UPPER AND LOWER BOUNDS OF THE BASIS NUMBER OF KRONECKER PRODUCT OF A WHEEL WITH A PATH AND A CYCLE

*Ghassan T. Marougi Ayhan A. Khalil
*Dept. Math./College of Computers & Mathematics Sciences/
Mosul University

Received Accepted

27/7/2006 3/10/2006

الملخص

يعرف العدد الأساس b(G) لبيان G على انه اصغر عدد صحيح موجب k بحيث ان لك قاعدة ذات ثنية k لفضاء داراته. في هذا البحث سوف ندرس القيد الاعلى والاصغر للعدد الأساس لجداء Kronecker للعجلة مع الدرب والدارة حيث توصلنا إلى النتائج الأتية:

 $3 \le b(W_m \otimes P_n) \le 4 , m \ge 4 \text{ and } n \ge 3 ,$ $3 \le b(W_m \otimes C_n) \le 5 , m \ge 4, n \ge 3 .$

ABSTRACT

The basis number, b(G), of a graph G is defined to be the smallest positive integer k such that G has a k-fold basis for its cycle space. We investigate upper and lower bounds of the basis number of Kronecker product of a wheel with a path and a cycle. It is proved that

$$3 \le b(W_m \otimes P_n) \le 4$$
, $m \ge 4$ and $n \ge 3$,
and
 $3 \le b(W_m \otimes C_n) \le 5$, $m \ge 4$, $n \ge 3$.

1. INTRODUCTION.

Throughout this paper, we consider only finite, undirected and simple graphs. Our terminology and notations will be standard except as indicated. For undefined terms, see [3].

Let G be a connected graph, and let e_1 , e_2 ,...., e_q be an ordering of the edges. Then any subset S of edges corresponds to a (0,1)-vector $(a_1, a_2,..., a_q)$ in the usual way, with $a_i = 1$ if $e_i \in S$ and $a_i = 0$ otherwise, for i=1,2,...,q. These vectors form a q-dimensional vector space, denoted by $(Z_2)^q$ over the field Z_2 .

The vectors in $(Z_2)^q$ which correspond to the cycles in G generate a subspace called the cycle space of G, and denoted by $\xi(G)$. It is well known that

$$\dim \xi(G) = \gamma(G) = q - p + k,$$

where p is the number of vertices, k is the number of connected components and $\gamma(G)$ is the cyclomatic number of G. A basis for $\xi(G)$ is called <u>h-fold</u> if each edge of G occurs in at most h of the cycles in the basis. The basis number of G, denoted by G, is the smallest positive integer G such that G has an h-fold basis, and such a basis is called a required basis of G and denoted by G. If G is a basis for G and G is an edge of G, then the fold of G in G denoted by G is defined to be the number of cycles in G containing G.

Definition: Let G=(V,E) be a simple graph with order n and vertex set $V=\{p_1,p_2,...,p_n\}$. the adjacency matrix of G, denoted by A(G) is the $n\times n$ matrix defined by :

$$A(G) = [a_{ij}]_{n \times n} \text{ where } a_{ij} = \begin{cases} 1 & \text{,if the edge } p_{i,p_{j}} & \text{in E ,} \\ 0 & \text{, otherwise} \end{cases}$$

 a_{ij} is called the adjacency number of the pair (v_i, v_j) of vertices.

Definition: Let the vertex sets of the graphs G and H be $\{p_i \mid i=1,2,...,m\}$ and $\{q_j \mid j=1,2,...,n\}$ resp., then the Kronecker product $[8], G \otimes H$, is the graph with vertex set $\{(p_i,q_j): for i=1,2,...,m \text{ and } j=1,2,...,n\}$ such that the adjacency number of the pair $(p_i,q_j), (p_k,q_l)$ is the product of the adjacency numbers of (p_i,p_k) in G and (q_j,q_l) in G and (q_j,q_l) in $(G \otimes H)$ is also called direct product (tenser product) of $(G \cap G)$ and (G) and

$$V(G \otimes H) = V(G) \times V(H)$$

$$\mathbb{E}(G \otimes H) = \{(p_i, q_j) \ (p_k, q_{\ell}) \mid p_i p_k \in E(G) \ and \ q_j q_l \in E(H)\}.$$

The Kronecker product is commutative (up to isomorphism) and associative [7].

The first important result of the basis number occured in 1937 when MacLane [5] proved that a graph G is planar if and only if $b(G) \le 2$. In 1981, Schmeichel [6] proved that for $n \ge 5$, $b(K_n) = 3$, and for $m, n \ge 5$, $b(K_{m,n}) = 4$ except for $K_{6,10}$, $K_{5,n}$ and $K_{6,n}$ in which n = 5,6,7 and 8.

Moreover, in 1982, Banks and Schmeichel [2] proved that for $n \ge 7$, $b(Q_n) = 4$, where Q_n is the n-cube.

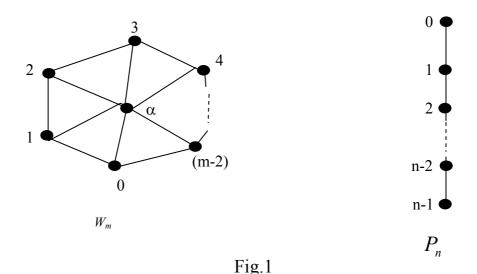
The purpose of this paper is to determine upper and lower bounds of the basis number of Kronecker product of a wheel with a path and a cycle.

2.1. On the Basis Number Of $W_m \otimes P_n$.

In this section, we obtain upper and lower bounds for the basis number of kronecker product of a wheel with a path. Let the vertex sets of C_m and P_n be Z_m and Z_n respectively, where Z_n denotes the additive group of residues modulo n. Let the cycle C_m be 0,1,2,...,m-1,0.

The following lemma is needed in the proof of the following theorem which is due to Weichsel [8].

Lemma1:If G and H are connected graphs then the Kronecker product $G \otimes H$ is connected if and only if either G or H contains an odd cycle. Let W_m be the join of a cycle 0 1 2 \cdots (m-2) 0 with the vertex α and let $P_n = 0.1 2 \cdots (n-1)$. (See Fig.1).



Theorem 2. For $m \ge 4$ and $n \ge 3$, $3 \le b(W_m \otimes P_n) \le 4$.

Proof: One can easily observe from Fig.2, that $W_m \otimes P_3$ contains a subgraph H homeomorphic to $K_{3,3}$. Thus by Kuratowskis theorem [3], $W_m \otimes P_3$ is non planar, since $W_m \otimes P_3$ is a subgraph of $W_m \otimes P_n$ for $n \ge 3$; then by MacLanes theorem [5], $b(W_m \otimes P_n) \ge 3$.

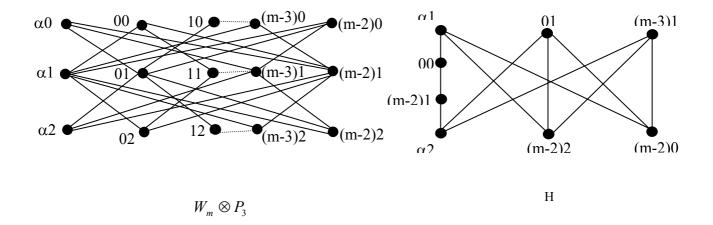


Fig.2: $W_m \otimes P_3$

To complete the proof we find a 4-fold basis $B(W_m \otimes P_n)$ for $\xi(W_m \otimes P_n)$. We have two cases:

Case (1): " *m*" is even. Let

$$B = B(C_{m-1} \otimes P_n) \cup N \cup P \cup M,.$$

where $B(C_{m-1} \otimes P_n)$ is the basis for $\xi(C_{m-1} \otimes P_n)$ discussed in Theorem 2.2.1[4] in which "m-l" is odd, that is,

$$B(C_{m-1} \otimes P_n) = \{ij, (i-1)(j+1), i(j+2), (i+1)(j+1), ij : i \in Z_{m-1} \quad and \quad j = 0,1,..., n-3\} \cup \{S\},$$

where $S = 00,11,20,31,..., (m-2)0,01,10,21,30,..., (m-2)1,00$,

$$N = \{ij, (i+1)(j+1), \alpha j, i(j+1), (i+1)j, \alpha (j+1), ij : i = 0,1,2,...,m-3 \quad and \quad j = 0,1,2,...,n-2\},$$

$$P = \{(m-2)j, 0(j+1), \alpha j, (m-2)(j+1), 0j, \alpha (j+1), (m-2)j : j = 0,1,...,n-3\} \text{ and }$$

$$M = \{\alpha j, i(j+1), (i+1)j, (i+2)(j+1), \alpha j \}$$

$$and \quad \alpha (j+1), ij, (i+1)(j+1), (i+2)j, \alpha (j+1): i = 0,2,4,...,m-4$$

$$and \quad j = 0,1,...,n-2\}.$$

It is clear that

$$|B| = (m-1)(n-2) + 1 + (m-2)(n-1) + (n-2) + (m-2)(n-1)$$

= $3mn - 4m - 4n + 5 = \gamma(W_m \otimes P_n)$.

We shall prove that B is independent.

First, the cycles of $N \cup P$ and M are independent for each j = 0,1,...,n-2 since any linear combination of cycles in $N \cup P$ or M for some i = 0,1,...,m-2 contains edges of the form, ij,(i+1)(j+1) or i(j+1),(i+1)j.

That is, any linear combination of cycles in $N \cup P$ and M is not equal to zero modulo (2). Moreover, for all j = 0,1,...,n-2, every cycle of $N \cup P$ contains an edge of the form αj , i(j+1) or $\alpha(j+1)$, ij for some

i = 1,3,5,...,m-2 which is not present in any cycle of M. Also the cycles in $N \cup P \cup M$ satisfy $(N_j \cup P_j \cup M_j) \cap (N_k \cup P_k \cup M_k) = \Phi$ for all $j \neq k$ where N_j is defined as follows:

It is clear that the vertex set of $W_m \otimes P_n$ can be partitioned into $V_0, V_1, ..., V_{n-1}$, where

$$V_i = \{(i, j) : i = \alpha, 0, 1, 2, ..., m - 2\}$$
.

Notice that $V(W_m) = \{\alpha, 0, 1, 2, ..., m - 2\}$.

Now, N_j is the cycle of N that join a vertex of V_j to a vertex of V_{j+1} , for each j = 0,1,...,n-2.

By a similar method, we define P_i and M_j .

Moreover, for every nonconsective integers j and k in {0,1,...,n-2}, every cycle in $N_i \cup P_i \cup M_i$ is edge-disjoint with every cycle in $N_k \cup P_k \cup M_k$. Furthermore, if C_i is any cycle in $N_i \cup P_i \cup M_i$, j = 0,1,...,n-3 then C_i contains the edge ij, (i+1)(j+1) which is not contained in any cycle in $N_{i+1} \cup P_{i+1} \cup M_{i+1}$. This shows that $N \cup P \cup M$ is independent. Moreover, the cycles of $N_i \cup P_i \cup M_i$ for all j = 0,1,...,n-2 are independent from the cycle of $B(C_{m-1} \otimes P_n)$ because if C'_i is any cycle generated from cycles in then C'_i contains an edge $N \cup P \cup M$, of αj , i(j+1) or $\alpha(j+1)$, ij for some i=0,1,...,m-2 which is not present in any cycle of $B(C_{m-1} \otimes P_n)$. Thus $B(W_m \otimes P_n)$ is independent set of cycles and so it is a basis for $\xi(W_m \otimes P_n)$.

We now consider the fold of $B(W_m \otimes P_n)$. Partition, the edge set of $W_m \otimes P_n$ into ij, (i+1)(j+1) or i(j+1), (i+1)j and αj , i(j+1) or $\alpha(j+1)$, ij in which $i \in Z_{m-1}$ and j = 0,1,...,n-2. Thus if e is any edge in $W_m \otimes P_n$ of the form ij, (i+1)(j+1) or i(j+1), (i+1)j, then

$$f$$
 $(e) \le 2$, $f(e) \le 1$, $f(e) \le 1$
 $B(C_{m-1} \otimes P_n)$ $N \cup P$ M
and so
 f $(e) \le 4$.
 $B(W_m \otimes P_n)$

While, if e is edge in $W_m \otimes P_n$ the form any of αj , i(j+1) or $\alpha(j+1)$, ij, then (e) = 0, $f(e) \leq 2$, f $f(e) \leq 2$ $B(C_{m-1} \otimes P_n)$ $N \cup P$ Mand so

UPPER AND LOWER BOUNDS OF THE BASIS...

$$f$$
 $(e) \le 4$.

 $B(W_m \otimes P_n)$

Therefore, $B(W_m \otimes P_n)$ is a 4-fold basis.

Case (2): " m" is odd. Let

$$\overline{B(W_m \otimes P_n)} = B^*(C_{m-1} \otimes P_n) \cup M^* \cup N.$$

Where $B^*(C_{m-1} \otimes P_n)$ is a basis for $\xi(C_{m-1} \otimes P_n)$ discussed in [1, Theorem 1, case(2)] namely,

$$B^*(C_{m-1} \otimes P_n) = \{ij, (i+1)(j-1), (i+2)j, (i+1)(j+1), ij : i \in Z_{m-1}, j = 1, 2, ..., n-2 \ and \ (j-i) \ is \ even \} \cup \{ij, (i+1)(j-1), (i+2)j, (i+1)(j+1), ij : i \in Z_{m-1}, j = 1, 2, ..., n-2 \ and \ (j-i) \ is \ odd \},$$

$$M^* = \{ \alpha j, i(j+1), (i+1)j, (i+2)(j+1), \alpha j \text{ and } \alpha(j+1), ij, (i+1)(j+1), (i+2)j, \alpha(j+1) \}$$

: $i = 0, 2, 4, ...m - 3 \mod(m-1) \text{ and } j = 0, 1, 2, ..., n-2 \}$

and N is same as Case (1).

It is clear that

$$|B(W_m \otimes P_n)| = (m-1)(n-2) + (m-1)(n-1) + (m-2)(n-1)$$

$$= mn - 2m - n + 2 + mn - m - n + 1 + mn - m - 2n + 2$$

$$= 3mn - 4m - 4n + 5 = \gamma(W_m \otimes P_n) .$$

As in the proof of Case (1), we can show that $B(W_m \otimes P_n)$ is independent set of cycles and so it is a basis for $\xi(W_m \otimes P_n)$ of fold 4,that is $B^* = B(W_m \otimes P_n)$.

Note that if "m" is even and $m \ge 4$, then $W_m \otimes P_2$ is planar graph, (see Fig. 3).

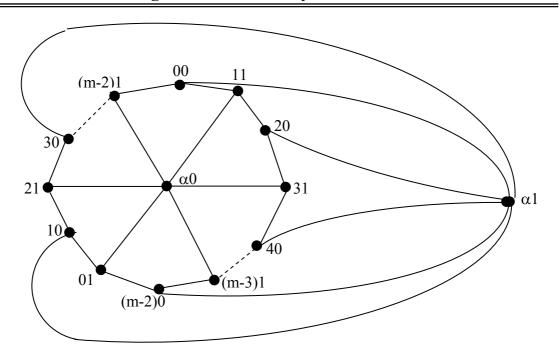
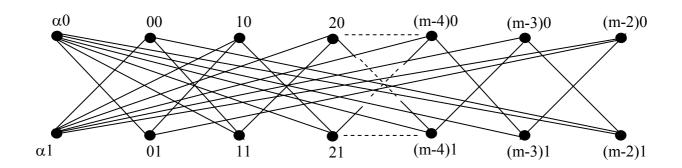


Fig.3

Hence $b(W_m \otimes P_2) = 2$ for even $m \ge 4$.

While, if "m" is odd and $m \ge 5$, then $W_m \otimes P_2$ contains a subgraph K homeomorphic to $K_{3,3}$. Therefore by MacLanes theorem [5],the graph $W_m \otimes P_2$ is nonplanar (see Fig.4).



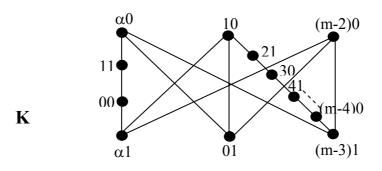


Fig.4: $W_m \otimes P_2$

Hence $b(W_m \otimes P_2) = 3$ for even $m \ge 5$.

We conclude the following table

m	n	$b(W_m \otimes P_n)$
$m \ge 4$, m is even	2	2
$m \ge 4$, m is even	<i>n</i> ≥ 3	3 or 4
$m \ge 5$, m is odd	2	3
$m \ge 5$, m is odd	<i>n</i> ≥ 3	3 or 4

2.2. On the Basis Number Of $W_m \otimes C_n$.

In this section, we obtain upper and lower bounds for the basis number of kronecker product of a wheel with a cycle.

Theorem 3. For $m \ge 4$, $n \ge 3$, we have $3 \le b(W_m \otimes C_n) \le 5$.

Proof: Since $W_m \otimes P_n$ is a subgraph of $W_m \otimes C_n$ for all $m \ge 4$, and $n \ge 3$, then by Theorem 2, we have $W_m \otimes C_n$ is nonplanar and so by MacLanes theorem [5], we have $b(W_m \otimes C_n) \ge 3$. For m=4 and n=3, (see Fig. 5).



Fig. 5: $W_4 \otimes P_3$

To complete the theorem we establish a 5-fold basis $B(W_m \otimes C_n)$ for $\xi(W_m \otimes C_n)$. We have two possibilities for m.

(1) " m" is even. Then consider the following set of cycles in $W_m \otimes C_n$: $B(W_m \otimes C_n) = B(C_{m-1} \otimes C_n) \cup N \cup M$.

Where $B(C_{m-1} \otimes C_n)$ is a basis for $\xi(C_{m-1} \otimes C_n)$ discussed in Theorem 2.3.1[4], where "m-1" is odd, that is,

$$B(C_{m-1} \otimes C_n) = B(C_{m-1} \otimes P_n) \cup B_1 \cup \{S_1, S_2\}, \text{ where }$$

$$B(C_{m-1} \otimes P_n) = \{ij, (i-1)(j+1), i(j+2), (i+1)(j+1) : i \in Z_{m-1} \text{ and } j = 0,1,\dots, n-3\} \cup \{S\},$$

$$S = 00,11,20,31,\dots, (m-2)0,01,10,21,30,\dots, (m-2)1,00$$

$$B_1 = \{ij, (i-1)(j+1), i(j+2), (i+1)(j+1), ij : i = 0,1,\dots, m-3 \mod(m-1) \text{ and } j = n-2, n-1 \pmod{n}\},$$

$$S_1 = (m-2)(n-2), (m-3)(n-1), (m-2)0, 0(n-1), (m-2)(n-2)$$

$$S_2 = 00, (m-2)(n-1), (m-3)0, (m-4)(n-1),\dots, 10,0(n-1), (m-2)0, (m-3)(n-1),\dots, 20,1(n-1),00$$

$$N = \{ij, (i+1)(j+1), \alpha j, i(j+1), (i+1)j, \alpha (j+1), ij : i \in Z_{m-1} \text{ and } j \in Z_n\}$$
and

UPPER AND LOWER BOUNDS OF THE BASIS...

$$M = \{\alpha j, i(j+1), (i+1)j, (i+2)(j+1), \alpha j \text{ and } \alpha(j+1), ij, (i+1)(j+1), (i+2)j, \alpha(j+1) : i = 0, 2, 4, \dots, m-4 \text{ and } j \in Z_n \}.$$

It is clear that

$$|B(W_m \otimes C_n)| = mn - n + 1 + (m-1)n + (m-2)n$$
$$= 3mn - 4n + 1 = \gamma(W_m \otimes C_n)$$

We will prove that $B(W_m \otimes C_n)$ is independent. It is clear that $N = \bigcup_{j=0}^{n-2} (N_j \cup P_j) \cup \{N_{n-1}\}$ and $M = \bigcup_{j=0}^{n-2} (M_j) \cup \{M_{n-1}\}$, where $N_j \cup P_j \cup M_j$ for

j=0,1,...,n-2 are as mentioned in the proof of Theorem 2. As in the proof of Theorem 2, $N \cup M$ is independent. Moreover for all $i \in Z_{m-1}$, $N_{n-1} \cup M_{n-1}$ contains the edge i(n-1),(i+1)0, which is not contained in $\bigcup_{j=0}^{n-2} (N_j \cup P_j \cup M_j)$.

Thus $N \cup M$ is independent set of cycles. Furthermore $N \cup M$ is independent from the cycles of $B(C_{m-1} \otimes C_n)$ since for all $j \in Z_n$, if C_i is any cycle generated from cycles of $N \cup M$, then C_i contains the edge of the from $\alpha j, i(j+1)$ or $\alpha (j+1), ij$ for some $i \in Z_{m-1}$ which is not present in any cycle of $B(C_{m-1} \otimes C_n)$.

Thus $B(W_m \otimes C_n) = B(C_{m-1} \otimes C_n) \cup N \cup M$, is independent and so it is a basis. We now consider the fold of $B(W_m \otimes C_n)$. Partition the edge-set of $W_m \otimes C_n$ into ij, (i+1)(j+1) or i(j+1), (i+1)j and $\alpha j, i(j+1)$ or $\alpha (j+1), ij$ for $i \in Z_{m-1}$ and $j \in Z_n$. Therefore if e is any edge in $W_m \otimes C_n$ of the form ij, (i+1)(j+1) or i(j+1), (i+1)j, then

$$f$$
 $(e) \le 3$, $f(e) \le 1$, $f(e) \le 1$
 $B(C_{m-1} \otimes C_n)$ N M

and so

$$f$$
 $(e) \le 5$.

$$B(W_m \otimes C_n)$$

While if *e* is any edge of the form $\alpha j, i(j+1)$ or $\alpha(j+1), ij$ then

$$f$$
 $(e) = 0$, $f(e) \le 2$, $f(e) \le 2$

$$B(C_{m-1} \otimes C_n)$$
 N M

and so

$$f$$
 $(e) \le 4$.

$$B(W_m \otimes C_n)$$

Thus, the basis $B(W_m \otimes C_n)$ is of fold 5.

(2) "m" is odd, then consider the following set of cycles in $W_m \otimes C_n$: $B(W_m \otimes C_n) = B^*(C_{m-1} \otimes P_n) \cup \{F_i, F_i' : i \in Z_{m-1}\} \cup N^* \cup M^*$, where $B^*(C_{m-1} \otimes P_n)$ is a basis for $\xi(C_{m-1} \otimes P_n)$ mentioned in [1, Theorem 1, case (2)] and F_i, F_i' are independent cycles [1, Theorem 2, case (1)]. That is, $B^*(C_{m-1} \otimes P_n) = \{ij, (i+1)(j-1), (i+2)j, (i+1)(j+1), ij: i \in Z_{m-1}, j=1,2,...,n-2 \text{ and } (j-i) \text{ even } \} \cup \{ij, (i+1)(j-1), (i+2)j, (i+1)(j+1), ij: i \in Z_{m-1}, j=1,2,...,n-2 \text{ and } (j-i) \text{ odd } \} \cup \{00,11,20,31,...,(m-3)0,(m-2)1,00\},$

$$F_{i} = \{0i,1(i-1),2i,...,(m-2)(i-1),0i\},$$

$$F'_{i} = \{0i,1(i+1),2i,...,(m-2)(i+1),0i\},$$

$$N^{*} = \{ij,(i+1)(j+1),\alpha j,i(j+1),(i+1)j,\alpha (j+1),ij:i=0,1,...,m-3 \quad and \quad j \in Z_{n}\}$$

and

$$\begin{split} \boldsymbol{M}^* &= \{ \alpha j, i(j+1), (i+1)j, (i+2)(j+1), \alpha j \quad and \quad \alpha (j+1), ij, (i+1)(j+1), (i+2)j, \alpha (j+1) \\ &: i = 0, 2, 4, \dots, m-3 \mod (m-1) \quad and \quad j \in \boldsymbol{Z}_n \}. \end{split}$$

is clear that

$$|B(W_m \otimes C_n)| = (m-1)(n-2) + 1 + 2(m-1) + (m-2)n + (m-1)n$$

$$= mn - 2m - n + 2 + 1 + 2m - 2 + mn - 2n + mn - n$$

$$= 3mn - 4n + 1$$

$$= \gamma(W_m \otimes C_n).$$

As in possibility (1), we can prove that $B(W_m \otimes C_n)$ is a 5-fold basis for $\xi(W_m \otimes C_n)$.

<u>Remark.</u> In contrast to upper bounds of the basis numbers of $W_m \otimes P_n$ and $W_m \otimes C_n$ given in Theorem 2 and Theorem 3, one can conjecture that the upper bound for the basis number of kronecker product of two wheels W_m and W_n is $b(W_m \otimes W_n) \leq 10$.

Conjecture:

- (i) What is $b(K_m \otimes K_n)$? where W_m and W_n are subgraphs of K_m and K_n resp.
- (ii) What did you conjecture about $b(G_1 \otimes G_2)$?

REFERENCES.

- [1] A.A.Ali, "The basis number of the direct product of paths and cycles", Ars combinatoria, Vol.27 (1989), pp.155-163.
- [2] J.A.Banks and E.F.Schmeichel, "The basis number of the n-cube", J.Comb.Theory, Ser.B, Vol.33, No.2, (1982), pp.95-100.
- [3] F.Harary, "**Graph Theory**", 3rd. printing, Addison-Wesely, Reading, Massachusetts, (1972).
- [4] A.A.Khaleel, "On the basis number of Kronecker product of some special graphs", M.Sc. Thesis, Mosul University, (2004).
- [5] S.MacLane, "A combinatorial condition for planar graphs", Fund. Math., Vol.28, (1937), pp.22-32.
- [6] E.F.Schmeichel, "The basis number of a graph", J. Comb. Theory, Ser.B, Vol.30, No.2 (1981), pp.123-129.
- [7] H.H.Teh, and H.P., Yap, "Some construction problems of homogenous graphs", Bull. Math. Soc., Nanyang Univ., (1964), pp.164-196.
- [8] P.M.Weichsel, "The kronecker product of graphs", Proc, Amer. Math.Soc., Vol.13, (1962), pp.47-52.