

A comparison between PRK and LASIK outcome after 6 months in treatment of astigmatism

Dr. Raad K. Yacob MB.ChB, Diploma of Ophthalmology, Al-Sadder Teaching Hospital, Misan. Email: raadyacob@yahoo.com

Abstract:

Background: Astigmatism is a visual defect in which the unequal curvature of one or more refractive surfaces of the eye, usually the cornea, prevents light rays from focusing clearly at one point on the retina, resulting in blurred vision, it corrected by either by toric lenses or surgically (including laser refractive surgery).

Photorefractive keratectomy (PRK) is performed with the excimer laser, which can accurately ablate corneal tissue to an exact depth with minimal disruption of surrounding tissue, it done by removing the epithelial layer up to Bowman layer which then ablate with anterior stroma. Laser in situ keratomileusis (LASIK) is also performed with the excimer laser, but with creation a flap involving the stroma.

Aim of this study: To compare the differences in visual outcome after 6 months between photorefractive keratectomy (PRK) And Laser in situ keratomileusis (LASIK) in treatment of Astigmatism.

Patients and methods: 222 eyes of 115 patients (some of them had only astigmatism in one eye) who were done a laser refractive correction in Bin-Bilal private hospital to correct their astigmatismic refractive error were included in the study.152 of astigmatismic eyes were corrected by LASIK (82 of female eyes and 70 of male eyes), 67 of astigmatismic eyes were corrected by PRK (35 of female eyes and 32 of male eyes).

Results: In group those with astigmatism between 0.25-0.9 dioptre, No statistically significant association was found between outcome and type of operation where P= 0.66. In group those with astigmatism between 1.0-1.9 dioptres, statistically significant association was found between outcome and type of operation p=0.023. In group those with astigmatism between 2.0-2.9 dioptres, with statistically significant association was found between outcome and type of operation P=0.0009. In group those with astigmatism between 3.0-3.9 dioptres, with statistically significant association was found between outcome and type of operation P=0.001but not important because of small sample.

Conclusion: In conclusion, to our knowledge this is the first report of comparison in the outcome between LASIK and PRK after 6months in correction of astigmatism in Iraq . This study showed no statistically significant difference after 6 months of correction of astigmatism by wither by LASIK or PRK in different level of refractive error.

مقارنة بين نتيجة تصحيح الاستكماتزم (الأخطاء البصرية في احد محاور القرنية) بواسطة تصحيح تحدب القرنية بالليزر الموضعي (الليزك) والتصحيح الضوئي للانكسار برفع جزء من القرنية (البي آركي) بعد ستة أشهر من إجراء التصحيح.

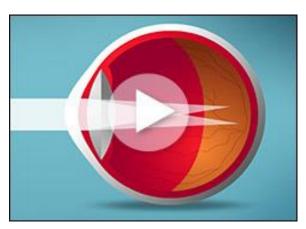
المقدمة: الاستكماتزم القرني هو خطأ بصري ناتج عن عدم تساوي في تحدب القرنية في احد محاور ها او اكثر من محور والذي غالبا ما يمنع تركيز اشعة الضوء بوضوح على احد نقاط الشبكية مما ينتج عنه تشوش في الرؤيا، و الذي يصحح اما بعدسات محورية او جراحيا (من ضمنها عمليات التصحيح بالليزر).

التصحيح الضوئي للآنكسار برفع جزء من القرنية (البي آركي) يتم من خلال الليزر البارد المسمى (اكسايمر) والذي يستطيع وبدقة ان يسبب تاكل نسيج القرنية السطحي وبعمق محدد مع اقل تاثير على انسجة القرنية المحيطة ، يتم من خلاله رفع الطبقة الطلائية للقرنية الى حد طبقة بومان ثم تبخير بعض من الجزء الامامي من لحاء القرنية . تصحيح تحدب القرنية بالليزر الموضعي (الليزك) ايضا يستخدم فيه الليزر البارد ولكن مع عمل لوحة تتكون من الطبقة الطلائية ، طبقة بومان و جزء من طبقة اللحاء الامامية .

الهدف من البحث: لمقارنة الاختلافات في نتائج قوة البصر بين التصحيح الضوئي للانكسار برفع جزء من القرنية(البي آركي) و تصحيح تحدب القرنية بالليزر الموضعي (الليزك) في معالجة استكماتزم القرنية بعد ستة اشهر من اجراء العملية. طريقة البحث: تم اخذ عينة تتكون من 222 عين ل115 مريض (بعض المرضى كانوا يعانون من استكماتزم في عين واحدة فقط) ، اجريت لهم عملية تصحيح البصر بالليزر في مستشفى بن بلال الاهلي لغرض تصحيح الخطأ البصري الاستكماتيزي وضمهم لهذا البحث.

152 من العيون الاستكماتيزمية صححت بواسطة تصحيح تحدب القرنية بالليزر الموضعي (الليزك) (82 اناث و 70 ذكور) ، 67 من العيون المتبقية تم تصحيحها من خلال التصحيح الضوئي للانكسار برفع جزء من القرنية (البي آركي) (35 منهم اناث و 32 ذكور). تم تقسيم عيون المرضى الى ستة اقسام حسب الخطا البصري لعيونهم: (المجموعة الاولى) اقل من درجة. (المجموعة الثانية) 1,0-9,1 درجة. (المجموعة الرابعة) 3,0-9,2 درجة. (المجموعة الخامسة) 4,0-4,0 درجة. (المجموعة السادسة) من 5 درجات فما فوق.

الاستنتاجات: التقرير الاول في العراق حول متابعة المرضى الذين يعانون من الاستكماتزم بعد تصحيحه بواسطة التصحيح الضوئي للانكسار برفع جزء من القرنية (البي آركي) و تصحيح تحدب القرنية بالليزر الموضعي (الليزك) ومحاولة ايجاد اي فوارق بينهما في قوة البصر بعد ستة اشهر من اجراء العملية والذي يؤكد


عدم وجود اختلافات يعتد بها احصائيا بينهما

Introduction:

Astigmatism is a very common condition that affects the vision of approximately 80% of all people. This condition occurs due to an irregular curvature of the cornea, or front surface of the eye. Astigmatism is often referred to as a refractive error, because the curvature of the cornea causes light to be focused away from its intended target, the retina. This usually causes blurred vision, at all distances, and can be present with other conditions like nearsightedness or farsightedness.

The most common symptoms of a natism are distortion of vision at any distance, headache, fatigue, eye square are some people who have astigmatism that is so mild that they do not require any corrective treatment in order to function normally.

Types of Astigmatism

- Myopic astigmatism. One or both principal meridians of the eye are near-sighted. (If both meridians are near-sighted, they are myopic in differing degree).
- Hyperopic astigmatism. One or both principal meridians are farsighted. (If both are farsighted, they are hyperopic in differing degree.)
- Mixed astigmatism. One principal meridian is near-sighted, and the other is farsighted.

Astigmatism also is classified as regular or irregular. In regular astigmatism, the principal meridians are 90 degrees apart (perpendicular to each other). In irregular astigmatism, the principal meridians are not perpendicular. Most astigmatism is regular corneal astigmatism, which gives the eye a football shape.

Treatment

Almost all degrees of astigmatism can be corrected with properly prescribed eyeglasses or contact lenses. For a person with only a slight degree of astigmatism, corrective lenses may not be needed at all, as long as other conditions, such as

nearsightedness or farsightedness, are not present. If the astigmatism is moderate to high, however, corrective lenses are probably needed.

• Corrective lenses (eveglasses or contact lenses). For astigmatism, special soft contact lenses called toric lenses are prescribed. Soft toric lenses have greater light bending power in one direction than the other. Another option, particularly for higher amounts of astigmatism, is a gas permeable rigid contact lens. After performing various tests, your eye doctor will determine the ideal prescription for your astigmatism.

Surgical correction

- 1. Limbal relaxing incisions/arcuatekeratotomy: involves making paired arcuate incisions on oppositesides of the cornea in the axis of the correcting 'plus'cylinder (the steep meridian).
- Lens surgery involves using a 'toric' intraocularimplant incorporating an astigmatic correction, Postoperative rotation of the implant away from the desired axis occurs in a significant minority.
- Conductive keratoplasty (CK) involves the application of radio frequency energy to the corneal stroma and can correct low to moderate and hypermetropic astigmatism. Burns are placed in one or two rings in the corneal periphery using a probe.
 - PRK and LASEK: see below. 4.
 - 5. LASIK: see below.

Photorefractive keratectomy (PRK):

Photorefractive keratectomy (PRK) is performed with the excimer laser, which can accurately ablate corneal tissue to an exact depth with minimal disruption of surrounding tissue. Myopia is treated by ablating the central anterior corneal surface so that it becomes flatter; approximately 10 /-lm of ablation will correct 1 D of myopia. Hypermetropia is treated by ablation of the periphery so that the center becomes steeper. PRK is able to correct astigmatism up to 3 D.

Technique

- The visual axis is marked and the corneal epithelium removed. a.
- b. The patient fixates on the aiming beam of the laser.
- The laser is applied to ablate only Bowman layer and anterior stroma, this usually takes 30-60 seconds.

The cornea usually heals within 48-72 hours aided by a bandage contact lens. A subepithelial haze invariably develops within 2 weeks and persists for 1-6 months, it rarely causes diminished visual acuity but may give nocturnal glare. (1)

Complications include slow-healing epithelial defects, corneal haze and haloes, poor night vision and regression of refractive correction. Uncontrol problems include decentred ablation, scarring, abnormal epithelial healing, irregular

astigmatism, hypoaesthesia, sterileinfilh'ates, infection and acute corneal necrosis. (3)

Laser in situ keratomileusis: (LASIK)

It is more versatile than PRK and LASEK and can astigmatism of up to 5 D. To decrease the risk of subsequent ectasia, a residual corneal base of at least 250 mm thickness must remain after the flap has been cut and tissue ablated. The amount of tissue removed and the total treatment is therefore limited by the original corneal thickness. The thickness of the flap can be varied but thilU1erflaps are more difficult to handle and more prone to wrinkling. (1) (5) (10)

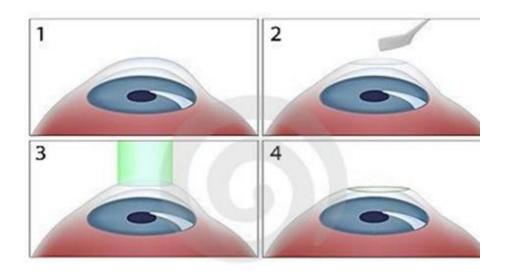
Technique

- a. A suction ring is applied to the globe; this raises the intraocular pressure to over 65 mmHg, and may temporarily occlude the central retinal artery and extinguish vision.
- b. The ring is centred on the cornea and provides a guide track into which an automated microkeratome is inserted.
- c. The keratome is mechanically advanced across the cornea to create a thin flap, which is reflected.
 - d. Suction is released and the bed is treated with the excimer laser as for PRK.
- e. The flap is repositioned and allowed to settle undisturbed for 30 seconds. (1) (6)

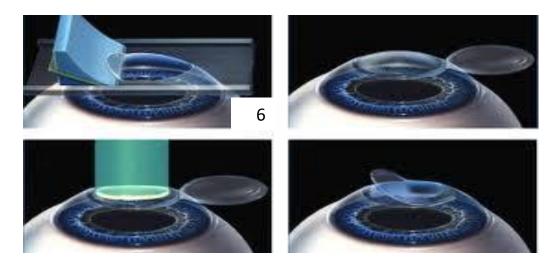
Compared to PRK, the procedure offers the advantages of minimal discomfort, faster visual rehabilitation, rapid stabilization of refraction and minimal stromal haze. (9) (10)

Patients and methods:

222 eyes of 115 patients (some of them had only astigmatism in one eye) who were done a laser refractive correction in Bin-Bilil private hospital to correct their astigmatismic refractive error were included in the study.


The correction of astigmatismic refractive error correction was done by Nidek machine and the surgery was done by dr.Zaidrabee.

Even that now LASIK become more used than prk but still there are many indications to perform the prk in which the surgeon in this study consider the following indications for PRK:



- Astigmatism (0.75 D to 3.0 D) Higher corrections are associated with regression of the effect; therefore, LASIK is the preferred procedure.
- Patients with documented evidence of a change in manifest refraction of less than or equal to 0.5 D (both cylinder and sphere components) per year for at least 1 year prior to the date of preoperative examination.
- Patients aged 21 years for the reduction or elimination of myopia from 0 D to -6.0 D spherical myopia at the spectacle plane with up to -3.0 D of astigmatism
- Patients aged 21 years or older with naturally occurring hyperopia from +1.0 D to +4.0 D spherical equivalent, with no more than 1.0 D of refractive astigmatism.
 - PRK in corneas previously treated with LASIK.

Both PRK and LASIK use excimer laser to ablate the corneal curvature but they differ by that in LASIK a flap is done consist of epithelium, bowman layer and part of stroma, while in PRK only epithelium was removed up to bowman layer.

Photorefractive Keratectomy (PRK)

LASIK

 $152\ of\ astigmtismic\ eyes\ were\ corrected\ by\ LASIK$ ($82\ of\ female\ eyes\ and\ 70\ of\ male\ eyes)$, $67\ of\ astigmatismic\ eyes\ were\ corrected\ by\ PRK$ ($35\ of\ female\ eyes\ and\ 32\ of\ male\ eyes)$.

Patients were grouped into six groups according degree of refractive error: (G1) less than 1diaptordioptre.

- (G2) 1-<2dioptre.
- (G3) 2-<3dioptre.
- (G4) 3-<4 dioptre.
- (G5) 4-<5 dioptre.
- (G6) more than 5 dioptre, so we have six dioptreic groups.

The outcome of visual acuity was followed-up by autorefraction six months postoperatively were grouped into five groups according to their visual outcome: a=emmetropia

b= no correction (same degree)

c=undercorrection

d=worse (increase the refractive error)

e= overcorrection

We use the SPSS 20 program version 5 with p value regarding as statistically significant at 0.05

Results:

222 eyes (mean age \pm SD 29.41 \pm 7.2) with range from 19-45 years as shown in table1

Table 1: Age group distribution.

	No.	Minimum	Maximum	Mean	Std. Deviation
Age	222	19	45	29.41	7.227

Seventy two eyes (46.8%) of those with LASIK correction were males compared to 82 eyes (53.2%) females , while in PRK 33 eyes (48.5%) were males and 35 eyes (51.5%) were females , with no significant statistics association ; p=0.46; as shown in table 2.

Table 2: distribution according to type of operation and gender.

Sex		Top		Total	P
		LASIK	PRK		
	Count	72	33	105	0.46
Male	% within top	46.8%	48.5%	47.3%	
Female	Count	82	35	117	
	% within top	53.2%	51.5%	52.7%	
Total	Count	154	68	222]
Total	% within top	100.0%	100.0%	100.0%	

No statistically significant association was found between outcome and type of operation in those with pre-operative refractive error 0.25-0.9 dioptre where P= 0.66; as shown in table 3.

Table 3 : Distribution according to type of operation and outcome in those with refractive error = 0.25-0.9 dioptres

OUTCOME	top	top		P	
		LASIK	PRK		
Emmetanie	Count	2	0	2	0.66
Emmetropia	% within outcome1	100 %	0.0%	100 %	
No shames	Count	4	5	9	
No change	% within outcome1	44.4%	55.6%	100 %	
Under	Count	9	4	13	
correction	% within outcome1	69.2%	30.8%	100 %	
Wange	Count	4	8	12	
Worse	% within outcome1	33.3%	66.7%	100 %	
0	Count	4	5	9	
Overcorrection	% within outcome1	44.4%	55.6%	100 %	
Total	Count	23	22	45	
1 otal	% within outcome1	51.1%	48.9%	100 %	

Statistically significant association was found between outcome and type of operation those with 1.0-1.9 dioptres p=0.023, as shown in table 4.

All eyes with outcome of emmetropic are operated by LASIK, while 8 eyes (80%) with no correction postoperatively are operated by PRK, while 26 eyes (86.7%) with under-correction postoperatively were operated by LASIK, while 11 eyes (91.7%) with overcorrection postoperatively are operated by LASIK, with statistically significant association P=0.0009, in group 2.0-2.9 dioptres as shown in table 5.

All eyes (5) with outcome of no correction were operated with PRK while for under correction all (8 eyes) were corrected with LASIK, and 3 eyes (60%) of those with overcorrection operated by LASIK and 2 eyes (40%) with PRK in those group with refractive error between 3.0-3.9 dioptres with statistically significant P= 0.001. As shown in table 6 for group 3.0-3.9 dioptres

Table 4: distribution according to type of operation and outcome in those with refractive error = 1.0-1.9 dioptres

OUTCOME			top		P
		LASI K	PRK		
	Count	1	0	1	0.023
Emmetropia	% within outcome1	100.0 %	0.0%	100.0 %	
	Count	1	9	10	
No change	% within outcome1	10.0%	90.0%	100.0 %	
	Count	21	7	28	
Under correction	% within outcome1	75.0%	25.0%	100.0 %	
	Count	1	0	1	
Worse	% within utcome1	100.0 %	0.0%	100.0 %	
	Count	13	6	19	
Overcorrection	% within Outcome1	68.4%	31.6%	100.0 %	
	Count	37	22	59	
Total	% within outcome1	62.7%	37.3%	100.0 %	

Table 6 : distribution according to type of operation and outcome in those with refractive error = 3.0-3.9 dioptres

Table 5 : distribution according to type of operation and outcome in those with refractive error = 2.0-2.9 dioptres

OUTCOME			Тор		P
		K			
	Count	2	0	2	0.0009
Emmetropia	% within Outcome1	100.0 %	0.0%	100.0 %	
	Count	2	8	10	
No Change	% within Outcome1	20.0%	80.0%	100.0 %	
	Count	26	4	30	
Under Correction	% within	86.7	13.3	100.0	
	Outcome1	%	%	%	
	Count	11	1	12	
Overcorrection	% within	91.7	0.20/	100.0	
	Outcome1	% 8.3%		%	
	Count	41	13	54	
Total	% within	75.9	24.1	100.0	
	Outcome1	%	%	%	

OUTCOME	Top		Total	P	
		LASI K	PRK		
	Count	0	5	5	0.001
No change	% within Outcome1	0.0%	100.0%	100.0%	
Umdon	Count	8	0	8	
Under correction	% within Outcome1	100.0%	0.0%	100.0%	
	Count	3	2	5	
Overcorrection	% within Outcome1	60.0%	40.0%	100.0%	
	Count	11	7	18	
Total	% within Outcome1	61.1%	38.9%	100.0%	

Table 7 show that all eyes (13 eyes) with no correction were corrected by LASIK, while 12 eyes (92.3%) with overcorrection were corrected by LASIK and 1 eye (7.7%) was corrected by PRK, with no statistically significant association was found in group 4.0-4.9 dioptres p=0.113.

Table 7: distribution according to type of operation and outcome in those with refractive error = 4.0-4.9 dioptres

OUTCOME	Top	Тор		P	
		LASIK	PRK		
	Count	1	0	1	0.113
Emmetropia	% within	100.0%	0.0%	100.0	
	Outcome1		1	%	
	Count	0	1	l	
No Change	% within	0.0%	100.0%	100.0	
	Outcome1			%	
	Count	13	0	13	
Under Correction	% within	100.0%	0.0%	100.0	
	Outcome1			%	
	Count	12	1	13	
Overcorrection	% within	02.20/	7.70/	100.0	
	Outcome1	92.3%	7.7%	%	
	Count	26	2	28	
Total	% within	92.9%	7.1%	100.0	
	Outcome1	74.7 70	7.1 70	%	

Table 8 show 11 eyes (84%) of those with under correction were operated by LASIK as well as 5 eyes (100%) of these with overcorrection with no statistically significant association was found in group =+5.0 dioptres p = 0.92.

Table 8: distribution according to type of operation and outcome in those

with refractive error = +5.0 dioptres

OUTCOME	Тор			Total	P	
		LASIE	K PRI	K		
	Count	11	2	13		0.92
Under correction	% within Outcome1	84.6%	15.4%	10	0.0%	
	Count	5	0	5		
Overcorrection	% within Outcome1	100.0%	0.0%	10	0.0%	
	Count	16	2	18		
Total	% within Outcome1	88.9%	11.1%	10	0.0%	

Discussion:

The revolution in using both LASIK and PRK to correct corneal refractive error need a careful assessment and evaluation especially for the long term outcome of these two procedures and the comparison between them.

There are many benefits associated with both PRK and LASIK. Who could have predicted more than 20 years ago, when the first PRK was performed. Both PRK and LASIK have enabled millions of people with myopia or hyperopia to achieve spectacle independence, and both procedures share other characteristics such as low complication rates and predictable outcomes in the treatment of low refractive errors. (2) (7) (9)

In this study we try to find if there is any differences in the outcome between the two procedures in correcting of astigmatism of varying degrees of refractive error after six months of follow-up, all schedules in Iraq are arranged maximally for six months because of patient uncooperation for longer duration.

All of our patients were done their operation by the same machine and same ophthalmologist surgeon to avoid any bias in this study.

222 eyes (mean age \pm SD 29.41 \pm 7.2) with range from 19-45 years, which is the ideal age for doing corneal refractive surgery. (5,8,11,15,17)

Seventy two eyes (46.8%) of those with LASIK correction were males compared to 82 eyes (53.2%) females , while in PRK 33 eyes (48.5%) were males and 35 eyes (51.5%) were females , with no significant statistical association ; p=0.46 and this is consistent with Howard V. Gimbel et al $^{(11)}$, *Donald R. Sanders* et al $^{(17)}$, Helen K. Wu et al $^{(18)}$, Miyai T et al $^{(21)}$, and Richard A. Erdey et al $^{(23)}$, they found that there is no significant statistical associatio 12 reference of type of operation regarding the gender.

No statistically significant association was found between outcome and type of operation in those with pre-operative refractive error 0.25-0.9dioptre where P=0.66, and this is consistent with Jorge L. Alió y Sanz et al $^{(20)}$, ARTHUR B. CUMMINGS et al $^{(22)}$, Thomas Kohnen et al $^{(24)}$, Brian S. Boxer Wachler et al $^{(25)}$, DAMIAN B. LAKE et al $^{(26)}$, Dr.Francis Price et al $^{(27)}$ and <u>Kyung-Sun Na</u> et al $^{(28)}$, they found that both type of operations have the same outcome in correction of astigmatism of this refractive error after six months.

Statistically significant association was found between outcome and type of operation those with 1.0-1.9dioptres p=0.023, but not important because of small sample, many studies like Jorge L. Alió y Sanz et al⁽²⁰⁾, Miyai T et al⁽²¹⁾, Thomas Kohnen et al⁽²⁴⁾, DAMIAN B. LAKE et al⁽²⁶⁾, Dr. Francis Price et al⁽²⁷⁾, Kyung-Sun Na et al⁽²⁸⁾ and Sadhana V et al⁽²⁹⁾ found that there is no statistically significant association was found between outcome and type of operation in those with preoperative refractive error 1.0-1.9dioptres.

All eyes with outcome of emmetropic are operated by LASIK , while 8 eyes (80%) with no correction postoperatively are operated by PRK , while 26 eyes (86.7%) with undercorrection postoperatively were operated by LASIK , while 11 eyes (91.7%) with overcorrection postoperatively are operated by LASIK , with statistically significant association P=0.0009 , but not important because of small sample in group 2.0-2.9 dioptres , other studies like Jorge L. Alió y Sanz et al $^{(20)}$, ARTHUR B. CUMMINGS et al $^{(22)}$, Thomas Kohnen et al $^{(24)}$, Brian S. Boxer Wachler et al $^{(25)}$, DAMIAN B. LAKE et al $^{(26)}$, Dr. Francis Price et al $^{(27)}$ and Kyung-Sun Na et al $^{(28)}$ found there is no differences in outcome between the two types of operation after six months in correction of astigmatism of this range of refractive error .

All eyes (5) with outcome of no correction were operated with PRK while for under-correction all (8 eyes) were corrected with LASIK, and 3 eyes (60%) of those with overcorrection operated by LASIK and 2 eyes (40%) with PRK with statistically significant P= 0.001, but not important because of small sample, studies likeJorge L. Alió y Sanz et al⁽²⁰⁾, Miyai T et al⁽²¹⁾, Thomas Kohnen et al⁽²⁴⁾, DAMIAN B. LAKE et al⁽²⁶⁾, Dr. Francis Price et al⁽²⁷⁾, Kyung-Sun Na et al⁽²⁸⁾ and Sadhana V et al⁽²⁹⁾ found that there is no statistically significant association was found between outcome and type of operation in those with pre-operative refractive error 3.0-3.9dioptres.

all eyes (13 eyes) with no correct $_{13}$ ere corrected by LASIK, while 12 eyes (92.3%) with overcorrection were corrected by LASIK and 1 eye (7.7%) was corrected by PRK, with no statistically significant association was found in group 4.0-4.9 dioptres p=0.113, studies like Jorge L. Alió y Sanz et al (20), ARTHUR B. CUMMINGS et al (22), Thomas Kohnen et al (24), Brian S. Boxer Wachler et al (25), DAMIAN B. LAKE et al (26), Dr. Francis Price et al (27) and Kyung-Sun Na et al (28) found there is no differences in outcome between the two types of operation after six months in correction of astigmatism of this range of refractive error.

11 eyes (84%) of those with undercorrection were operated by LASIK as well as 5 eyes (100%) of these with overcorrection with no statistically significant association was found in group =+5.0 dioptres p=0.92, this is consistent with Jorge L. Alió y Sanz et al (20), ARTHUR B. CUMMINGS et al (22), Thomas Kohnen et al (24), Brian S. Boxer Wachler et al (25), DAMIAN B. LAKE et al (26), Dr. Francis Price et al⁽²⁷⁾and Kyung-Sun Na et al⁽²⁸⁾, they found that both type of operations have the same outcome in correction of astigmatism of this refractive error after six months.

Conclusion:

This is the first report of comparison in the outcome between LASIK and PRK after 6months in correction of astigmatism in Iraq. This study showed no statistically significant difference after 6 months of correction of astigmatism by whether by LASIK or PRK in different level of refractive error.

Recommendations:

We recommend that even in the absence of difference in outcome in correction of astigmatism between LASIK and PRK after 6 months of operation care should take in the selection of patient to each type of operation.

- 2. We recommend for the next researches to increase sample size to get more accurate results.
- 3. We recommend for the next researches to follow-up the patients for longer duration than six months to evaluate the long term differences between LASIK and PRK.

References:

- 1. Jack J Kanski. Clinical ophthalmology a systematic approach. Seventh edition. 2011; 6:140-149
- 2. Thomas J., Gregory L., Louis B. American Academy of Ophthalmology. Refractive Surgery . 2011-2012 . 13:65-69
- 3. Majmudar PA, Forstot SL, Dennis RE et al. Topical mitol11ycin-C for subepithelial fibrosis after refractive corneal surgery. *Ophthalmology*. 2000; I 07(1):89-94.
- 4. Srinivasan R. Ablation of polymers and biological tissue by ultraviolet lasers. *Science*. 1986; 234(4776):559-565.
- 5. Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophtha/mol. 1983;96(6):710-7 15.
- 6. Van B. Nakagawara, OD, Kathryn J. Wood, and Ron W. Montgomery, BS .LASIK Refractive Surgery: Clinical Considerations
 - 7. Paul S. Koch, David M. Dillman. Personalizing RK. 1999: 165-201.
 - 8. Spencer P. Thornton. Radial and Astigmatic Keratotomy. 2009:99,143-234.
 - 9. Charles I. Thomas .THE CORNEA . 1994 :23-577.
 - 10. Perry S. Binder . Cornea, Refractive Surgery, and Contact Lens . 1987:88-179.
- 11. Howard V. Gimbel, Ellen E. Anderson Penno .Refractive Surgery: A Manual of Principles and Practice. 2008:67,87, 109,187.
- 12. Richard Elander, Larry F. Rich, Jeffry B. Robin. Principles and practice of refractive surgery. 1997.
 - 13. Ivan R. Schwab. Refractive Keratoplasty. 1987
 - 14. Leo D. Bores. Refractive Eye Surgery.
 - 15. LucioBuratto, Stephen F. Brint. Lasik: Principles and Techniques. 1998.
 - 16. Jay H. Krachmer. Cornea: Fundamentals, diagnosis and management. 2005.
 - 17. Donald R. Sanders, James J. Salz. Refractive corneal surgery.
 - 18. Helen K. Wu. Refractive Surgery. 1999.
- 19. Donald R. Sanders, Robert F. Hofmann .Refractive surgery: a text of radial keratotomy.
- 20. Jorge L. Alió y Sanz, Dimitri T. Azar. Management of Complications in Refractive Surgery.
- 21. <u>Miyai T, Miyata K, Nejima R, Honbo M, Minami K, Amano S</u>.. Comparison of laser in situ keratomileusis and photorefractive keratectomy results: long-term follow-up. WWW.Pubmed.gov.
- 22. ARTHUR B. CUMMINGS, MB CHB, FCS(SA), MMED (OPHTH), FRCS(EDIN) . LASIK Versus Surface Ablation: Comparison of Efficacy. REFRACTIVE SURGERY BONUS FEATURE.
- 23. Richard A. Erdey, MD , Gregory D. Searcy, MD , Daryl D. Kaswinkel, MD . Comparison Between the Visian ICL, LASIK, and PRK. Erdey Searcy Eye Group 614 863-3937 50 McNaughten Rd. Suite 200 www.icanseeclearly.com Columbus, OH 43213.

24. Thomas Kohnen .PRK vs LASIK: an evolving debate .All-laser LASIK.

2018

- 25. Brian S. Boxer Wachler, MD . PRK Laser Eye Surgery: What Is PRK and How Does It Differ From LASIK? http://www.allaboutvision.com/
- 26. DAMIAN B. LAKE, MB, CHB, FRCOPHTH. Long-Term Data on LASIK Versus PRK: Comparing the Benefits of PRK and LASIK. http://bmctoday.net.
- 27. Dr. Francis Price, Price Vision Group:Laser eye surgery: What's the difference between LASIK and PRK? http://www.angieslist.com.
- 28. <u>Kyung-Sun Na, So-Hyang Chung, Jin Kook Kim, Eun Jin Jang, Na Rae Lee</u> and <u>Choun-Ki Joo</u>. Comparison of LASIK and Surface Ablation by Using Propensity Score Analysis: A Multicenter Study in Korea. http://www.iovs.org.
- 29. Sadhana V. Kulkarni, Tahra AlMahmoud, David Priest, Sabrina E. J. Taylor, George Mintsioulisand W. Bruce Jackson Long-Term Visual and Refractive Outcomes following Surface Ablation Techniques in a Large Population for Myopia Correction .http://www.iovs.org.

503