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Abstract – Thermocouples are usually used for measuring temperatures in steel 
industry, gas turbine, diesel engine and many industrial processes. Thermocouple 
usually have nonlinear Temperature-Voltage relationship (mV=f(T˚)). However, on the 
monitoring side, it is required to have the inverse relationship [T˚=f-1(mV)] to 
determined the actual temperature sensed by the thermocouple. In this work the neural 
network is fully utilized to represent the required inverse nonlinear relationship of 
different and most popular thermocouples (K, J, B) Types. Levenberg Marquardt is used 
as learning process to find these neural networks. It is found that each type of 
thermocouples under test can be represented by a single neural network structure. 
Moreover, the obtained results show the power of neural network in representing the 
inverse static relationship of each thermocouple that gives less than 1% of the actual 
measured temperature in the whole temperature range in comparison to polynomial 
fitting method. 

 

 
Keywords – Thermocouple, Neural Network, Levenberg- Marquardt, polynomial 
fitting method. 

 
 
 
 
† This paper has been presented in ECCCM-2  Conference and accredited for publication according to 

IJCCCE rules. 
 



IJCCCE Vol.15, No.2, 2015 
 
Karam M. Z. Othman Thermocouples Data Linearization using 

Neural Network 
 

 
 

19 
 

1. Introduction 
Thermocouples are used to measure 

temperature since they are inexpensive, 
rugged, reliable, self powered and can be 
used for wide range of temperature. 
Thermocouples are available in various 
metal combinations, usually referred to by 
a letter e.g. J, K, B, etc [1]. The measured 
voltage from the thermocouple has to be 
converted into temperature. Several 
techniques are used to get the temperature 
such as piecewise linearization or 
polynomial fitting [2]. 

The piecewise linearization is a method 
of curve fitting using straight line 
equation. Linear interpolation on a set of 
data points (x0, y0), (x1, y1)... (xn, yn) is 
defined as the concatenation of linear 
interpolant between each pair of data 
points. This results in a continuous curve, 
with a discontinuous derivative [3]. The 
polynomial fitting is a generalization of 
linear interpolation. It replaces the 
interpolant by a polynomial of 
higher degree. For example, a polynomial 
equation used to convert thermocouple 
voltage to temperature (C˚) over a wide 
range of temperatures.  Equation (1) 
illustrates the polynomial equation: 

0
1n

1n
n

n aVaVaT  
                        (1) 

Where   V is voltage measured in mill 
volts and T is temperature measured in 
Celsius degree. The coefficients (an) are 
tabulated in many bandboxes [4].  
The obtained coefficients of the above 
techniques are stored in a conversion 
circuit (analog or digital) which has the 
measure voltage as an input and the 
measured temperature as an output. 
However, these techniques actually have 
an error between the actual and measured 
temperatures. The main reason of this 
error is the approximation of the nonlinear 
function that represents the inverse static 
relationship between the obtained voltage 
and calculated temperatures.                    

In this work, the ability of the neural 
network in representing a nonlinear 
function is used to perform the conversion 
function. 
2. Neuro data linearization 

The sensed data of some popular 
thermocouples type B, J and K [5] are 
plotted as shown in Fig. 1. 
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Figure 1. Thermocouple relationship T=f(mV)    
(i) B-Type (ii) J-Type  (iii) K-Type 

 

These data are used in a learning process 
of a [1: N: 1] neural network that 
represents the inverse relationship of the 
thermocouple as shown in the block 
diagram of Figure 2. 

 
Figure.  2.  Learning the thermocouple inverse 

relationship [T˚=f -1(mV)] 
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Different trails are performed to 
determined N (the number of nodes in the 
hidden layer). It is found that suitable 
value of N for all types of thermocouple 
under test was N=5. This value gives 
minimum error between the actual 
temperature and estimated neural network 
temperature T. To find the weights of the 
selected neural network structure, 
Levenberg-Marquardt was chosen as a 
learning algorithm. The Levenberg-
Marquardt is the standard of nonlinear 
least squares algorithms [6]. The structure 
of the Levenberg–Marquardt Neural 
Network is shown in Figure 3. 

 
Figure 3.  The structure of the Levenberg –

Marquardt Neural Network 
 
 

3. Experimental Results 
As mentioned in section 2, three well-
known and most popular industrial 
thermocouples were selected and their 
characteristics are summarized in Table 
(1) [7]. 

Using thermocouple, the measured 
voltage has to be converted to 
temperature. The temperature is usually 
expressed as a polynomial function of the 
measured voltage. Sometimes it is 
possible to get a decent linear 
approximation over a limited temperature 
range. The learned neural network which 
represents the inverse function           
[T=f-1(mV)] is simulated using 
MATLAB/SIMULINK as indicated in 
Figure (3) [8].  

 

Table 1.  The main characteristics of the selected 
thermocouples 

 
 
 
For the B, J and K thermocouples, the 
trace of the mean square error (MSE) 
between the actual temperature and the 
neural network (estimated) temperature 
along the epoch number are illustrated in 
Figures 4, 5 and 6 for the three 
thermocouples, respectively. 
 

 
Figure  4. The trace of the MSE for the B-Type 

Thermocouple 
 

Typ
e 

Temperature 
range °C -  
continuous 

Temperatur
e range °C 

(short term) 

Tolerance 
class one 

(°C) 

Tolerance 
class two 

(°C) 

B +200 to 
+1700 0 to +1820 Not 

Available 

±0.0025×T 
between 
600 °C 

and 1700 
°C 

J 0 to +750 −180 to 
+800 

±1.5 
between 
−40 °C 
and 375 

°C 
±0.004×T 
between 
375 °C 
and 750 

°C 

±2.5 
between 
−40 °C 
and 333 

°C 
±0.0075×T 

between 
333 °C 
and 750 

°C 

K 0 to +1100 −180 to 
+1300 

±1.5 
between 
−40 °C 
and 375 

°C 
±0.004×T 
between 
375 °C 

and 1000 
°C 

±2.5 
between 
−40 °C 
and 333 

°C 
±0.0075×T 

between 
333 °C 

and 1200 
°C 
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Figure  5. The trace of the MSE for the J-Type 
Thermocouple 

 
 

Figure  6. The trace of the MSE for the K-Type 
Thermocouple 

 

The percentage error between the 
actual temperature and that obtained by 
the neural network is calculated as 
follows in 2 (as indicated in Figure (7)). 

݁௠ = ்ೌ೎೟ೠೌ೗ି்ಿ ಿ
்ೌ೎೟ೠೌ೗

∗ 100                        (1) 
 

 
Figure  7. Validation test and error measurement 

In order to show the validity of the 
learned neural network in representing the 
inverse relationship of each 
thermocouple, these percentage errors 
(Equation 2) are calculated for some 

points that are not used in neural network 
learning process as shown in Table (2).  

 

Table 2.   Validity test for B, J, K type 
thermocouples 

 

Type Thermoelectric 
Voltage (mV) 

Actual 
Temperature 

Measured 
Temperature  

by Neural 
Network 

Error% 
(em) 

B 
 

0.04 107 106.4 0.560 

0.517 327 326.3 0.214 

3.254 813 813.1 0.012 

8.088 1322 1321.9 0.007 

12.921 1742 1741.98 0.001 

 
 
J 
 
 

-7.209 -173 -173.2 0.115 

-1.142 -23 -23.1 0.43 
8.120 152 152.004 0.003 
32.403 588 588.026 0.0045 

59.956 1034 1034.026 0.0025 

 
 

K 
 

-5.097 -158 -158.8 -0.506 

-3.911 -112 -112.4 -0.357 

-1.925 -51 -51.05212 -0.102 

5.410 132 131.86537 0.101 

46.809 1145 1144.99763 0.0002 

 

Moreover, these percentage errors 
are plotted against the actual temperature 
for the B, J and K types of thermocouples 
as shown in Figures 8, 9 and 10 
respectively.  

 
Figure 8. The percentage error verses actual 
temperature for the B-Type Thermocouple 
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Figure  9. The percentage error verses actual 

temperature for the J-Type Thermocouple 

 
Figure 10. The percentage error verses actual 
temperature for the K-Type Thermocouple 

 
For comparison purposes with the 

MATLAB polynomial fitting [9], the 
trace of error (the difference between the 
indicated temperature by either 
polynomial fitting or neural network with 
the actual temperature of the B, J and K 
types of thermocouples) are shown in Fig. 
11, 12 and 13 respectively. In these 
figures, the polynomial order that is given 
in (1) is taken to be an=5 as it is found 
that this order gives minimum error over 
nearly the whole temperature range for 
the thermocouples under test. It is clear 
that the neural network gives less errors 
than those given by the polynomial fitting 
methods especially for the B-type 
thermocouple (see Figure 11) and along 
the most practical temperature range in 
industry( > 400 C0).   

 

 
Figure  11. The trace of error obtained by neural 

network and polynomial fitting for the B-type 
thermocouple 

 
Figure  12. The trace of error obtained by neural 

network and polynomial fitting for the J-type 
thermocouple 

 

 
 

Figure  13. The trace of error obtained by neural 
network and polynomial fitting for the K-type 

thermocouple 
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4. Conclusion 

In this work, the problem of extracting 
the measured temperature from the 
voltage readings of the thermocouple is 
solved using the neural network. It is 
found that the capability of the neural 
network in representing the nonlinear 
functions is fully exploited to map the 
required [T=f-1(V)] relationship for the 
three familiar types of thermocouples (B, 
J, and K types). Compression is made 
with polynomial fitting technique in 
representing the nonlinear [T=f-1(V)] 
relationship. It is noticed that the neural 
network is more powerful than the 
polynomial fitting since it gives less than 
1% error between the actual temperature 
and that obtained by the neural network 
during nearly the whole temperature 
range. Different neural network structures 
of one or two hidden layers and different 
nodes within each layer were performed. 
These tests indicating that the structure of 
[1:5:1] is the most simple and suitable to 
represent the static inverse nonlinear 
relationship. Furthermore, the same neural 
network structure [1:5:1] can be used with 
the B, J and K types of thermocouples. 
This is important for on-line weight 
updating that can be achieved directly on 
the working site under operator request. 
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