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 An extended meshless method that relying upon Galerkin formulation is 

applied on the crack analysis of orthotropic functionally graded Brazilian 

disc. Weak form is involved to solve the governing equation in the 

numerical method. In addition, enrichment terms and sub-triangle 

techniques are applied to improve the accuracy of relevant results. This 

paper depicts the influence of variation in the crack stretch and non-

homogeneity parameters on the values of stress intensity factors using a 

developed MATLAB program. In the isotropic case, it is clear that when 

the length of crack increases, SIF increases. Graduation in     has more 

effect in increasing the values of SIF in corresponding increased crack 

length. The verification has been checked by changing the range of the J-

integral domain and variation of the support domain. 
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1.  INTRODUCTION 

Nowadays the Orthotropic Functionally Graded Materials (OFGM) has many uses and 

applications including in medical devices, vehicles, electronic equipment, etc. The properties of the 

relevant materials are changed in the directions of the body gradually. The first invention for these 

materials was in 1984 in Japan [1]. There are abundant of researchers that deliberated crack analysis 

and fracture mechanism in FGMs numerically. F. Delale and F. Erdogan [2] studied the crack 

problem in non-homogeneous plates via using finite elements. J.E. Dolbow and M. Gosz [3] 

calculated mixed mode SIFs in FGMs. B.N. Rao and S. Rahman [4] used the meshfree method to 

extract SIFs of mixed FGMs problems. J.-H. Kim and G. H. Paulino [5,6] presented the formulation 
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of the extract M-integral in FGMs using the finite element method in various examples. K. Y. Dai et 

al. [7] applied the meshfree radial point interpolation method to find SIFs in FGMs. J. Sladek et al. 

[8] employed the meshless local technique to determine the stress intensity factors in the related 

materials. H. Khazal et al. [9], and H. Khazal and N. Saleh [10] developed a meshfree method and 

then applied it to find SIFs in FGM. Hassanein Ibraheem et al. [11] applied XEFGM to find the SIFs 

in FGM under thermal load. All these researchers have not studied the effect of the increase of crack 

length on the SIFs for orthotropic and isotropic FGMs. On the other hand, few researchers used 

optical techniques to analyze the fracture problems in the related materials [12-16]. Therefore, in this 

work extended meshless method is employing that relying upon Galerkin formulation XEFGM for 

crack analysis of OFG Brazilian disc subjected to compression load. Besides, originality of this 

research enrichment terms and sub-triangle forms are applied to improve the relevant results. Further, 

this paper depicts the influence of variation in crack length, load, and non-homogeneity parameters 

on the values of stress intensity factors using a developed MATLAB program. 

2. EXTENDED MESHLESS METHOD 

Figure 1 illustrates a 2D orthotropic functionally graded body which represents a crack   . There 

is no finite element in the representation of the domain of the meshless numerical method. Rather 

than finite element, the support domain is utilized in an extended meshless method that relying upon 

Galerkin formulation XEFGM. The weak form of governance formula may be labeled as [17]: 

 ∫ (   ) (   )  
 

 ∫  
 

       ∫  
  

   ̅    ∫  
  

  (   ̅)    ∫  
  

        (1) 

 

 

Figure 1: 2D orthotropic functionally graded body 

 

A good enrichment formula [9] has been utilized to capture all the discontinuity terms in the 

region of crack that representing in the displacement field: 
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where    is the inbound of a supplementary grade of freedom for molding crack tips   . Where 

  ( ) is a shape function, which determined by depending on the moving least square method 

[17,18]. Solving of Eq. (1) results in 
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Strain and stress may thereafter be found for    employing Eqs. (16) and (17), consecutively, 

        (16) 

       (17) 

3. STRESS INTENSITY FACTOR DETERMINATION 

The interaction whole formula is utilized to extract stress intensity factors (SIFs) [19]: 
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Two superimposed fields can be represented as  
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Where s1 and s2 are the roots of the trait approach of the orthotropic cracked body; while cij is an 

ingredient of compliance matrix C. More details on the relevant meshfree method, enrichment 

functions, and M-integral can be determined in [9]. 

Substituting   
         

      and   
         

      into (19), gives   
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The two last equations can be solved to find SIFs. 

 

4. SUB-TRIANGLES TECHNIQUE 

The sub-triangles technique is employing in the crack region to enhance the precision of the 

integration process and finally to have the best results for the values of SIF. The background cell of 

any sub-triangle is imposed by 13 integrated points at the crack surface and tip. Moreover, six and 

four voided sub-triangle cells are distributed in the background cells of the crack tip and crack 

surface respectively as shown in Figure 2. The background cells are used for the integration of the 

numerical equations using the Gauss quadrature method. 

 

Figure 2: Integration points in the crack region in classical method and in sub-triangles form 

5. CASE STUDY-ANISOTROPIC FUNCTIONALLY GRADED BRAZILIAN DISC SUBJECTED TO 

TRACTION POINT LOAD 

Few researchers studied the crack analysis of the FG Brazilian disc under traction load such as 

[9,20] but these references debated only the fracture analysis of the FG Brazilian disc under fixed 

crack length. The current paper depicts the effect of variation in the crack extent and in non-

homogeneity parameters (     ) on the values of stress intensity factors using a developed 

MATLAB program. The case, illustrated in Figure 3, displays a disc a crack tending by θ=30º. The 

disc is subjected to traction load P=±100 N/m. The gradations of material properties with are 

explained as, 

 

    ( )     
         ( )     

         ( )     
       (25) 

   √  
    

   (26) 

and, 

   
          

          
               

 



Engineering and Technology Journal                Vol. 38, Part A (2020), No. 12, Pages 1871-1879 

 

1875 
 
 

 

 

 

Figure 3: FG Brazilian disc under traction load 

 

The total number of nodes is 989 as shown in Figure 4. The circle of J-integral radius and 

background cells can be seen in Figure 5. In addition, the gauss scattering describes in Figure 6; 3 

gauss points are used by applying the sub-triangle technique nearby the crack tip and crack surface.  

 

 

Figure 4: nodal distribution of the problem 

 

 

Figure 5: background cells distribution 
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Figure 6: Gauss scattering for whole domain and for zoom in the right crack tip 

In the isotropic case, Table I clears the influence of crack length on the SIFs. It is evident that 

when the length of crack increases, SIF increases. 

 

TABLE I: crack length vs. SIFs (Mpa. √ ) at radial gradation β=α=γ=0, rJ=1.6/a. 

a 

(dmax =1.7) 
KI KII KI [9] KII [9] KI [20] KII [20] 

1 12.11 17.11 11.33 16.73 12.11 17.11 

1.25 17.65 12.93 -- -- -- -- 

1.5 15.05 22.06 -- -- -- -- 

1.75 15.83 23.91 -- -- -- -- 

 

 Table II describes orthotropic FG cases for different non-homogeneity terms βa=αa=γa. 

Obviously, if non-homogeneity parameters are positive and equal, there is a very slight effect on the 

results of SIFs at various crack lengths. It is evident that when non-homogeneity parameters rise, SIF 

reduces mightily.  

 

TABLE II: describes orthotropic FG cases for different non-homogeneity terms βa=αa=γa. 

a 

 
βa KI KII KI [9] KII [9] KI [20] KII [20] 

1 -0.5 28.58 19.12 28.58 65.81 92.22 19.12 

1.25 -0.5 39.39 26.08 -- -- -- -- 

1.5 -0.5 54.25 39.09 -- -- -- -- 

1 0.5 5.76 3.75 5.76 3.847 5.459 3.75 

1.25 0.5 5.63 3.56 -- -- -- -- 

1. 5 0.5 5.31 3.40 -- -- -- -- 

 

Table III shows orthotropic FG cases for different non-homogeneity parameters. where if crack 

length increases, SIFs increases. Further, when graduating in     only (αa=0.0, βa=0.1, γa=0.0), KI 

results have a slightly more increase than other relevant results in else cases. 

 

 

 

 



Engineering and Technology Journal                Vol. 38, Part A (2020), No. 12, Pages 1871-1879 

 

1877 
 
 

TABLE III: SIFs (Mpa. √ ) for various crack lengths and non-homogeneity parameters at 

dmax =1.7, rJ=1.6/a. 

a 

 

Non-homogeneity 

parameters 
KI KII 

KI 

[20] 
KII [20] 

1 αa=0.1, βa=0.0,γa=0.0 15.25 11.05 10.42 15.45 

1.25 αa=0.1, βa=0.0,γa=0.0 17.33 12.13 -- -- 

1.5 αa=0.1, βa=0.0,γa=0.0 19.58 13.45 -- -- 

1 αa=0.0, βa=0.1,γa=0.0 17.87 12.05 17.08 11.50 

1.25 αa=0.0, βa=0.1,γa=0.0 19.45 12.99 -- -- 

1.5 αa=0.0, βa=0.1,γa=0.0 21.53 13.90 -- -- 

1 αa=0.0, βa=0.0,γa=0.1 15.90 11.16 16.73 11.33 

1.25 αa=0.0, βa=0.0,γa=0.1 17.77 12.76 -- -- 

1.5 αa=0.0, βa=0.0,γa=0.1 20.08 14.05 -- -- 

 

Table IV and Figure 7 describe the insensitivity of SIFs in rapprochement with variation in the 

magnitudes of dmax and rJ respectively. 

TABLE IV: SIFs (Mpa. √ ) vs. size of support domain dmax at αa=0.1, βa=0.0, γa=0.0, a=1.5, 

rJ=1.6/a. 

dmax KI KII 

1.5 19.32  12.81 

1.7 19.57  13.45 

1.9 19.81  13.87 

2.2 20.07  14.04 

 

Figure 7: SIFs (Mpa. √ ) vs. rJ/a at αa=0.1, βa=0.0, γa=0.0, a=1.5, dmax =1.7. 

6. CONCLUSIONS 

In this research a numerically crack analysis in OFGM Brazilian disc that subjected to traction 

load be done. The extended element free Galerkin method have well powerful in the solution of the 

fracture problems. It is clear that the change of the crack length has a clear effect on the SIFs results 

at different non-homogeneity parameters of the gradation of the relevant material. The important 

thing to be mentioned that the selection of positive and constant non-homogeneity parameters in all 

directions reduces evidently the results of the SIFs. Further, in orthotropic FG cases for different non-

homogeneity parameters, when graduation in     only (αa=0.0, βa=0.1, γa=0.0), KI results have a 

slightly more increase than other relevant results in else cases. Briefly, the significant points of the 

conclusions of this research can be remarked as follow: 

1) In the isotropic case, it is manifest that when the length of crack increases, SIF increases.  
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2) In non-homogeneity parameters are positive and equal, there is a very small influence on the 

results of SIFs at various crack lengths.  

3) When these parameters are negative and equal, there are huge increases in the SIFs with the 

increase of the crack length. 

4) Graduation in     has more effect in increasing the values of SIFs in corresponding crack 

length.  

 

An extension to dynamic orthotropic XEFG under thermal load is powerfully aimed for 

interesting crack analysis of related materials. 

 

Nomenclature 
E: Modulus of elasticity (Young's Modulus), MPa 

G: Shear modulus, MPa 

M: Interaction integral, N/m 

N: number of nodes 

a: The length of a crack, mm 

b: Body force, N 

dml: variation of the support domain, m 

n: variation of the support domain 

nj: The unit outward normal to contour 

r: Radial distance from a crack tip, m 

rJ: Size of J-Integral, m 

 :̅ traction force, N 

t: Time, s 

  : The unknown trial approximation of displacement, m 

 ̅: The prescribed displacements on the boundary, m 

w:  The weight function of an influence node 

 : The global domain of the problem 

 : Boundary of the global domain 

 : Kronecker delta 

 : Shape function 

ν: Poisson’s ratio 

 : Kolosov constant 

 : Mass density,     ⁄  

λ: Lagrange multiplier 

 

Matrices and Vectors 
a: The vector of unknown coefficients 

b: The body forces vector 

Bj: Shape function derivatives matrix 

D: Material properties "constitutive" matrix 

F: Force vector 

K: Stiffness matrix 

L: The differential operator matrix 

M: Mass matrix 

P: Basis vector 

S: Compliance matrix 

 :̅ Traction vector 

u: Displacement vector 

x: Nodal position vector 

 : Shape function matrix 

 : Strain vector 

σ: Stress vector 
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