simple, sensitive and accurate spectrophotometric method for the simultaneous determination of amoxicillin trihydrate. This method is based on the indirect measurement of absorbance of drug with I_3 complex at 351 nm against the reagent blank for amoxicillin. The equation of reducing reaction is:

$$I_3 + 2e^{-3I}$$

Experimental

Apparatus:

UV/VIS spectrophotometer (Shimadzo, 1650 pc, Japan) with 1 cm matched quartz cell.

Chemicals and reagents:

All chemicals used were of analytical reagent grade and amoxicilline trihydrate standard material was provided from state company for drug industries and medical appliance - (SDI) Samaraa – Iraq. Commercial drugs from the markets are:

Amoxicillin trihydrate 500 mg (Akai Ltd, Amman, Jordan)

Amoxicillin trihydrate 500 mg (Nainawa Industrial drug/ Nainawa, Iraq)

Amoxicillin trihydrate 500 mg (Micro Labs Limited, Bangalore SCo-100, India).

Amoxicillin trihydrate 500 mg (Athlone Ltd, England).

Amoxicillin trihydrate 500 mg (Samara industrial drug, Samaraa, Iraq).

Iodine of (98 % purity) was obtained from (BDH).

Potassium iodide (99 % purity), from (BDH).

Preparation of solutions:

1. A standard solution of 100 μ g . ml⁻¹ Amoxicilline trihydrate was freshly prepared by dissolving 0.01 g of AT in distilled water and diluted to 100 ml. The solution was stable at least for 10 days at room temp. 2. A standard solution of 250 μ g . ml⁻¹ was prepared

by dissolving 0.063g of I_2 in water and then diluted with distilled water to 250 ml.

3. 5.05% Potassium iodide (99% purity, from (BDH) was prepared by dissolving 5.05 g of potassium iodide in distilled water and diluted to 100 ml.

General procedure:

The solutions of AT of concentrations $(2-40 \ \mu g. \ ml^{-1})$ were prepared by using the mixture (5 ml of 5.05% potassium iodide with 10 ml of 250 $\mu g. \ ml^{-1}$ of Iodine) in 25ml volumetric flask and diluted with

distilled water to the mark, and then absorbance was measured for each solution at $\lambda_{max} = 351$ nm after 5 min.⁽¹⁵⁾

Procedure for assay of amoxicillin trihydrate in pharmaceutical preparation:

Capsules: ten capsules were weighed, 100 mg of Amoxicillin trihydrate was weighed and dissolved in distilled water in 100 ml of volumetric flasks to get 100 μ g. ml⁻¹,thereafter a solution of 50 μ g. ml⁻¹ was prepared from the solution of 100 μ g. ml⁻¹.

Procedure for standard addition method:

A series of solutions were prepared by adding constant volume of unknown solutions of capsules to $(2 -10 \ \mu g. \ ml^{-1})$ of standard solutions of AT, and a constant volume of (KI+I₂) was added in a 25 ml volumetric flask. The same procedure was preformed for all kinds of capsules.

Result and Discussion:

Procedure of appropriate wave length:

A wavelength of yellow mixture solution of (Iodine with potassium iodide) was found to be at $\lambda_{max} = 351$ nm due to the formation of Γ_3 complex, then drugs with different microgram concentrations were added, (Fig. 2) shows the ability of drug to reduce the yellow absorption of Γ_3 at $\lambda_{max} = 351$ nm.

Fig. 2: Spectrum of I₃ solution A:I₃ only ,B, C and D in the presence of 10, 20 and 30 μg ml⁻¹ of amoxicillin tri-hydrate respectively.

Procedure to optimum conditions.

1. The best mixture of Γ_3 complex from (KI+I₂) to form highest absorbance at $\lambda_{max} = 351$ nm .(Fig. 3) shows the addition (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ml) of 250 µg. ml⁻¹ iodine solution to (1 ml) 5.05% potassium iodide solution effected the absorbance of Γ_3 and the highest absorbance resulted by adding 10 ml from 250 µg. ml⁻¹ of iodine. While (Fig. 4) shows the effect of addition 10 ml from 250 µg. ml⁻¹ of iodine to (1, 2, 3, 4, 5, 6, 7ml) 0f 5.05% KI.

Fig. 3: Effect of adding different volume of iodine solution (250 μ g.ml⁻¹) to the absorption of Γ_3 complex at $\lambda_{max} = 351$ nm

Fig. 4: Addition of 10 ml from 250 µg. ml⁻¹ of iodine to(1,2,3,4,5,6,7ml) of 5.05%KI at $\lambda_{max} =$ 351 nm

2. Effect of time sitting.

It was found that the solution of I_3 was stable in dark place for 24 hours at room temperature when tested at λ_{max} 351 nm.

3. Effect order of addition.

In order to obtain high sensitivity of the calibration curve for standard solution the order of addition of iodine was varied as it was added first to potassium iodide solution and then the standard solution (AT) was added to the resulted mixture .This solution was found to give a higher absorbance value in compares to that mixture obtained from adding iodine to a potassium iodide mixture of and standard solution(AT), Table (1) shows order no. I and II .This might a rise from the formation of I_3^- in I. Therefore the order of addition thus taken for the subsequent in this work was taken as in order no. I.

Table 1: The order of addition of reactants.

Order no.	Reaction component	Abs.
Ι	$KI + I_2 + AT$	0.670
II	$KI + AT + I_2$	0.508

4. When procedure for optimum conditions was employed a linear calibration curve was obtained for ($2 - 40 \ \mu g.ml^{-1}$) Amoxicillin trihydrate added in portions to blank solution of (10 ml from 250 $\mu g.ml^{-1}$ of I₂+5ml of 5.05% KI). The absorbance after adding AT was subtracted from that of blank solution, Fig(5).This linear curve was found to obey Beer's Law with correlation coefficient of 0.9991. The conditional molar absorptivity was found to be 5.8 × $10^3 \ L.mol^{-1}.cm^{-1}$.

Fig. 5: Calibration curve of amoxicillin tri-hydrate from (2-40) μ g.ml⁻¹

Linear regression analysis of calibration data gave the regression equation sited in Table (2) with correlation coefficients close to unity.

<i>i i</i>	-
Parameters	Value
Linearty range (µg.ml ⁻¹)	2-40
Regression equation	Y = 0.01387 X + 0.01160
Slope (a)	0.01387
Intercept (b)	0.01160
Correlation coefficient (r)	0.9996
Linearity $(\%r^2)$	99.94
Molar absorptivity (L. mol ⁻¹ . cm ⁻¹)	5.8×10^3

Table 2: Summary of linearity studies in pure form.

With respect Y = aX + b, where X is the concentration in μ g. ml⁻¹, Y is absorbance.

The results shown in Table(3) were obtained for an average of three experiments for each 2, 6 and 10 μ g.

 ml^{-1} solutions of AT the results of % recovery and %RSD values were in the range 99.82% - 100.3% and 0.356%-0.505% respectively .

	Table (3):	: Summary	r of	accuracy	y and	precision	results	of	the method
--	---------	-----	-----------	------	----------	-------	-----------	---------	----	------------

Amount ($\mu g. ml^{-1}$)		RSD%	Rec.%	Ere.%	C.L.
Taken	Found ±SD	1			
2	1.997±0.010	0.505	99.8	0.15	$1.997 \pm 2.5 \times 10^{-8}$
6	5.989±0.021	0.356	99.8	0.15	$5.989 \pm 5.2 \times 10^{-2}$
10	10.031±0.042	0.424	100.3	-0.3	$10.031 \pm 1.04 \times 10^{-1}$

Mean for three independent analysis, standard deviation SD, relative standard deviation RSD%, Ere.%, Confidence limit C.L at 95% confidence level and 2 degrees of freedom (t = 4.30).

The linearity studies of AT in capsules using standard addition can be show in (table4).

Manufacturing	Regression eq.	Slope (a)	Intercept	Correlation	Len.	Molar
compouny			(b)	(r)		absor
Alkei 500 mg	Y = 0.09345 X +	0.09345	0.21490	0.9991	99.89	3.9×10^{4}
	0.21490					
India 500 mg	Y = 0.0795 X + 0.27030	0.0795	0.27030	0.9994	99.9	3.3×10^{4}
Engiland 500 mg	Y = 0.097 X + 0.14780	0.097	0.14780	0.9993	99.89	4.0×10^{4}
Samaraa 500 mg	Y = 0.09840 X + 0.18420	0.09840	0.18420	0.9998	99.96	4.1×10^{4}
Nainawa250mg	Y = 0.07870 X + 0.33960	0.07870	0.33960	0.9995	99.90	3.3×10^{4}

 Table (4): Summary of linearity studies of Amoxicillin trihydrate incommercial capsules using standard addition method.

The precision and accuracy were carried out through replicate analysis (n=3) of different kind of Amoxicillin.

The results are reported in table (5). As can be seen from it that the %recovery and% RSD values were in the ranges 99 - 100.5 % and 0.681 - 1.336% respectively.

 Table (5): Summary of data for the determination of Amoxicilline trihydrate in pharmaceutical preparations by standard addition method.

Drug	Amount added	Amount recovered	RSD%	Recovery%	E _{re.} %	C.L.
	$(\mu g. ml^{-1})$	(µg.ml⁻¹)±SD				
		(n = 3)				
Akai 500 mg	2	1.980 ± 0.026	99.0	1.336	-1	$1.980\pm6.5\times10^{-2}$
Samaraa 500 mg	2	2.011±0.018	100.5	0.890	-0.55	$2.011\pm4.5\times10^{-2}$
Engiland 500 mg	2	1.995±0.0136	99.75	0.681	0.25	1.995±3.4×10 ⁻²
India 500 mg	4	4.021±0.036	100.5	0.896	-0.52	$4.021\pm8.9\times10^{-2}$
Nainawa 250mg	4	4.048±0.031	100.5	0.775	-0.3	$4.048\pm7.7\times10^{-2}$

Mean for three independent analysis, $\% E_{rec}$ error, relative standard deviation RSD.

Conclusion:

The method has wider linear dynamic range from $2 - 40 \ \mu g$. ml⁻¹ with good accuracy and precision. This **References:**

1. The British Pharmacopoeia. Vol II, The stationany office, London, UK. P. 1668, 2009.

2. TheBritish pharmacopoeia,Vol I, The stationary office, London,UK.P.149,2009.

"Silmutaneous R. Singh; S. Manirul, 3. Determination of Potassium Galvulanate and Amoxiollin Trihydrate in Balk,Phamaceutical Formulations and in Human Urine Samples by UV Spectrophotometry" NationalJornal Inter of Biomidcal science, 16, 2010, 335-343.

4. D. Madhura; G. Vandana; J. pranavpramod,"Simulataneous Estination of Amoxicillin Trihydrate and Bromhexine Hydrochloride, in Oral Solid Dosage Forms by Spectrophotometer Method ", International Research Joournal of Pharmacy, 2, 2011, 197-201.

5. T. Rojanarata; P. Opanasopit; T. Nagawhirunpat; Ch. Saehuan; S. Wiyakrutta; V. meevootisom, "A simple, sensitive and Green Binzmatic UVspectrophotometric assay of Amoxicillin method is simple, coast affective fast and efficient. In addition the proposed method is simple, sensitive and rapid for the determination of amoxicillin trihydrate in bulk and pharmaceutical.

Formulations ", Enzyme and Microbial Tahnology, 46,2010, 292-296.

6. P. Nagaraja; A. shrestha, "Spectrophotometric Method for the Determination of Drags Containing Phenol Group by Using 2,4-Dinitro Phenylhydrazine", E-J. of Chem., 7, 2010, 395-402.

7. M. Ashik; M. Abul Kalam; R. Sultana; E.Rahman; A. Mahbub; A. Hasnat,"Pharmacokinetic Study of Amoxicillin Cupsule in Healthy Banagldeshi Subjects Using Urinary Excretion Data, Dhaka, Univ. J. Pham, Sci, 8, 2009, 53-59.

8. M. Dhoka; V. Gawande; P. Joshi,"High-Preformace Liquid Chromotographic Method for Determination of Amoxillin Trihydrate and Bromhexine Hydrochloride In Oral Dosage Forms", International J. of Pharm. and Pharm. Sci., 2, 2010, 129-133.

9. M. Dhoka; V. Gawande; P. Joshi," HPLC Determination of Amoxicillin Trihydrate and Bromhexine Hydrochloride in Oral Solid Dosage Forms", J. of Pham. Sci. and Res., 2, 2010, 447-483.

10. D. Nikam; C. handrakant; G. Bode; S. Surana; G. Venkateshwarlu; P. Dekate, "Development and Validation of RP-HPLC Method for Simultaneous Estimation of Amoxicillin Trihydrate and Flucloxacillin sodium in capsule Dosage form, International Jornal of pharm Tech Research, 1, 2009, 935-939.

11. L. Sana; S. kumar; B. Bari, "Development and Validation if RP-HPLC Method for the Simultaneous Estimatin of Amoxicillin Trihydrate and Bromhexine Hydrochloride form Oliy Suspension, phormaceutica Analytica Acta-open Access, 1, 2010.

12. T. Hui-nan; G. Wei-dong; L. Mou-Shengand Xang ya-ling,"b-Cyclodextrin Enhanced Fluorimetric Method for Determination" of Amoxicillin in

Dosage" Chemistry Research Chinese universities, 27, 2011, 190-192.

13. G. kumar; T. Satyawansingh, "formulation and in-vitro evaluation of PH Sensitive Oil Entrapped Buoyant Beads of Amoxicillin", Inter. J. of Drug Devlivery, 3, 2011, 125-132.

14. G. parisoho; M. flores; F. Joao; F. Molz, "Determination of Amoxicillin Content in powdered Pharmaceutical for Mulations Using DRIFTS and PLS", Braz. J. of Pharm. Sci., 43, 2007, 89-96.

15. M. Al-Abayachi; M. Afan; W. Shaker, "New Spectrophotometric Method to Analysis Uric Acid in Aquouse Solution", Nat. J. of Chem., 3, 2001, 330-337.

حساب الاموكسيسين ثلاثي الهايدريت بطريقة طيفية غير مباشرة في المحاليل القياسية المستحضرات

الصيدلانية

رنا سلمان عبود

قسم الكيمياء ، كلية العلوم ، جامعة النهرين ، بغداد ، العراق (تاريخ الاستلام: ١٩ / ٥ / ٢٠١١ ---- تاريخ القبول: ٢٨ / ٦ / ٢٠١١)

الملخص:

تم استخدام طريقة طيفية لتقدير الاموكسيسلين ثلاثي الهيدريت بتركيز (مايكروجرام/مل) بالاعتماد على الصفة الاختزالية للاموكسيسلين من خلال أخماده لطيف معقد اليوديد الثلاثي(I) ذي اللون الاصفر والذي له أعظم امتصاص عند الطول الموجى ٣٥١ نانوميتردُرست الظروف العملية الفضلى لاخماد هذا التفاعل بواسطة الاموكسيسلين (لأجل الحصول على حساسية عالية وأفضل أستقرارية ومدى واسع لمنحني المعايرة) والمتضمنة تأثير تراكيز المواد المتفاعلة، تأثير الزمن في أستقرارية المعقد، تأثير ترتيب الاضافة للوصول الى بناء منحني المعايرة. أعطت الطريقة حساسية عالية حيث بلغت قيمة معامل الممتصية المولارية 5.8 × 10 لتر .مول⁻⁽. سم⁻⁽. ووجد ان المدى التركيزي الخاضع لقانون بير من (٢- ٤٠) عالية حيث بلغت قيمة معامل الممتصية المولارية 5.8 × 10 لتر .مول⁻⁽. سم⁻⁽. ووجد ان المدى التركيزي الخاضع لقانون بير من (٢- ٤٠) مايكروغرام. مل⁻⁽.واستقرارية عالية للمحلول للاكثر من ٢٤ ساعة. واما التكرارية النتائج المحصلة فكانت جيدة تراوحت قيم SOB بين - ٤٤ مايكروغرام. مل⁻⁽ ما قيم الاسترداد المئوي فتراوحت بين ٩٩.٨ ساعة. واما التكرارية النتائج المحصلة فكانت جيدة تراوحت قيم SOB الين باستخدام مايكروغرام. مل⁻⁽ مواستقرارية عالية للمحلول للاكثر من ٢٤ ساعة. واما التكرارية النتائج المحصلة فكانت جيدة تراوحت قيم SOB الين - ٤٤ مايكروغرام. مل⁻⁽ ما قيم الاسترداد المئوي فتراوحت بين ١٩٩٨ ساعة. واما التكرارية النتائج المحصلة فكانت جيدة تراوحت قيم SOB المتحمول ماليكروغرام مايكروغرام. مل⁻⁽ ما قيم الاسترداد المئوي فتراوحت بين ١٩٩٨ ساعة. واما التكرارية النتائج المحصلة فكانت جيدة تراوحت قيم SOB مالي ماليت المتحمول الموكسيسياس بأستخدام