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 الملخص

الانموذج  سة الى المقارنة بين نماذج الانحدار المعلمية المقدرة وفقًا لتوزيعات وقت البقاء واختيار أفضلاهدفت الدر    
ی تحديد مدو الملائم لتوزيع وقت البقاء على قيد الحياة  وتقدير معلماتها .واستعمال  نماذج الانحدار المعلمی لبيانات 

( مرضا، المصابون بسرطان ١٢٠في وقت بقاء المرضی .وتم تطبيق الدراسة علی عينة بحجم ) ؤثرالعوامل التي ت
 .2021نوفمبر  1حتى  2019يناير  1ة لمدة من ظة السليمانيبروستات/ مستشفی هيوا فی محاف

 Mat-lab, Stataوباستعمال البرامج ) AIC,BIC))وتم تحديد افضل انموذج بالاعتماد علی کل من المقایس  
15.1, Easy Fit 5.6( وتبين ان افضل انموذج هو .)(Weibull- AFT ( والعواملAge, PSA, Stage, 

metastasis مدة البقاء المريضؤثر في (هي التي ت . 
 

 ،MLE، (AFT)وقت الفشل المعجل  نماذج الانحدار المعلمية،تحليل البقاء على قيد الحياة،  : الكلمات الافتتاحیة
 .سرطان بروستات

 
Abstract: 
     The aim of this study is to compare between the parametric regression models 
estimated according to the distributions of survival time and select the best appropriate 
model for the distribution of survival time and estimate its parameters. Use parametric 
regression models for data and determine the factors that affect the survival time of 
patients. The study was applied to a sample size of (120) patients with prostate cancer / 
Hiwa Hospital in Sulaymaniyah Governorate for a period from January 1, 2019 to 
November 1, 2021. 
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     The best model was determined based on each of the criteria AIC and BIC and using 
the applications (Mat-lab, Stata 15.1, Easy Fit 5.6). The result show that the best model 
is (Weibull-AFT) and the factors (Age, PSA, Stage, metastasis) are that affect the 
patient's survival time. 
Keywords: Survival Analysis, parametric regression models, Accelerated Failure Time 
(AFT), Maximum likelihood estimation (MLE), prostate Cancer. 
                   
1: Introduction 
      Survival analysis is a statistical tools analysis that focuses on the influence of 
predictors on the time until an event happens, rather than the chance of an event 
occurring. It is used to examine data that contains information about the time remaining 
until an event occurs. As the name suggests, this approach was usually used in medical 
research to evaluate the effect of drugs or medical therapy on the time before death. In 
the engineering field is called reliability analysis, it's also called duration analysis in the 
economics field, and it’s called event history analysis in the sociology field. This method 
was used to measure the survival rate of patients in the medical field. In survival analysis 
models, the process and paradigms that can be used to deal with data classification can 
be used. Survival analysis may be studied using a variety of methods, including( Life 
tables, Kaplan-Meier analysis, Survivor and hazard function rates, Cox proportional 
hazards regression analysis, parametric survival analytic models, Survival trees, Survival 
random forest) (Abbas, Subramanian et al. 2019). 
  In scientific and organic studies, the analysis of event time data or (survival statistics) 
aimed to describe the hazard (risk) function of event times in population. Survival 
analysis is used in a lot of different fields, like biology, epidemiology, medicine, and public 
health. Survival data is often examined by simulating event timing data, such as the 
amount of time till death. Survival time or failure time is the term used to describe the 
amount of time before a particular occurrence occurs(Zhao 2008). 
Survival analysis is a method for analyzing time-to-event data, data where the outcome 
variable is time elapsed from a time origin until the occurrence of a chosen event of 
interest. This type of data is common in medical studies where often the time origin 



  

 ( 2022كانون الاول  )                          (74العدد      18  )المجلد                   لادارية(           المجلة العراقية للعلوم ا   (

  

272 
 

 

 

corresponds to entry into the study and the event of interest to death, thus the name 
survival analysis (Christiansson 2020). At the begging survival used only to investigate 
mortality and morbidity in vital statistics. . The first mathematical examination of human 
survival processes dates all the way back to the seventeenth century, when John Graunt, 
an English statistician, produced the first life table in 1662(Liu 2012). 

 
2: Literature review  
 Jiezhi Qi (2009), Compared Proportional Hazards and Accelerated Failure Time 
Models, In the study of some survival data, the AFT model was considered as an 
alternative to the PH model(Qi 2009). 
Yiu Ming Chan (2013), this investigation gave a correlation of survival between White 
and African American men at the four key stages of cancer for patients under a similar 
treatment. Moreover, to understand the hazard factors (age, tumor estimate, and tumor 
size connected with survival time, a system of accelerated disappointment time was 
made. Finally, the results of parametric survival examination and the system of 
accelerated disappointment time model are looked at among white men experiencing a 
similar treatment(Chan 2013) . 
Minh Hoang Pham (2014), this study observed the cancer patients' survival time using 
the Weibull probability distribution. In this study, the researcher made use of the 
parametric survival method for analysis of the survival time cancer patients. The results of 
the study prove consistency of the parametric method in relation with the theoretical 
approach more than the semi-parametric approach(Pham 2014) 
Montaseri, Charati, and Espahbodi (2016), the purpose of this research was to 
examine the performance of several parametric models in a survival analysis of patients 
undergoing hemodialysis. Parametric models were compared using the Akaike 
information criterion (AIC). It was shown that the mean serum albumin and attendance at 
a clinic were the most significant predictors of hemodialysis patient. According to the 
findings of the parametric models evaluated, the Weibull model had the best 
performance(Montaseri, Charati et al. 2016)    
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Emmert-Streib and Dehmer (2019), in this research, reviewed the theoretical 
foundations of survival analysis, including estimators for survival and hazard functions, 
have been discussed in this study. They used the Cox Proportional Hazard Model, and 
also stratified Cox models was used for when the PH assumption doesn't hold. (Emmert-
Streib and Dehmer 2019). 
Salinas-Escudero…etal (2020), the purpose of this investigation is to use survival 
analysis to determine the risk variables related with COVID-19 mortality in the Mexican 
population. They used this analysis to make Kaplan-Meier curves and a Cox proportional 
hazard model.Concluded that men had a higher risk of dying at any time during follow-up 
than women with the patients over the age of 65, adults with chronic renal disease. 
(Salinas-Escudero, Carrillo-Vega et al. 2020).  
3: Methodology 
 This section discussed the some basic definitions of survival analysis, including the 
nature of data (typed of censoring), survival function and the hazard function, as well as 
several tests and techniques for analyzing survival data. 
3.1: Survival Analysis 
     Survival analysis is a collection of methods for studying data in which the outcome 
variable is the time until an event of interest occurs. The occurrence might be death, 
divorce, the onset of a sickness, marriage, and so on. Years, months, weeks, Days, and 
so on can be used to calculate the time to event or survival time(Ekman 2017). 
3.2: The nature of survival data (Censoring data) 
    In Survival analysis there are several types of data was used to analysis, below 
definitions of these different types of censoring: 
3.2.1: Type I Censoring  
   In this type the study comes to an end at a certain time point or, if the participants are 
tested at multiple times during the research, when a specific amount of time has passed 
from the beginning of the experiment(Ekman 2017). 
3.2.2: Type II Censoring 
     The censoring of failure time data sets it apart from other data types. Assume we 
study the mortality rates of individuals with a certain condition. It is normal that some 
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patients be still alive at the conclusion of the trial. So their failure times are known to be 
larger than the duration from patient enrollment to study completion. As a result of this 
censoring, survival analysis requires statistical techniques other than simple linear 
regression. There are three kinds of censoring: right, left, and interval(Dey, Mukherjee et 
al. 2020).  

3.2.2.1: Right Censoring 
  If failure happens after the documented follow-up period, a subject is right 
censored(Stevenson and EpiCentre 2009) 

3.2.2.2: Left censoring  
      Left censoring occurs when the event is already past. This is an uncommon 
occurrence. Assume that some individuals in the stroke clinical trial experienced a stroke 
before the research began. These subjects are left-censored observations, where the 
“failure” (stroke) happened prior to a certain time. A subject is left censored it is known 
that the failure occurs some time before the recorded follow-up period(Dey, Mukherjee et 
al. 2020). 
3.2.2.3: Interval censoring  
     It is described as interval censored when the event happens between two times, but 
the actual moment of failure is unknown. In other words, I can tell that the event 
happened between the dates A and B(Alhasawi 2015). 
3.3: Failure Time 
      Usually the failure time of a survival depends on time, with the rate varying over the 
life cycle of the survival. It is interested in the effect of a risk factor or therapy on the time 
required to develop a disease or other occurrence(Vittinghoff, Glidden et al. 2006).  
3.4: Function Related to Survival Analysis. 
3.4.1: Cumulative distribution  
The cumulative distribution is defined as follows: 

𝐹(𝑡) = 𝑝𝑟(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0

               (1) 
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The time interval is expected to be between 0 and t. (Abbas, Subramanian et al. 2019). 

 3. 4.2: Survival function  
     Survival probability is produced by the survival function, S (t), approximately to time t. 
for survival analysis, survival function has an important role to play. T is a random 
variable that refers to the survival time, whereas S(t) refers to the survival function and 
(T) is a non-negative random variable referring to the time when an event occurs, The 
definition of the survival function appears to be as follows(Emmert-Streib and Dehmer 
2019) : 

𝑆(𝑡) = 𝑝𝑟(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑢)𝑑𝑢                          (2)
∞

𝑡

 

3.4.3: Hazard Function  
     We define the hazard 
 function and the relationship between it and the survival function in this section of the 
paper. The following is the definition of the hazard function(Lee and Wang 2003): 

ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)     

∆𝑡
 

ℎ(𝑡) = lim
∆𝑡→0

[𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)]/∆𝑡

𝑆(𝑡)
            

ℎ(𝑡) =

𝜕𝐹(𝑡)

𝜕𝑡
 

𝑆(𝑡)
                                                

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
                                              (3) 

3.5: Models of Survival Analysis 
3.5.1: Parametric Models  
      Parametric approaches are based on the assumption that the fundamental 
distribution of survival times follows well-known probability distributions. 
Including(exponential ,Weibull, and lognormal distributions ), with Accelerated Failure 
Time (AFT) model (Wang, Li et al. 2019). 
3.5.1.1: Accelerated Failure Time (AFT) 
      It is another popular regression model, often, used to analyze survival data, also, 
AFT model relate the lifetime distribution to the explanatory variable (stress, covariate). 



  

 ( 2022كانون الاول  )                          (74العدد      18  )المجلد                   لادارية(           المجلة العراقية للعلوم ا   (

  

276 
 

 

 

This distribution can be defined by the survival, cumulative distribution, or probability 
density functions(Bogaerts, Komárek et al. 2017). 
Regarding 𝑻𝒊 as a random variable representing the (possibly unobserved) survival time 
of the ith unit, since 𝑻𝒊 must be non-negative value, and it should be considered 
modeling its logarithm using a customary linear model: 
                            𝑙𝑜𝑔 𝑇𝑖  =  𝑥𝑖′ 𝛽 +  𝜀𝑖                                                    (4) 
Where: 
 𝜺𝒊 is advisable error term and 𝒙𝒊 is covariate factor, 𝑻𝒊 is survival time. 
The distribution of survival time to be specified (exponential, Weibull, log-normal and 
gamma AFT model) (Cleves, Gould et al. 2008). 
3.5.1.1.1: Weibull distribution(Lee and Wang 2003) 
The probability density function (p.d.f) and cumulative distribution functions (C.D.F) are, 
respectively: 

𝑓(𝑡) =
𝜃

𝛿
(

𝑡

𝛿
)𝜃−1𝑒−(

𝑡

𝛿
)𝜃

          𝑡 ≥ 0,     𝜃, 𝛿 > 0                    (5) 
And  

                                                𝐹(𝑡) = 1 − 𝑒−(
𝑡

𝛿
)𝜃

                                                 (6) 
The survival function is, therefore, 

                                                              𝑆(𝑡) = 𝑒−(
𝑡

𝛿
)𝜃

                                          (7) 
And the hazard function, the ratio of (5) to (7), is 

ℎ(𝑡) =
𝑓(𝑡)

𝑠(𝑡)
 

ℎ(𝑡) =

𝜃

𝛿
(

𝑡

𝛿
)

𝜃−1

𝑒−(
𝑡

𝛿
)

𝜃

𝑒
−(

𝑡

𝛿
)

𝜃
 

                                                                     ℎ(𝑡) =
𝜃

𝛿
(

𝑡

𝛿
)𝜃−1                               (8) 

The mean of the Weibull distribution is  

𝜇 = 𝛿Г (1 +
1

𝜃
)                                                                             (9) 

And the variance is 

𝜎2 = 𝛿2 [Г (1 +
2

𝜃
) − Г2 (1 +

1

𝜃
)]                                                  (10)  

Where Г(𝜽)𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛 𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠  
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Г(𝜃) = ∫ 𝑥𝜃−1𝑒𝑥 𝑑𝑥
∞

0

 

                                                                              = (𝜃 − 1)!                                        (11) 
Value of Г(𝜽) can be found in Abramowitz and Stegun (1964). The coefficient of variation 
is then  

                                             𝐶. 𝑉 =
1

𝛿
[

Г(1+
2

𝜃
)

Г(1+
1

𝜃
)

− 1]
1

2                                      

(12) 
3.6: Maximum likelihood estimation (MLE) 
Now we are using MLE to estimate to parameters of Weibull distribution 

𝑓(𝑡) =
𝜃

𝛿
(

𝑡

𝛿
)𝜃−1𝑒−(

𝑡

𝛿
)𝜃

          𝑡 ≥ 0,     𝜃, 𝛽 > 0             

𝐿(𝜃, 𝛿, 𝑡1, 𝑡2, … , 𝑡𝑛) = (
𝜃

𝛿
)𝑛 ∏ (

𝑡𝑖

𝛿
)

𝜃−1
𝑛

𝑖=1

𝑒− ∑ (
𝑡𝑖
𝛿

)
𝜃

𝑛
𝑖=1      

𝑙𝑛𝐿(𝜃, 𝛿, 𝑡1, 𝑡2, … , 𝑡𝑛) = 𝑛𝑙𝑛 (
𝜃

𝛿
) + (𝜃 − 1)𝑙𝑛 ∏ (

𝑡𝑖

𝛿
) −

𝑛

𝑖=1

∑(
𝑡𝑖

𝛿
)𝜃

𝑛

𝑖=1

     

 

𝑙𝑛𝐿(𝜃, 𝛿, 𝑡1, 𝑡2, … , 𝑡𝑛) =  𝑛𝑙𝑛 (𝑣) − 𝑛 ln(𝛿) + 𝜃 ∑ 𝑙𝑛 (
𝑡𝑖

𝛿
) −

𝑛

𝑖=1

∑ ln (
𝑡𝑖

𝛿
) −

𝑛

𝑖=1

∑(
𝑡𝑖

𝛿
)𝜃

𝑛

𝑖=1

 

𝑙𝑛𝐿 =  𝑛𝑙𝑛 (𝜃) − 𝑛 ln(𝛿) +  𝜃 ∑(lnti − 𝑙𝑛𝛿)

𝑛

𝑖=1

− ∑ (ln 𝑡𝑖 − 𝑙𝑛𝛿) −

𝑛

𝑖=1

∑(
𝑡𝑖

𝛿
)𝜃

𝑛

𝑖=1

 

𝑙𝑛𝐿 =  𝑛𝑙𝑛 (𝜃) − 𝑛 𝑙𝑛(𝛿) +  𝜃 ∑ 𝑙𝑛𝑡𝑖 − 𝜃 ∑ 𝑙𝑛𝛿 −

𝑛

𝑖=1

𝑛

𝑖=1

∑ ln 𝑡𝑖 + ∑ ln 𝛿

𝑛

𝑖=1

−

𝑛

𝑖=1

∑ 𝑡𝑖
𝜃  𝛿−𝜃

𝑛

𝑖=1

 

 
Now we get derivative by   𝜹 :- 

𝑑 𝑙𝑛𝐿

𝑑 𝛿
=

−𝑛

𝛿
− 𝜃 ∑

1

𝛿

𝑛

𝑖=1

+ ∑
1

𝛿

𝑛

𝑖=1

− ∑ 𝑡𝑖
𝜃  (−𝑎𝛿−(𝜃+1))

𝑛

𝑖=1

 

𝑑 𝑙𝑛𝐿

𝑑 𝛿
=

−𝑛

𝛿
−

𝜃𝑛

𝛿
+

𝑛

𝛿
+ 𝜃 ∑

𝑡𝑖
𝜃

𝛿𝜃+1
 

𝑛

𝑖=1

 

𝑑 𝑙𝑛𝐿

𝑑 𝛿
= −

𝜃𝑛

𝛿
+

𝜃

𝛿
∑(

𝑡𝑖

𝛿
)𝜃

𝑛

𝑖=1

 

𝑑 𝑙𝑛𝐿

𝑑 𝛿
= 0 



  

 ( 2022كانون الاول  )                          (74العدد      18  )المجلد                   لادارية(           المجلة العراقية للعلوم ا   (

  

278 
 

 

 

−
𝜃𝑛

𝛿
+

𝜃

𝛿
∑(

𝑡𝑖

𝛿
)𝜃

𝑛

𝑖=1

= 0 

𝜃

𝛿
 (∑(

𝑡𝑖

𝛿
)𝜃

𝑛

𝑖=1

− 𝑛) = 0 

𝛿𝜃 = ∑
𝑡𝑖

𝑛

𝜃
𝑛

𝑖=1

 

                                                               𝛿̂ = (∑
𝑡𝑖

𝑛

𝜃
𝑛
𝑖=1 )

1

𝜃                                                     
(13) 
And we get derivative with respect  𝜽 :- 

𝑑 𝑙𝑛𝐿

𝑑 𝜃
=

𝑛

𝜃
+ ∑ ln (

𝑡𝑖

𝛿
) −

𝑛

𝑖=1

 𝛿 ∑(
𝑡𝑖

𝛿
)𝜃

𝑛

𝑖=1

ln (
𝑡𝑖

𝛿
) 

𝑑 𝑙𝑛𝐿

𝑑 𝜃
= 0 

𝑛

𝜃
+ ∑ ln (

𝑡𝑖

𝛿
) −

𝑛

𝑖=1

 𝛿 ∑(
𝑡𝑖

𝛿
)𝜃̂

𝑛

𝑖=1

ln (
𝑡𝑖

𝛿
) = 0 

We can now assume that  𝒉(𝜽̂) is the function of its partial derivative 𝒅 𝒍𝒏𝑳

𝒅 𝜽
, where 

                                                         ℎ(𝜃) =
𝑛

𝜃̂
+

∑ ln (
𝑡𝑖

𝛿
) −𝑛

𝑖=1  𝛿 ∑ (
𝑡𝑖

𝛿
)𝜃̂                           (14)𝑛

𝑖=1  
    Because of the difficulty of solving the equation (14) in the usual methods, we will use 
iterative methods, including Newton-Raphson-method, to obtain an estimate of  (𝜽, 𝜹) 
the steps of the method depend on the assumption of an (initial value) of the required 
root (𝜽̂) using the OLS method and be (𝜽̂𝒊=𝜽̂) and then determine the roots approximate 
to (𝜽̂) as in the following equation: 

                                                            𝜃𝑖+1 = 𝜃𝑖̂ −
 ℎ(𝜃̂𝑖)

ℎ′(𝜃̂𝑖)
                                                 

(15) 

Where 𝒉(𝜽̂𝒊) represent equation (14) and ℎ′(𝜃𝑖̂) =
𝑑ℎ(𝜃̂𝑖)

𝑑(𝜃̂𝑖)
 

At first we impose an initial value which is (𝜽̂𝟎) where 𝑖 =  0 and then apply an equation 
(15) to get a new value to 𝜽̂ and be 𝜽̂𝟏 and then assume that 𝜃1 is the initial value and 
apply the equation (15) again to get a new value which is 𝜽̂𝟐 and so until we reach the 
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stage (i+1) then 𝜽̂𝒊+𝟏 approach the required degree of accuracy specified by the 
researcher and thus we get the estimation of 𝜽̂ which represents the greatest value 

ℎ′(𝜃) = −
𝑛

𝜃2̂
− ∑(

𝑡𝑖

𝛿
)𝜃̂[

𝑛

𝑖=1

ln (
𝑡𝑖

𝛿
)ln (

𝑡𝑖

𝛿
) 

                                      ℎ′(𝜃𝑖) = −
𝑛

𝜃2̂
𝑖

− ∑ (
𝑡𝑖

𝛿
)𝜃̂[𝑛

𝑖=1 ln (
𝑡𝑖

𝛿
)]2                                    

(16) 
We stop when:- 

|𝜃𝑖+1 − 𝜃𝑖| ≤ 𝑒 
Equal to a very small value and then in order to get an initial value to apply the Newton-
Ravson method. I will use the method of OLS to obtain this value, but the way to find this 
value depends on the function of the cumulative distribution function of Weibull and its 
formula is as follows:  

𝐹(𝑡) = 1 − 𝑒−(
𝑡

𝛿
)𝜃 

𝑒−(
𝑡

𝛿
)𝜃

= 1 − 𝐹(𝑡) 
 And take (𝒍𝒏) to the both side of the equation:- 

− (
𝑡

𝛿
)

𝜃

= 𝑙𝑛[1 − 𝐹(𝑡)] 

(
𝑡

𝛿
)

𝜃

= −𝑙𝑛[1 − 𝐹(𝑡) 
And again 𝒍𝒏 to the both side 
𝜃 ln (

𝑡

𝛿
)  = ln [−𝑙𝑛(1 − 𝐹(𝑡))] 

𝜃𝑙𝑛(𝑡) − 𝜃 ln(𝛿) = ln [−𝑙𝑛(1 − 𝐹(𝑡))] 
𝑙𝑛(𝑡) − ln(𝛿) =

1

𝜃
ln [−𝑙𝑛(1 − 𝐹(𝑡))] 

                                     𝑙𝑛(𝑡) = ln(𝛿) +
1

𝜃
ln [−𝑙𝑛(1 − 𝐹(𝑡))]                                        

(17) 
And by comparing the equation (17) with the equation of simple linear regression:- 
                                   𝑌𝑡 = 𝐵0 + 𝐵1𝑋𝑡 + 𝐸𝑖                    i=1,2,3,…,n                            
(18) 
Where 𝑬𝒊 represents random error 
𝑌𝑡= 𝑙𝑛(𝑡) 
𝑋𝑡 = ln [−𝑙𝑛(1 − 𝐹(𝑡))] 

𝐵0 = ln(𝛿) 
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𝐵1 =
1

𝑎
 

Cumulative distribution 𝑭(𝒕) values can be obtained from empirical distribution and 
according to the following formula:- 
                                    𝐹(𝑡) =

𝐽−0.5

𝑁
            , J=1,2,…,N                                  ( 

19) 
                                 𝐵̂0 = 𝑋̅ − 𝐵̂1𝑋̅                                                                 
(20) 
                               𝐵̂1 =

∑ 𝑋𝑖 𝑌𝑖
𝑛
𝑖=1 −𝑛𝑌̅𝑋̅

∑ 𝑋𝑖
2−𝑛𝑋̅2 𝑛

𝑖=1

                                                            

(21) 
And then we can get Weibull distribution from the following relationships:- 
                      𝐵̂0 = ln(𝛿)    , 𝛿 = 𝑒𝐵̂0                                                           
(22) 
                           𝐵̂1 =

1

𝜃̂
         ,𝜃 =

1

𝐵̂1
                                                             

(23) 
3.7: Measures of the Model Selection 
     Two criteria were used in this research to determine the best model. Which are (AIC) 
and (BIC) criteria, we prefer lowest value to choose the best model. The two criteria we 
use are the following: 
3.7.1: Akaikke’s Infirmation Criterion (AIC) 
     Comparing the quality of various statistical models is done using the Akaike 
Information Criterion (AIC). In comparison to other models, the model with a lower AIC 
fits the data better. 
Akaike's Information Criterion calculating as follows:  
                         AIC=-2(log-likelihood) + 2K    or AIC= 2K-2ln (L)                                       
(24) 
Where:  
K the number of parameters in the model (the model's total number of variables, plus the 
intercept). 
 Log-likelihood is a measure of model fit, this is usually found in the statistical 
output(Moore 2016). 
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3.7.2: The Bayesian Information Criterion (BIC) 
     The Bayesian information criterion (BIC) is a well-known and commonly used tool for 
selecting statistical models. Bayesian information criterion calculate as follows: 
                                                       BIC=-2*InL+2*InN*k                                            
(25) 
Where: L=is the value of the likelihood 
N=the number of observations, or equivalently, the sample size. 
 K= number of model parameters. 
the model with the lowest BIC is chosen as the best model(Ibrahim, Chen et al. 2001). 
4: Description and Analysis of data: 
4.1: Data description:  
        The data for this paper of prostate cancer have been collected from Hiwa Hospital. 
The data consisted of 120 cases which are collected during 3 years period; beginning 
from 1th January 2019 through 1th November 2021 on all prostate cancer patients. Out of 
those patients there are 120 patients are survived or still alive. The survival time are 
measured in day. 
Table 1. The explanatory variables measured for these data at diagnosis: 
Name variables Description Percentage (%) 

Age 

<60=(1) 
60-69=(2) 
70-80=(3) 
>80=(4) 

%7.5 
%32.5 
%43.3 
%16.7 

Smoker 
Yes=(1) 
No=(2) 

%27.5 
%22.5 

Blood group 

A+=(1) 
A-=(2) 
B+=(3) 
B+=(4) 
O+=(5) 
O=(6) 

%24.1 
%1.7 
%14.2 
%3.3 
%47.5 
%2.5 
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AB+=(7) 
AB=(8) 

%6.7 
%0 

Occupation 
Employee=(1) 
No employee=(2) 
retired=(3) 

%5.8 
%42.5 
%51.7 

stage 
Lowe-risk=(1) 
         intermediate-risk=(2) 
high-risk=(3) 

%1.7 
%17.5 
%80.8 

Volume 
≤40 =(1) 
41-60=(2) 
>60 =(3) 

%38.3 
%27.5 
%34.2 

BMI 
Underweight=(1) 
normal weight=(2) 
overweight=(3) 

%1.7 
%42.2 
%45.2 

PSA 
<10 =(1) 
10-20 =(2) 
20>  =(3) 

%7.5 
%20.8 
%71.7 

Metastasis 
Yes=(1) 
No=(2) 

%66.7 
%33.3 

Genetic 
Yes=(1) 
No=(2) 

%20 
%80 

And the response variable is survival (Time-To-Event) 
 
4.2: Data Analysis: 
   First of all we test the data to know that if this data Weibull distribution or not, 
we use the goodness of fit, which is Kolmogorov-Smirnov, Anderson-Darling, Chi-
Squared test, according to our hypothesis. Table below show the result of this test 
Hypothesis test: 
𝐻0:The data distributed Weibull distribution 
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𝐻1: The data distributed Weibull distribution 
              Table 2: Test data for parametric regression Weibull distribution. 

 𝑎 = 0.01 𝑎 = 0.05 
 Chi-

Squared 
Anderson-
Darling 

Kolmogorov
-Smirnov 

Chi-
Squared 

Anderson-
Darling 

Kolmogorov
-Smirnov 

Statistic 8.0823 0.5173 0.06426 8.0823 0.5173 0.06426 
Critical 
Value 

16.812 3.9074 0.14871 12.592 2.5018 0.12397 

 
The table above show that the critical value of Chi-Squared, Anderson-Darling and 
Kolmogorov-Smirnov (16.812, 3.9074, 0.14871) greater than their statistics (8.0823, 
0.5173, 0.06426) with (𝑎 = 0.01)  and (12.592, 2.5018, 0.12397) greater than 
(8.0823, 0.5173, 0.06426) therefore accept 𝐻0  and the survival time follows the Weibull 
distribution. 
Second step: fitting the accelerated Failure time (AFT) model with (Weibull, Log 
normal, exponential) distribution. 
               Table 3: The (BIC) and (AIC) tests, for comparing AFT Model. 

Distribution NO. parameter AIC BIC 
Weibull 2 232.695 266.1449 

Log normal 2 267.4484 300.8983 

exponential 1 303.9187 334.5811 

 
According to the Table (3) compared AFT models by statistics criterion Bayesian 
information criterion (BIC) and Akaike information criterion (AIC). The smaller BIC and 
AIC is the better, each of the BIC and the AIC are tools for choosing between two or 
more models.in the above table  explained that the Weibull AFT model is better model 
according to AIC=232.695 and BIC=266.1449 compared with  models. 
Third step: Finding the initial value for Weibull distribution 
To obtain the initial value by use equation (18) and the equation 𝑌𝑡= 𝑙𝑛(𝑡) and  
                                                     𝑋𝑡 = ln [−𝑙𝑛(1 − 𝐹(𝑡))] . 
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By using ordinary least square (OLS) to estimate of values (𝐵0, 𝐵1) we get the value of   
                                                          𝐵0 = 5.962,  𝐵1= 0.72 
Table 4: show that the transformation for the explanatory variable (𝑋𝑡) and 
 Response variable (𝑌𝑡) 

J t 𝑌𝑡 = 𝑙𝑛(𝑡) 𝐹(𝑡) =
𝐽 − 0.5

𝑁
 1-𝐹(𝑡) 𝑙𝑛(1 − 𝐹(𝑡)) -𝑙𝑛(1 − 𝐹(𝑡)) 𝑋𝑡 = ln (−𝑙𝑛(1 − 𝐹(𝑡)) 𝑋𝑡

2 𝑋𝑡 × 𝑌𝑡 

1 219 5.38907 0.00417 0.99583 -0.00418 0.00418 -5.47855 30.01453 -29.5243 

2 221 5.39816 0.01250 0.98750 -0.01258 0.01258 -4.37574 19.14713 -23.621 

3 224 5.41165 0.02083 0.97917 -0.02105 0.02105 -3.86069 14.90495 -20.8927 

4 227 5.42495 0.02917 0.97083 -0.02960 0.02960 -3.51997 12.39015 -19.0956 

5 227 5.42495 0.03750 0.96250 -0.03822 0.03822 -3.26436 10.65608 -17.709 

. . . . . . . . . . 

. . . . . . . . . . 

.  . . . . . . . . 

118 972 6.87936 0.97917 0.02083 -3.87120 3.87120 1.35356 1.83214 9.3117 

119 164 5.09987 0.98750 0.01250 -4.38203 4.38203 1.47751 2.18304 7.5351 

120 164 5.09987 0.99583 0.00417 -5.48064 5.48064 1.70122 2.89416 8.6760 

 
The coefficient of ordinary least square (OLS) method confirmed by use Stata program 
and then we applied the equation (22) and (23) to obtain the initial values of two 
parameters and the results were as follows: 
𝜃0 =1.389 
𝛿0 =388.39 
 
At the end to find the value of Estimate shape and scale parameter of Weibull 
distribution:- 
To find the values of the shape and scale parameters of Weibull distribution, we have 
used the method of (Newton-Raphson-method) with error (0.00001) to apply this 
method we use equation (14, 15, 16) the results of which were as follows: 
𝜃 = 1.6717 
𝛿 == 517.4 
Table 5: The survival model according to AFT Weibull distribution when the survival time 
followed the Weibull distribution. 
Variables Coef . Std. Err. Z P>|z| [99% Conf. Interval]  
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Lower bound Upper bound Haz. Ratio 

Blood 0.0295271 0.0243332 1.21 0.225 -0.0331511 0.0922053 1.029967 

Occupation 0 .1183633 0.0819883 1.44 0.149 -0.0928246 0.3295513 1.125653 

Genetic 0.2437352 0.112841 2.16 0.031 -0.0469239 0.5343944 1.276006 

Smoker 0.1203131 0.1040558 1.16 0.248 -0.1477169 0.3883431 1.12785 
Stage -0.6486137 0.167121 -3.88 0.000 -1.079089 -0.2181386 0.52277 

Metastasis -0.2950418 0.1113833 -2.65 0.008 -0.5819462 0.0081374 0.7445 

Age -0.0165876 0.0061613 -2.69 0.007 -0.0324581 -0.0007171 0.983549 

PSA 0.3031847 0.106703 2.84 0.004 0.0283361 0.5780333 1.354165 
Volume -0.0010022 0.0011729 -0.85 0.393 -0.0040234 0.002019 0.998998 
BMI 0.0176229 0.0106489 1.65 0.098 -0.0098067 0.0450526 1.017779 

 
From the above table we notice the following: 
Age variable will be one of the highly significant factors in our study; because the p-value 
of the variable is (0.007) less than the level of significance (𝑎 = 0.01). Stage is the 
variable is significance because the p-value of the variable is less than the level of 
significance (𝑎 = 0.01).  
The p-value of variable (Metastasis=0.008) also is significance it is less than the level of 
significance (𝑎 = 0.01).last significance variable ( PSA) the p-value of the variable is 
(0.004) less than the level of significance (𝑎 = 0.01).  
Above table show that the PSA has the highest risk in prostate cancer which (1.354165) 
and stage has the lowest risk with rate (0.52277) 
The variables  (Blood, volume, BMI, genetic, occupation and smoker) are not significance 
factors while the  P-value are greater than level significance  (𝑎 =0.01) ,meaning that 
this variables are not affecting this type of cancer . 
We can write the Weibull AFT model as follows: 
 
  
                                                     log 𝑇𝑖 =  𝑥𝑖  𝛽 +  𝜀𝑖 
                log 𝑇𝑖 = -0.0165876Age −0.3031847PSA-0.6486137stage-
0.2950418metatastis 



  

 ( 2022كانون الاول  )                          (74العدد      18  )المجلد                   لادارية(           المجلة العراقية للعلوم ا   (

  

286 
 

 

 

 
Table 6: Show that survival rate, hazard rate probability density function and cumulative 

of Weibull distribution. 
 
The above table show that the value of survival function opposite with patients' stay in the 
hospital, and this means that the values of the survival function gradually decrease with 
the increase patients' stay in the hospital. If the patient's stay time is (42) days in the 
hospital, the probability of his survival is (0.98509), but if the patient's stay time is (1018) 
days in the hospital, the probability of his survival is (0.04505). 
The values of the hazard function are positive and probabilistic values, and that the 
hazard function increases with the increase in the time patients stay in the hospital. 
Conversely, the longer the patient stays in hospital, the higher the risk of death. If the 
patient's stay time is (42) days in the hospital, the probability of death is (0.00060), but if 
the patient's stay time is (1018) days in the hospital, the probability of death is 
(0.00509). 
The following two figure show the same results. 
 

Time f(t) F(t) h(t) S(t) 
42 0.00059 0.01491 0.00060 0.98509 
43 0.00060 0.01551 0.00061 0.98449 
45 0.00062 0.01672 0.00063 0.98328 
55 0.00070 0.02331 0.00072 0.97669 
57 0.00072 0.02473 0.00073 0.97527 
. . . . . 
. . . . . 
. . . . . 
1005 0.00024 0.95188 0.00505 0.04812 
1018 0.00023 0.95495 0.00509 0.04505 
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Figuer 1.Represent survival rate 
 

 
Figure 2 Represent hazard rate 
 
 
 
 
 
5. Conclusion & Recommendation: 
5.1: Conclusion: 
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During conducting the survival data and according to the results from the practical part 
the following conclusions have been shown: 
1. Comparing the AFT models based on the AIC and BIC it is concluded that (Weibull 
AFT model) is the most suitable model for our data set that was used in this study. 
2. According to the results of the Weibull AFT model of this study indicates the most 
popular factors that affected on the prostate cancer are (Age, PSA, Stage, metastasis) 
with level(𝑎 = 0.01). 
3. Determine the survival function and hazard function for each patients on prostate 
cancer. The results we get survival function gradually decrease with the increase patients' 
stay in the hospital. If the patient's stay time is (42) days in the hospital, the probability of 
his survival is (0.98509), but if the patient's stay time is (1018) days in the hospital, the 
probability of his survival is (0.04505). Hazard function increases with the increase in the 
time patients stay in the hospital which mean that the longer the patient stays in hospital, 
the higher the risk of death. If the patient's stay time is (42) days in the hospital, the 
probability of death is (0.00060), but if the patient's stay time is (1018) days in the 
hospital, the probability of death is (0.00509). 
 
5.1: Recommendation 

1. Using non-parametric models and comparing these models which we have 
achieved this study. 

2. The variables we have achieved in this study should be considered by those who 
have a specialist in medicine in this field. 

3. More studies should be done in this field because such studies are important and 
related to people’s lives. 

4. Data should be recorded in health places so that the researcher can conduct the 
research in detail. 
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