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Introduction:

In this paper, R is a commutative Noetherian ring with identity 1 # 0 until otherwise
stated and M is an non-zero R —module. A submodule Nof an R-module Mis called prime, if
rm € N, foreachr € Randm € M thenm € N orr € (N:z M), in this case (N:z M) is a prime
ideal of R and Nis called p —prime. Consider p:Spec(M) — Spec(R/Ann(M)) such that
p(P) = (P:M)/Ann(M) for all P € Spec(M) is called the natural map of Spec(M)[5]. A non-
zero R —module M is called primeful if p is surjective. Chin Pi Lu [5 ,Theorem 2.2] showed that
every finitely generated R — module is primeful but the converse is not true in general, for
example every infinite dimensional vector space is primful.

A Primeful R-modules are generalization of finitely generated R-modules. Many results for
finitely generated modules are generalized to primefuls, the most important one is the
Naykayama,s Lemma and the equality Supp(M) = V(Ann(M)) for M [5].

It is well-known that, if F={F¥,a*¥} is a cochain complex, then HE(M) =
Kera®/Im a*~1 is k-th cohomology module of F [4]. The k-th local cohomology module of M
with respect to an ideal I € Ann(M) is lilgn Ext&(R/I¥ ,M) [2]. An R —module M is called

I —cofinite if Supp(M) € V(I) and ExtX(R/I, M) is finitely generated for all k [2].
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On the other hand, Sean Sather-Wagstaff [6] proved that if R is a commutative ring and M
is an R-module , then M admits a free (hence projective) resolution P* over R. Also if M is
finitely generated then each P; of P* is finitely generated over R.

The main purpose of this article, is changing the direction of study by using cohomolgy
facts. We prove that, if M is a projective module over an integral domain , then M admits a
free (hence projective) resolution P* over R such that each P; is primeful (faithfully flat ) over
R. In [5] it is shown that a submodule of primeful module need not be primeful. One of the
results in this paper, is if we have PID then the following are equivalent for a projective
module P:

1- P is projective,

2- P is primeful,

3- There exist a primeful module such that every submodule is primeful.

In section two we give a condition that help Exth (? ,I;(M)) and Torf(R/I, T;(M)) for a

primeful R-module to be primeful for all i.

The Results

In this section, we prove that if M is an R-module over PID, then M admits free(hence
projective Jresolution P* over R such that each P; is primeful over R. Also find a primeful
module that every submodule of it is primeful.

Lemma 2.1. Let M be a projective module over an integral domain , then M admits a free
(hence projective) resolution P* over R such that each P; is primeful (faithfully flat ) over R.

Proof. It is well-known that if R is a commutative ring and M is an R-module, then

Madmits a free (hence projective) resolution over R.

A projective module over an integral domain is primeful [5, corollary 4.3] .In this case M
admits a free(hence projective ) resolution P* over R such that each P; is primeful over R.

An R —module M is called multiplication if every submodule N = IM where [ is an ideal of

R.
In [5,Theorem2.2] showed that every finitely generated module M is primeful,consequentely
the quotient module M / y for any submodule N of M. For a multiplication module we have

some other results, we start with Lemma2.2.

Lemma 2.2. Let M be a multiplication R-module and 0 = L - M - N — 0 be a short exact
sequence , then M primeful if and only if L and N are primeful.

Proof. Suppose that M is a multiplication primeful module, we consider L as a submodule of
M and N = M/L, so by[1, proposition 3.8] M is finitely generated and hence L is alo finitely
generated which implies that L and M/L are finitely generated hence primeful [5.Theoem
2.2].

Conversely, suppose that L and % are primfule then they are finitely generated , so M is also

finitely generated which implies that M is primeful.
It is proved that in [1] that a submodule of a primful module need not be primeful. In
Theorem 2.3 we give the condition under which a submodule of primeful module is primeful.
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Theorem 2.3. For a projective R-module P over PID R the following are equivalent:
1- P is projective
2- P is primeful
3- There exist a primeful module such that every submodule is primeful.

Proof. Suppose that P is a projective module, then by [1] projective modules over an integral
domain is primeful. To prove (3), it is well known that, for a projective R —module there exist
a free R —module F such that P is a direct sum of F [6]. Now, free modules over PID are
primeful and F = X@® P which implies that F, X, P and all other submodules of F are
primeful.

Recall (Schanuel’s Lemma [6]: Let R be a commutative ring, and let M be an R-module.
Consider two exact sequences

0O-K->P>P_1—> >P>P->M->0
0-2L—=>0Q=20Q-1—2 20,20 >N-0

such that each Pi and Qi is projective. Then K is projective if and only if L is projective.
Now by using (Schanuel’s Lemma) and appling Theorem 2.3 we can prove the following
corollary.

Corollary 2.4. Let R be an integral domain. Consider two exact sequence:
0O-K->P>P_1—> >P>P->M->0
0-L->Q =012 20120 >N->0
Where each P; and Q; are projective then:
1- K®Q, = LPP,
2- K is primeful if and only if L is primeful.

Proof. By (Schanuel’s Lemma) we have each P; and Q; are projective and R be an integral
domain. Hence 1 and 2 are satisfying.

Proposition 2.5. If M is a multiplication primeful module, then Ext} (? ,[;(M)) and
Torf(R/I, T;(M)) are primeful for all i.
Proof. Directly by Lemma 2.2.
In [5, Proposition 3.8] it is provide that for a non-zero R —module M the following are

equivalent:

1- M is finitely generated

2- M is primeful

3- Supp(M) = V(Ann(M))

4- pM:M = p foreveryp € V(Ann(M))

5- pM # M for every p € V(Ann(M)).

Proposition 2.6. Let M and N be two multiplication primeful modules, then Ext(M,N) is
primeful for each i.

Proof. Since we have M and N two multiplication primeful modules, hence by [5, proposition
3.8] they are finitely generated .On the other hand,[ 6, Proposition IV 3.9] shows that for a
commutative Noetherian ring , if M and N are finitely generated, then Exti(M,N) is finitely
generated for each i. Thus by [5,Theorem 2.2] Extk (M, N) is primeful for each i.
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In the following result we provide a condition under which a primefule R-module M and

the local cohomology Hi(M) are an I-cofinite for each i.

Proposition 2.7. Suppose that Mis a multiplication primeful R-module , then Mand the local

cohomology H\(M) are also I —cofinites for each i.

Proof. By [5, proposition 3.8], Supp(M) = V(Ann(M)) .

In [5] shown that , if M is a multiplication module then primeful and finitely generated
modules are equivalent. Thus M is [ —cofinite.

Similar argument is true for Hs(M) [2].
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