On-MC-Functions

Ala'a Mahmood Farhan , Fawzi Noori Nassar

Department of Mathematics, College of Education for Pure Sciences, Anbar University

(**Received:** 22 / 11 / 2009 ---- Accepted: 11 / 5 / 2011)

Abstract

In this work we introduce a new concept namely MC - function. These are the function $f: X \rightarrow Y$ such that the inverse image of every compact subset in Y is closed in X.We proved several theorems about MC- functions and we study the relations of MC- function with other types of functions.

1-Introduction

Let $f: X \rightarrow Y$ be a continuous function from a topological space X in to a T₂-space Y, if $K \subset Y$ is compact, then K is closed, but f is continuous, so

 $f^{-1}(\mathbf{K})$ is closed .This means that the inverse

image of each compact set in ${\bf Y}$ is closed in ${\bf X}$. This motivates the definition of MC- function.

2-Preliminaries

In this section we recall the basic definitions needed in this work .

(2-1) Definition [4]

If $f: X \rightarrow Y$ is a function, then the Graph of f (G (f)) is the subset {(x, y): $x \in X$, y = f(x) } of X ×Y.

(2-2) Definition [6]

A function $f: X \rightarrow Y$ has a closed graph (relative to $X \times Y$) if and only if G(f) is a closed subset of the product space $X \times Y$.

(2-3)Definition [8]

Let D be a non empty set and let \geq be a binary relation on D we say that the relation \geq directs D if and only if the following three conditions hold :

1-For every $a \in D$, $a \ge a$.

2- If $a \ge b$ and $b \ge c$ then $a \ge c$.

3-For each a, $b \in D \exists c \in D \ni c \ge a$ and $c \ge b$. The pair (D, \ge) is called a directed set.

(2-4)Definition [8]

A net in the space X is a function $f: D \rightarrow X$ where (D, \geq) is a directed set .

(2-5) **Definition** [7]

We will say that a function $f: X \rightarrow Y$ has a subclosed graph if for each $x \in X$ and net $\{X_{\alpha}\}$ in X- $\{x\}$ with

 $x_{\alpha} \rightarrow x$ and net $\{y_{\alpha}\}$ in Y, with $y_{\alpha} = f\{x_{\alpha}\}$ for each α and $y_{\alpha} \rightarrow y$ in Y, we have y = f(x).

(2-6) Definition [5]

A space (X, T) is said to be a T_2 -space if and only if given any two distinct points x and y of X, there are open sets U and V such that $x \in U$, $y \in V$, and U $\cap V = \phi$. A T_2 - space is often called a Hausdorff space.

(2-7) Definition [5]

A space (X, T) is said to be compact if and only if given any open cover $\{U_i\}$, $i \in I$, of X, there is a finite subcover of $\{U_i\}$, $i \in I$. Suppose (X, T) is any space and $A \subset X$, A is said to be compact if and only if every open cover of A has a finite subcover.

(2-8) Theorem [3]

Let X and Y be topological spaces . A function $f: X \to Y$ is said to be continuous if and only if

every closed set K of Y, the set $f^{-1}(K)$ is closed in X.

3 - MC - Functions

In this section we introduce a new concept, namely MC-function defined as follows:

(3-1) Definition

Let $f: X \rightarrow Y$ be a function we say that f is an MCfunction if and only if for each compact $K \subseteq Y$ then

 $f^{-1}(\mathbf{K})$ is a closed subset in X. If $f: X \rightarrow Y$ also continuous then we say that f is an MC-mapping. We will need the following fact (see[2]).

(3-2) Fact [2]

Let $f: X \rightarrow Y$ be a function from a space X into Y, then f has closed graph if and only if f has a subclosed graph and closed point image.

(3-3) Theorem

If $f: X \rightarrow Y$ is a function with subclosed graph then f is an MC-function.

Proof :

Let K be a compact subset of Y. We must prove that $f^{-1}(K)$ is a closed subset of X. Let a be a limit point of $f^{-1}(K)$. There are nets $\{x_{\alpha}\}$ in X- $\{a\}$ and $\{y_{\alpha}\}$ in K with $x_{\alpha} \rightarrow a$ and $y_{\alpha} = f(x_{\alpha})$ for each α . Some subnet $\{y_{\alpha n}\}$ of $\{y_{\alpha}\}$ converges to some $y \in K$, this gives y = f(a), since f has subclosed graph so $a \in f^{-1}(K)$. Thus, $f^{-1}(K)$ is closed in X.

(3-4) Corollarv

If $f:X \rightarrow Y$ is a function with a closed graph then f is MC-function. If $f:X \rightarrow Y$ is an MC-function, the G(f) is not necessarily closed.

The following theorem shows that if $f: X \rightarrow Y$ is an MC-function from a space X into a locally compact T_2 -space Y, then G(f) will be closed.

(3-5) Theorem

Let $f: X \rightarrow Y$ be an MC-function from a space X into a locally compact T_2 - space Y, then G(f) will be closed.

Proof :

Suppose $(x, y) \notin G(f)$, then $y \neq f(x)$ and so there exists disjoint open sets U_1 , U_2 with $y \in U_1$ and $f(x) \in U_2$, further there is a compact neighborhood W of y such that $W \subset U_1$, then

 $f^{-1}(\mathbf{W})$ is closed in X and $\mathbf{X} \notin f^{-1}(\mathbf{W})$, thus there is an open set V such that $\mathbf{X} \in \mathbf{V}$ and V $\cap f^{-1}(\mathbf{W}) = \varphi$. Hence V×W is neighborhood of (x, y) which misses G(f) and so G(f) is a closed.

(3-6) Proposition

If $f: X \rightarrow Y$ is a continuous function from a space X into a T₂ - space Y then f is an MC-mapping.

Proof :

Let K be a compact subset of Y, since Y is a T_2 -space then K is Closed in Y{A compact subset of a Hausdorff space is a closed.[6]} since f is continuous

, then $f^{-1}(\mathbf{K})$ is closed in X. Then f is an MC-mapping.

(3-7) Example

Let $f:(\mathbf{R}, \mathbf{T}_u) \rightarrow (\mathbf{R}, \mathbf{T}_u)$ be a function defined as follows:

 $f(\mathbf{x}) = \mathbf{x}^2$, then f is an MC-mapping.

Before we state our next theorem , we recall the definition of a compact function.

(3-8) Definition [1]

Let $f: X \rightarrow Y$ be a function, we say that f is a compact function if and only if the inverse image of each compact set K in Y is compact in X.

(3-9) Proposition

If $f: X \rightarrow Y$ is a compact function from a T₂ -space X into a space Y, then f is an MC-function.

Proof:

Let K be a compact subset in Y, since f is a compact function. Then $f^{-1}(K)$ is compact of X. Since X is

T₂-space then $f^{-1}(\mathbf{K})$ is closed of X. Then f is an MC-function.

(3-10) Proposition

References

1. Hadi - J- Mustafa, and D. Ibraheem Resan , compact mapping , M.sc, thesis college of Education, Al-Mustansiriya university, (2000).

2. James. E- Joseph, Multifunction and graphs, pacific, Journal of Math - vol, 79, No, 2, (1978).

3. James R. Munkres, Topology Second Edition -Prentice, Hall of India, Private Limited, New Delhi-110 001(2008).

4. Larryl. Herrington, Remarks on H(i) space and strongly closed graphs proceeding of American, Math. Society, vol, 58, (1976)

If $f: X \to Y$ is an MC-function and $W \subseteq X$, then $f \mid W: W \to Y$ is an MC-function.

Proof:

Let $g = f | W : W \rightarrow Y$ and let K be a compact subset of Y, Since f is an MC-function, then $f^{-1}(K)$ is a closed subset of X.Now $g^{-1}(K) = f^{-1}(K) \cap W$, then $g^{-1}(K)$ is a closed subset of W. Hence g =

 $f \mid W: W \rightarrow Y$ is an MC-function.

(3-11) Proposition

Let $f: X \rightarrow Y$ be a continuous function from a T₂-space X into Y, and let $g: Y \rightarrow Z$ be an MC-function. Then $g \circ f$ is an MC-function.

Proof:

Let K be a compact subset of Z .Since g is MC-function then, $g^{-1}(K)$ is a closed subset in Y . Since f is continuous then , $f^{-1}(g^{-1}(K))$ is closed of X ,

i.e $(g \circ f)^{-1}(K)$ is a closed subset of X, then $g \circ f$ is an MC-function.

(3-12) Proposition

Let $f: X \rightarrow Y$ be an MC-function from a space X into a compact space Y and let $g: Y \rightarrow Z$ be an MCfunction, then $g \circ f$ is an MC-function.

Proof :

Let K be a compact subset of Z, since g is an MCfunction then $g^{-1}(K)$ is a closed subset of Y. Since Y is a compact, then $g^{-1}(K)$ is a compact .Since f is an MC-function, then $f^{-1}(g^{-1}(K)) = (g \circ f)^{-1}(K)$ is a closed subset of X, then $g \circ f$ is an MC-function.

5. Michael C. Gemignani , Elementary Topology, Addison - Wesley Publishing Company, Inc. Philippines copyright, (1972) .

6. R-V-Fuller, Relations Among continuous and various non - Continuous functions, Pacific, Journal, Math, Vol, 25, No,3, (1968).

7.R-E. Smithson, sub continuity for multifunction, pacific, Journal- math. Vol. 61 No.1 (1975).

8. Willard's .W, General Topology - Addison Wesley, eading , mass , (1970) .

دوال – MC

علاء محمود فرحان ، فوزي نوري نصار

قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة الأنبار ، الرمادي ، العراق (تاريخ الاستلام: ٢٢ / ١١ / ٢٠٠٩ ---- تاريخ القبول: ١١ / ٥ / ٢٠١١)

الملخص

قدمنا في هذا البحث نوعاً جديداً من الدوال أسميناه الدالة – MC حيث K→Y بحيث أن الصورة العكسية f⁻¹(K) تكون مغلقة في X لكل K حيث K متراصة في Y .

وقد برهنا عدة مبرهنات عن الدالة – MC وقمنا بدراسة العلاقة بين هذه الدالة وبعض أنواع الدوال الأخرى .