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Abstract

The material presented in this paper is the foundation for neural network
architectures that can perform (Solving linear equations using matrix splitting for
iterative discrete-time methods in neural networks).As announced a neural network
consists of many inter connected processing elements (neurons or nodes), | can begins
with the presentation of a particular neural network is dependent on the training phase
(specifically the training data used). Matrix splitting solved in several preprocessing
methods. Many times it’s necessary to processes the training data to extract important
features from the data can be used to train the network instead of the “raw” data. The
preprocessing of the training data can therefore, improve the performance of the neural
network. Then, the convergence is achieved using the Richardson and Gauss-Seidel
methods, respectively. The same termination criterion was used for both these methods
in order to properly compare all the results we see that the SOR iterative method gives
the best results, that is, the fastest convergence. Comparing the SOR results with the
next-best results (Gauss-Seidel, »=1); we see that the SOR method is about 10 times

faster.

Introduction
There are four basic iterative discrete-time methods used to solve
linear equations of the form
Ay =b ...(1)
For Ae®™™ that are based on matrix splitting (Golub et al,1996,N.
Higham,1996,R.S. Varga,1992,D.M.Young,1971,Luenberger,2003,and
K.E.Atkinson,1989). The solution vector xexists and is unique if and only
if A in nonsingular.
All the methods have the basic form
Mx(K +1) = Nx(K) +b ...(2)
Where K is the discrete-time index. We can express matrix A as the matrix
sum

A=D-E-F ...(3)
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Where D e ®™" is a diagonal matrix,
d = diag[a,,,a,,,...,a,,} and E e R™™and F ¢ R™" are, respectively, strictly
lower and upper triangular matrices.

The entries of E and F are the negative of the entries of A
respectively, below and above the main diagonal of A. The diagonal
elements of D are all assumed to be nonzero.

Iterative Methods

Jacobi iterative method:-
Substituting (3) into (1) gives

(D-E—-F)x=b ..(4)
This is then split as

Dx=(E+F)x+b ...(5)
And an iterative scheme can be written from (5) as

Dx(K +1) = (E + F)x(K) +b ...(6)

Therefore, according to (2), M=D and N=E+F, since the diagonal elements
of D are nonzero, we can write (6) as

X(K+)DHE+F)x(K)+D™ (7
Where K >0,and x(0) is the given initial- condition vector. This is the

vector-matrix form of the Jacobi iterative method (Varga,1992), and we
call the matrix

B=D"(E+F) ...(8)
The Jacobi matrix. The scalar form of (7) is given by
(B g 2
x (K +1) = jZ;‘(a“]xj(K)quaii ...(9)

jei
Wherel<i<n,K>0,and x(0) is the given initial condition. | see from (9)
that in general all the components of vector x(K) must be saved while
computing the components of vector x(K +1).However; it seems plausible
to use the latest estimates x (K +1) of the components x, of the solution

vector X in all subsequent computations. This leads to the second method
in this class.

Gauss-Seidel iterative method:-
Starting with(4), (D - E - F)x =b, we rearrange (i.e., split) this expression
as
(D-E)x=Fx+b ...(10)
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where (D-E) is a nonsingular lower triangular matrix. An iterative
scheme can be written from (10) as
(D—E)X(K +1) = Fx(K) +b ..(1D)
or
x(K +1) = (D-EY)Fx(K)+(D—-E) b ...(12)
For K >0,and x(0) is the given initial-condition vector. Comparing
(11) with (12) revealsM =D-E and N =F. This is the vector-matrix form
of the Gauss-Seidel iterative method (Varga,1992), and the matrix
C =(D-E)'F is called the Gauss-Seidel matrix.
The scalar form of the Gauss-Seidel iterative method can be written
from Dx(K +1) = Ex(K +1) + Fx(K) +b, and is given by
X (K +1):—ilzllaijxj(K +1)—i Zn:aijxj(K)JrE ...(13)
& = Qi j=i+1 a;
where 1<i<n,K>0,and x(0) is the given initial condition.
Successive overrelaxation iterative method:-

In the case of the successive overrelaxation (SOR) iterative method, we
write the split of the A matrix as

A=Mo—-Nowo=D-E-F ...(14)
where
Ma):l(D—a)E) ...(15)
w
and
Na)zl[(l—a))D+wF] ...(16)
w

the parameter o is called the relaxation factor. Therefore,
substituting (15) and (16) into (2) gives:
i(D—a)E)x(KJrl)=£[(1—a))D+a)F]x(K)+b ..(17)
w w
multiplying both sides of (17) by » and then premultiplying both
sides by D™ give
(I =D E)X(K +1) = [(1- @)1 + @D *F [x(K) + @D b ...(18)
we now define LAD™E (strictly lower triangular), and UAD™F
(strictly upper triangular) and substitute these into (18) to give
(I —ol)x(K +1) = [1- @)l +0U ]x(K)+ @D and premultiplying both
sides by (1 -wL)™ yields
X(K+1) = (1 —al)*[(1- o)l + oU X(K) + (I —ol) Db ...(19)
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for K >0and x(0) is the given initial-condition vector. Equation (19) is the
vector-matrix form of the SOR iterative method (Varga,1992). The matrix

I (@)= (1 -al)*[1- o)l + U] ...(20)
is called successive relaxation matrix. If the relaxation factor lies in the
range0 < w <1, then this is underrelaxation. However, if » >1 , this is
overrelaxation. Note that if the relaxation factor is set to » =1, then (19)
reverts to the vector-matrix form of the Gauss-Seidel method in(12). The
scalar form of the SOR iterative method can derived from(17) rewritten as
Dx(K +1) = oEX(K +1) + (1— ) Dx(K) + aFx(K) + ab . The scalar form of the
SOR iterative method is given by

X (k+1) = aﬂ[bi —iaijxj(k +1) - Zn:aijxj(k)}+ L-w)x;(k) ...(21)
ji i=1 j=i+l

where 1<i<n,k>0,and x(0) is the given initial condition. Figure (1)
shows a neural network architecture realization of the SOR iterative

method. Using the definition of the successive relaxation matrix in (20),
Equation (19) can be written as :

x(k +1) = L (@)x(K)+ Rb ...(22)
where RAw(] —owL)™D™ .We now define an error vector as:
e(k) = x(k) —x k>0 ...(23)

where x is the unique vector solution of (1). For this error, from (22) we
can write a homogeneous error difference equation as:
e(k+1) = I (w)e(k) ...(2%)
The relaxation factor » can be chosen to minimize o[ Z (w)]in order
to make x(k) converge to x as rapidly as possible (Atkinson,1989), where
o, (e) Is the spectral radius of Z (), we will call the optimal value of the

relaxation factor »- . The calculation of » can be difficult except in simple
cases. Typically, it is approximation by trying several values of » and
observing the effect on the speed of convergence. Even with the problem of
calculating »°, the effort is worth it because, of the resulting dramatic
increase in the speed of convergence of x(k) to x.

Richardson’s iterative method:

Another method that can be considered in this class of iterative
techniques iterative method (Young,1971). The basic idea is to iterate until
the negative of the discrete-time approximation to the first derivative of the

solution reaches zero, that is:
~ X(k+1) —x(x)

= Ax(k)—b ...(25
y; Ax(k) (25)
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where e(k) = Ax(k)—b and k >0. This expression can be rearranged as:
x(k +1) = x(k) — B(K)[Ax(k) —b] ...(26)
where g = B(k),x(0) is the given initial-condition vector, and the optimal
iteration parameter, can be determined from (Cichocki et al,1993, Gill P.E.
et al,1981,Akaike,H.,1968,Barton, S.A.,1991,and Hertz,J. et al,1991):

_ €' (k)e(k)
pk) = & (k) Ae(k) ..(27)

Wwe can derive the scalar form of Richardson’s iterative method from the
vector-matrix form given in (26) as:

X (K +1) = xi(k)—ﬂ(k)[iaijxj(k)—bi ...(28)

where i <i<n ,k >0 ,and x(0)is the given initial condition. If we choose
BK) = %__ in (28) we can write the iterative expression as:

x (k +1):xi(k)—ai{zn:aijxj(k)—bi} ...(29)
i | j=1
which in turn can be written as:
X (k+1) = —i(ijxj(k) i ...(30)
=1\ i bii

J#i
where 1<i<n,k>0,and x(0) is the initial condition. This is
precisely the Jacobi iterative method given in (9).

Implementation of Neural Networks and Results

The following example show how neural networks are adopted in
solving linear equations using matrix splitting for iterative discrete-time
methods in neural networks. In this example the Matlab package is used,
where the neural networks of figure (1), simulated, and the results are
shown in this section.
Examplel:-This example compares the performance of three of the four
methods presented in this paper for solving linear equations of the form
Ax =b. In this example the system is given by:

6 5 5 6 55
5 9 4 3 47
X = ...(31)
5 4 10 5 63
6 3 5 7 95
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Because the condition number for A is relatively small [cond (A) = 394.8742],

the inv function in (MATLAB version 5.1) can be used to solve the system
of equation in (31), the result is given as:

1.0000

2.0000
xM =inv(A)*b = ...(32
(A 3.0000 ( )

4.0000

The successive overrelaxation method requires determining the optimal
value for the relaxation parameter » . Following the procedure given in
this paper on the SOR method, the minimum of &, [£(w)] as a function of
o must be found. When we used the range of values for » given by

0<w<25 and Aw:%o 000 * The well-defined minimum establishes the

optimal value to use for the relaxation parameter given by «° =1.7215.Each
the three methods uses the same set of initial conditions given
by x(0) =[0.0118,0.0315,0.1444,-0.0351] . These initial conditions were
generated by selecting four random numbers from a Gaussian distribution
with zero mean and variance of 0.01. The SOR algorithm was run it took
115 iterations for the algorithm to converge. The termination criterion was
defined to be when the absolute error is less than 107 (that is,
|x9"—x™| <107) then, convergence is achieved using the Richardson and

Gauss-Seidel methods, respectively.

Table-1:-Comparison of simulation (MATLAB version 5.1) results using
three methods for solving (31).

Method Absolute error Relative error Number of
HX —xM HZ HX _xM HZ iterations required
HXM H for convergence
2
Successive 2.1999x107° 4.0165x10°° 115
overrelaxation
(w° =1.7215)
Gauss-Seidel 5.3028x107° 9.6816x10°° 1.00
Richardson 2.7619x10°® 5.0426 x107° 3.400
Jacobi Diverged Diverged Diverged
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Figure (1): Shows a neural network architecture realization of the SOR
iterative method.

Conclusion
e The same termination criterion was used for both these methods in
order to properly compare all the results. From Table-1 we see that
SOR iterative method gives that best result, that is, the fastest
convergence. Comparing the SOR results with the next-best results
(Gauss-Seidel, w=1); we see that the SOR method is about 10 times
faster.
e The relaxation factor » can be chosen to minimize o, [L ()] iIn
order to make x(k) converge to x as rapidly as possible, where o, (e)
IS the spectral radius.
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