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Let 𝑅 be  a commutative Noetherian ring  with identity  1 ≠ 0 . For a 

non-zero 𝑅 −module 𝑀. We prove that a multiplication primeful 

𝑅 −module 𝑀 and 𝐻𝑅
𝑘(𝑀) are  I-cofinite  and primeful, for each 𝑘 > 0 

where  𝐼 is an ideal of 𝑅 with 𝐼 ⊆ 𝐴𝑛𝑛(𝑀)  . As a consequence, we deduce 

that,  if  𝑀  and 𝑁 are multiplication  primeful R- modules,  then 

𝐸𝑥𝑡𝑅 
𝑘 (𝑀, 𝑁) is primeful. Another result is, for  a projective 𝑅 − module 𝑀 

over an integral domain,  𝑀  admits  projective resolution 𝑃∙
+ such that 

each 𝑃𝑖  is primeful (faithfully flat). 
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Introduction:  
      In this paper, 𝑅 is a commutative Noetherian ring with identity 1 ≠ 0  until otherwise 

stated and 𝑀 is an  non-zero 𝑅 −module. A submodule 𝑁of an 𝑅-module 𝑀is called prime, if 

𝑟𝑚 ∈ 𝑁, for each 𝑟 ∈ 𝑅 and 𝑚 ∈ 𝑀 then 𝑚 ∈ 𝑁 or 𝑟 ∈ (𝑁:𝑅 𝑀), in this case (𝑁:𝑅  𝑀) is a prime 

ideal of 𝑅 and 𝑁is called 𝑝 −prime. Consider  𝜌: 𝑆𝑝𝑒𝑐(𝑀) → 𝑆𝑝𝑒𝑐(𝑅 𝐴𝑛𝑛(𝑀))⁄  such that  

𝜌(𝑃) = (𝑃: 𝑀) 𝐴𝑛𝑛(𝑀)⁄  for all 𝑃 ∈ 𝑆𝑝𝑒𝑐(𝑀) is called the natural map of 𝑆𝑝𝑒𝑐(𝑀)[5]. A non-

zero 𝑅 −module 𝑀 is called primeful if 𝜌 is surjective. Chin Pi Lu [5 ,Theorem 2.2] showed that 

every finitely generated 𝑅 − module is primeful but the converse is not true in general, for 

example every infinite dimensional vector space is primful.  

      A Primeful  𝑅-modules are generalization of finitely generated R-modules. Many results for 

finitely generated modules are generalized to primefuls, the most important one is the 

Naykayama,s Lemma and the equality 𝑆𝑢𝑝𝑝(𝑀) = 𝑉(𝐴𝑛𝑛(𝑀)) for 𝑀 [5]. 

         It is well-known that, if 𝐹 = {𝐹𝑘 , 𝛼𝑘 } is a cochain complex, then 𝐻𝑅
𝑘(𝑀) =

𝐾𝑒𝑟𝛼𝑘 𝐼𝑚⁄ 𝛼𝑘−1 is 𝑘-th cohomology module of 𝐹 [4]. The k-th  local cohomology module of 𝑀 

with respect to an ideal 𝐼 ⊆ 𝐴𝑛𝑛(𝑀) is  lim
𝑘

𝐸𝑥𝑡𝑅
𝑘(𝑅 𝐼𝑘⁄  , 𝑀) [2]. An 𝑅 −module 𝑀 is called 

𝐼 −cofinite if  Supp(𝑀) ⊆ 𝑉(𝐼) and  𝐸𝑥𝑡𝑅
𝑘(𝑅 𝐼⁄ , 𝑀) is finitely generated  for all 𝑘 [2].  
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      On the other hand, Sean Sather-Wagstaff  [6] proved that  if 𝑅 is a commutative ring and 𝑀 

is an R-module , then 𝑀 admits a free (hence projective) resolution 𝑃∙
+  over R. Also if 𝑀 is 

finitely generated then each 𝑃𝑖  of  𝑃∙
+  is finitely generated over R .  

The main purpose of this article, is changing the direction of study by using cohomolgy 

facts. We  prove that, if  𝑀 is a projective module over an integral domain , then 𝑀 admits a 

free (hence projective) resolution 𝑃∙
+ over R such that each 𝑃𝑖  is primeful (faithfully flat ) over 

R. In [5] it is shown that a submodule of primeful module need not be primeful. One of the 

results in this paper,  is if we have PID then the following are equivalent for a projective 

module 𝑃: 

1- 𝑃  is projective, 

2- 𝑃 is primeful, 

3- There exist a primeful module such that every submodule is primeful. 

    In section two we give a condition that help  𝐸𝑥𝑡𝑅
𝑖 (

𝑅

𝐼
 , Γ𝐼(𝑀)) and 𝑇𝑜𝑟𝑖

𝑅(𝑅/𝐼, Γ𝐼(𝑀)) for a 

primeful R-module to be  primeful for all i. 

 

The Results 

     In this section, we prove that if 𝑀 is an R-module over PID, then  𝑀 admits free(hence 

projective )resolution 𝑃∙
+ over R such that each 𝑃𝑖  is primeful over R. Also find a primeful 

module that every submodule of it is primeful. 

Lemma 2.1. Let 𝑀 be a projective module over an integral domain , then 𝑀 admits a free 

(hence projective) resolution 𝑃∙
+ over R such that each 𝑃𝑖  is primeful (faithfully flat ) over R. 

Proof. It is well-known that if 𝑅 is a commutative ring and 𝑀 is an R-module , then  

𝑀admits a free (hence projective) resolution over R. 

A projective module over an integral domain is primeful [5, corollary 4.3]  .In this case 𝑀 

admits a free(hence projective ) resolution 𝑃∙
+ over R such that each 𝑃𝑖  is primeful over R. 

       An 𝑅 −module 𝑀 is called multiplication if every submodule 𝑁 = 𝐼𝑀 where 𝐼 is an ideal of 

𝑅. 

  In [5,Theorem2.2] showed that every finitely generated module 𝑀 is primeful,consequentely  

the quotient module 𝑀
𝑁⁄  for any submodule 𝑁 of  𝑀. For a multiplication module we have 

some other results, we start with Lemma2.2.   

Lemma 2.2. Let 𝑀 be a multiplication R-module and 0 → 𝐿 → 𝑀 → 𝑁 → 0 be a short exact 

sequence , then 𝑀 primeful if and only if 𝐿 and 𝑁 are primeful. 

Proof. Suppose that M is a multiplication primeful module, we consider 𝐿  as a submodule of 

𝑀 and 𝑁 = 𝑀/𝐿, so by[1, proposition 3.8] 𝑀 is finitely generated and hence 𝐿 is alo finitely 

generated which implies  that 𝐿  and 𝑀/𝐿 are finitely generated hence  primeful [5.Theoem 

2.2]. 

Conversely, suppose that 𝐿 and 
𝑀

𝐿
 are primfule then they are finitely generated , so 𝑀 is also 

finitely generated which implies that 𝑀 is primeful. 

         It is proved that in [1] that a submodule of a primful module need not be primeful. In 

Theorem 2.3 we give the condition under which a submodule of primeful module is primeful. 
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Theorem 2.3. For a projective R-module 𝑃 over PID 𝑅 the following are equivalent:  

1-  𝑃 is projective 

2- 𝑃 is primeful 

3- There exist a primeful module such that every submodule is primeful. 

Proof. Suppose that 𝑃 is a projective module, then by [1] projective modules over an integral 

domain is primeful. To prove (3) , it is well known that, for a projective 𝑅 −module there exist 

a free 𝑅 −module 𝐹 such that 𝑃 is a direct sum of 𝐹 [6]. Now, free modules over PID are  

primeful and 𝐹 = 𝑋⨁ 𝑃 which implies that 𝐹, 𝑋, 𝑃  and all other submodules of 𝐹  are 

primeful. 

           Recall (Schanuel’s Lemma [6]:  Let R be a commutative ring, and let M be an R-module. 

Consider two exact sequences 

                                         0 → 𝐾 → 𝑃𝑡 → 𝑃𝑡−1 → ⋯  → 𝑃1 → 𝑃0 → 𝑀 → 0 

0 → 𝐿 → 𝑄𝑡 → 𝑄𝑡−1 → ⋯  → 𝑄1 → 𝑄0 → 𝑁 → 0 

such that each Pi and Qi is projective. Then K is projective if and only if L is projective. 

Now by using (Schanuel’s Lemma) and appling Theorem 2.3 we can prove the following 

corollary.  

 

Corollary 2.4. Let 𝑅 be an integral domain. Consider two exact sequence: 

                                         0 → 𝐾 → 𝑃𝑡 → 𝑃𝑡−1 → ⋯  → 𝑃1 → 𝑃0 → 𝑀 → 0 

0 → 𝐿 → 𝑄𝑡 → 𝑄𝑡−1 → ⋯  → 𝑄1 → 𝑄0 → 𝑁 → 0 

Where each 𝑃𝑖  and 𝑄𝑖 are projective then: 

1- 𝐾⨁𝑄𝑜 ≅ 𝐿⨁𝑃𝑜 

2- 𝐾 is primeful if and only if L is primeful. 

Proof. By (Schanuel’s Lemma)  we have each 𝑃𝑖  and 𝑄𝑖 are projective and 𝑅 be an integral 

domain. Hence 1 and 2 are satisfying. 

Proposition 2.5. If 𝑀  is a multiplication primeful module, then  𝐸𝑥𝑡𝑅
𝑖 (

𝑅

𝐼
 , Γ𝐼(𝑀)) and 

𝑇𝑜𝑟𝑖
𝑅(𝑅/𝐼, Γ𝐼(𝑀)) are primeful for all i. 

Proof.  Directly by Lemma 2.2. 

            In [5, Proposition 3.8] it is provide that for a non-zero 𝑅 −module 𝑀  the following are 

equivalent: 

1- 𝑀  is finitely generated 

2- M  is primeful 

3- 𝑆𝑢𝑝𝑝(𝑀) = 𝑉(𝐴𝑛𝑛(𝑀)) 

4- 𝑝𝑀: 𝑀 = 𝑝  for every 𝑝 ∈ 𝑉(𝐴𝑛𝑛(𝑀)) 

5- 𝑝𝑀 ≠ 𝑀 for every 𝑝 ∈ 𝑉(𝐴𝑛𝑛(𝑀)). 

Proposition 2.6. Let 𝑀 and 𝑁 be two multiplication primeful modules, then 𝐸𝑥𝑡𝑅
𝑖 (𝑀, 𝑁)  is 

primeful for each 𝑖. 

Proof. Since we have 𝑀 and 𝑁  two multiplication primeful modules, hence by [5, proposition 

3.8] they are finitely generated .On the other hand,[ 6, Proposition IV 3.9] shows that for a 

commutative Noetherian ring , if 𝑀 and 𝑁 are finitely generated, then  𝐸𝑥𝑡𝑅
𝑖 (𝑀, 𝑁)  is finitely 

generated for each 𝑖. Thus by [5,Theorem 2.2] 𝐸𝑥𝑡𝑅
𝑖 (𝑀, 𝑁) is primeful for each 𝑖. 
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         In the following result we provide a condition under which  a primefule R-module 𝑀 and 

the local cohomology 𝐻𝑅
𝑖 (𝑀) are  an 𝐼-cofinite for each 𝑖. 

Proposition 2.7. Suppose that 𝑀is a multiplication primeful R-module , then 𝑀and the local 

cohomology   𝐻𝑅
𝑖 (𝑀) are  also 𝐼 −cofinites for each 𝑖. 

Proof. By [5, proposition 3.8] , 𝑆𝑢𝑝𝑝(𝑀) = 𝑉(𝐴𝑛𝑛(𝑀)) . 

In [5] shown that , if 𝑀 is a multiplication module then primeful and finitely generated 

modules are equivalent. Thus  𝑀 is  𝐼 −cofinite . 

Similar argument is true for  𝐻𝑅
𝑖 (𝑀) [2].  
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 حول بدائية المقاسات الكوهومولوجية المحلية
 

 عادل قادر جبار ،عليبه يمان محمود حمه 

   ليمانيةسالجامعة  العلوم،، كلية قسم الرياضيات

 

 معلومات البحث:  الخلاصة:

1حلقة ابدالية نويثيرية تحتوي على عنصر محايد  Rلتكن  ≠  Mو لتكن  0

مقاسا   M. في هذا البحث تمت برهنة   اذا كان Rمقاسا غير صفريا من نمط 

𝐻𝑅  و  𝑀جدائيا وبدائيا فان 
𝑘  (𝑀)يكونان تكميليان من نمط  𝐼  لكل 

   0 <  𝑘    حيث ان𝐼  هو مثالي في𝑅  و ان𝐼 ⊆ 𝐴𝑛𝑛(𝑀). استنتجنا ايضا و

𝐸𝑥𝑡𝑅فان   𝑅مقاسان جدائيان و بدائيان من نمط  𝑁  و  𝑀اذا كان 
𝑘(𝑀, 𝑁) 

فان كل Integral domain) ساحة ) 𝑅واثبتنا  ايضا اذا كانت   .يكون بدائيا

.𝑃يقبل بحل اسقاطي  𝑅 من نمط 𝑀مقاس اسقاطي 
يكون  𝑃𝑖بحيث ان كل   +

 .بدائيا )مسطحة بولاء(
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