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Abstract 
In this paper we study the structure of irreducible characters of Symmetric groups Sn and the Alternating groups 

An to find  χ-subgroup for the Alternating groups when χ is a non-linear character of degree less than 32.
  
 

1. Introduction 

Let G be a finite group,if χ is an irreducible character 

of G then a subgroup H of G is called a χ-subgroup if 

there exist a linear character θ of  H such that ˂ χH, θ 

˃ =1 where ˂,˃ is the inner product of restriction of  χ 

to H and θ ,this is define by DIXEN in [2],[3] and 

[4],when he using the character restriction method of 

χ-subgroup to construct a representation of  G 

affording   χ . 

 In this paper we using the Dixon's definition to find 

χ-subgroups of An when χ have degree less than 32 

.In the following sections we use the classification of 

Sn and the atlas of finite groups in[1] to show that for 

all characters χ of degree less than 32 there always 

exist χ-subgroup ,and in most cases these can be 

chosen as p-subgroups . 

This paper has two sections .The section 2 discuss the 

irreducible characters of Symmetric groups Sn ,and in 

section 3 we find χ-subgroups of alternating groups 

An .Finally we summarize our results with in the table 

-1-. 
 

2.The irreducible characters of  Sn 
In this section we can label the irreducible characters 

of Sn by partitions of n ,since the number of 

irreducible characters of a group is equal to the 

number of conjugate classes .We denote the 

irreducible character labeled by the partition λ by [λ] 

,and the set of all irreducible characters of Sn by 

Irr(Sn) ,so  Irr(Sn) ={ [λ] : λ˫n }, where├ is a partition 

of n by λ .The notations used in this section can be 

found in [5] and [6] . 

Definition (2.1) : 
A partition λ=(λ1,…,λI) of  n ,nϵN is a decreasing 

sequence  λ1 ≥ … ≥ λI ˃0 of integers with n
I

i

i 
1

  

,for short we write  λ˫n  .The integer I=I(λ) is the 

length of  λ ,the number λi are the parts of  λ .We also 

write the partition exponentially as ),...,( 1

1
ma

m

a
II  

, I1 ˃…˃Im ˃0 ,when we have  ai parts of size  Ii .  

 Definition (2.2) : 
Let λ=(λ1,…,λI) be a partition of n .The Ferrers 

diagram of  λ is an array of  n dots having  I  left–

justified rows with row i containing λi dots for  1≤ i ≤ 

I .The  dot in row i and column j has coordinates (i,j) 

,as in a matrix .  

Example (2.2.1) 
The partition λ=(4,4,2,1) =(4

2
,2,1) has Ferrers 

diagram  

 









 

Given a partition λ ,one obtains another partition λˋ, 

the conjugate  partition of  λ ,by transposing the 

Ferrers diagram about its main diagonal .So for 

λ=(4
2
,2,1) the Ferrers diagram for  λˋ is  









 

and λˋ=(4,3,2
2
) . 

Definition (2.3) : 
If  λ is a partition of n ,then each inner corner dot of  

the Ferrers diagram of  λ is a node whose removal 

leaves a diagram ,the Ferrers diagram of a partition of  

n-1. Note that the inner corner of λ are exactly those 

nodes at the end of a row and column of the diagram 

of λ .Thus the nodes at the end of rows of  λ=(4
2
,2,1) 

have coordinates (1,4),(2,4),(3,2) and(4,1) .   

Definition (2.4) : 
If  λ=(λ1,…,λI) is a partition of n .We say the partition 

has level  k if   k = λ2+…+λI (= n-λ1) .Similarly we 

say that the corresponding irreducible character [λ] of 

Sn  has level   k .  

Example (2.4.1) 
The principal Character 1 = [n] is a character of level 

0 . 

By the definition above the number of  irreducible 

characters of  level  k of  Sn is equal to the number of  

partitions of  k  so when  n=9 ,the characters [6,2,1] 

,[6,3] and [6,1
3
] have level  3 . 

Now the following theorem shows the behavior of 

irreducible characters of  Sn when we restrict them to 

the subgroup  Sn-1 , and we can see it in [6] . 

Theorem (2.5) (Branching theorem) :  
If  λ=(λ1, λ2 ,…,λI) ˫n ,then   























1

11

\\

1

1

1

],...,,...,[][
1

iii

iii

iIi

I

i

iS

if

iorif

where
n







 

And ϵi=0  if   λi
\
 = λi    other wise   ϵi=1  .  

Lemma (2.6) :  
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If  r ≥1 and [λ] is an irreducible character of  Sn of 

level  k ≥r then the level of each constituent of  

rnS 
][ is at most k .Furthermore  

rnS 
][ has at least 

one constituent of level k-r . 

In particular for r=k the principal character is a 

constituent of 
rnS 

][ .  

Proof : 
By the definition (2,4) and the Branching theorem the 

constituents of 
rnS 

][ have level k, in case  λ1
\
 = λ1-1, 

and level k -1 in the other cases.  

On the other hand, if k > 0 then [λ1,…, λI-1, λI-1] is a 

constituent of level k-1 of 
rnS 

][ . 

Now by induction on  r the constituents of 

rnS 
][ have level at most k and 

rnS 
][ has a 

constituent of level k –r . If  r = k then 
rnS 

][ has a 

constituent of level 0 which is the principal character.   

Definition (2.7) : 
If  v= (i, j) is a node in the diagram of λ ,then its hook 

is 

Hv = Hi,j := {(i, jˋ) : jˋ≥ j }  {(iˋ, j) : iˋ ≥ i }  

with corresponding hooklength    hv = hi,j := |Hi,j | . 

Example (2.7.1)  
If λ= (4

2
, 2, 1), then the circle dots in 











  

are the hook  H2,2  with hooklength   h2.2 = 4. 

Now the following theorem gives the degrees of 

irreducible characters of Sn,  which we can see it in 

[6].  

Theorem (2.8) (Hook Formula): 

If  λ is a partition of n , then 

 








),( ,

)1]([

ji jih

n    . 

Theorem (2.9) :  
Let k ≥ 0 be fixed, and suppose (λ2 ,…,λI) ˫k.  

Consider the irreducible character [λ] = [n-k ,λ2 

,…,λI] of Sn of level k. Then [λ](1) is a polynomial in 

n of degree k. 

Proof:  
Let Hij  be the hooks of the diagram of [λ] 

corresponding to the nodes (i, j). By definition (2.7) 

we have |Hij|= hij ≤ k for i ≥ 2. Also there exist n-k 

hooks, H1j , such that |H1j|= h1j  has a value of the 

form (n - mj) with m1 < m2 < … < mn-k  for 1 ≤ j ≤ n-

k.  

Simplifying the Hook Formula, 

   







 



),1( ),2( ,,1),( , ))((
)1]([

j ji jijji ji hh

n

h

n  

only k factors remain in the numerator. This means 

[λ](1) is a polynomial in  n of degree k . 

Now we can see theorem(2.10) and theorem(2.11) in 

[6] . 

Theorem (2.10):  

Let λ=(λ1, λ2 ,…,λI) be a partition of n of level k . If 0 

≤ r ≤ λ1-λ2 , then [λ1-r,λ2 ,…,λI]  is a constituent with 

multiplicity one in 
rnS 

][ and all other constituents 

have level < k . 

Proof:  
If ¸ λ1-λ2 = 0 then r = 0 . 

Now suppose  λ1-λ2 > 0 . By induction on r. 

(i)  If r =1 the Branching Theorem shows    

],...,,...,,[],...,,1[][
\

2

2

1211 Ii

I

i

iISn
 






 

where 


















1

11\
1

iii

iii

i
if

iorif




            ,  

and ϵi=1  if   λi
\
 = λi -1   other wise   ϵi=0   . 

The constituent ],...,,1[ 21 I  has level  k and 

has multiplicity one in 
rnS 

][ and the other 

constituents have level k-1 . 

(ii) Suppose the theorem is true for r ≥ 1 and we have 




j

jjIS er
rn

 ],...,,[][ 21
 ,where 

],...,,[ 21 Ir   is the constituent of level k ,and  

j Irr(Sn-r) have level< k . 

(iii)We prove the theorem for r + 1. 

If we restrict [λ] to Sn-(r+1) then we get 

 


j

SjjSIS rnrnrn
er

)1()1()1(
)(],...,,[][ 21 

.Using the Branching theorem we have 

],...,,...,,[                                      

],...,),1([],...,,[

21

2

2121 )1()1(

Ii

I

i

i

SISI

r

rr
rnrn















 

where ],...,),1([ 21 Ir   has level k  

and ],...,,...,,[ 21 Iir 


 have level k-1. 

On the other hand since the characters j have level 

< k so by Lemma (2.6) the constituents of 
)1(

)(
 rnSj  

have level < k . This means none of the constituents 

of 
)1(

)(
 rnSj are equal ],...,),1([ 21 Ir   .  

Therefore ],...,),1([ 21 Ir    is the only 

constituent of 
)1(

][
 rnS of level k and has multiplicity 

one.  

Theorem (2.11) :  
Let λ=(λ1,…,λI) be a partition of  n have level k 

.Suppose λ1= n-k ≥ k+λ2 ,then for all    m ≥ n the 

characters[m-k, λ2,…,λI]Sn-k and 

knS 
 ], k,n[ I2   have the same constituents 

.Furthermore [n-k , λ2,…,λI] is a constituent with 

multiplicity one for both of these characters. 

Proof:  
We use induction on m: If m = n then there is nothing 

to prove . 
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Suppose  m > n and [m-k, λ2,…,λI]Sn-k and 

knS 
 ], k,n[ I2  have the same constituents 

and [n-2k, λ2,…,λI] is the only constituent of level k 

with multiplicity one for both of these characters. We 

prove the Theorem for m+1. 

By using the Branching Theorem we have 

],...,,...,,1[

],...,,[],...,,1[

2

2

22 )1(

Ii

I

i

i

SISI

km

kmkm
rnm















where 
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i
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Since [m-k, λ2,…,λI] is a constituent of 

mSIkm ],...,,1[ 2  and by assumption 

knS 
 ], k,m[ I2  and 

knS 
 ], k,n[ I2  have the same constituents so 

each constituent of 
knS 

 ], k,n[ I2  is a 

constituent of 
knSm


 ], k,1[ I2   . 

Now we show each constituent of 

knSm


 ], k,1[ I2  is a constituent 

of
knS 

 ], k,n[ I2   . 

Let 1 ≤ r ≤ k. We claim each constituent of 

rmSm



)1(

], k,1[ I2  is either   a constituent of 

)1(
], k,m[ I2 


rmS or a character of level k -r 

(note that   (m + 1) -r = m -(r -1)). 

Using the Branching Theorem, if  

(i) r = 1 then 
1)1(

], k,1[ I2 


mSm  has two 

different constituents,  

 
)11(

], k,m[], k,m[ I2I2 


mS and 

], k,1[ I2  m where μ2+…+μI = k-1 . 

(ii) r = 2 then the constituents of 

2)1(
], k,1[ I2 


mSm  are either ], k,[ I2  m  

which is a constituent of 
)12(

], k,m[ I2 


mS  

or ], k,1[ I2  m  where η2+…+ηI = k-2 . 

This means each constituent of 

2)1(
], k,1[ I2 


mSm   is either a constituent of 

)12(
], k,m[ I2 


mS or  a character of level k-2. 

Therefore for 1 ≤ r ≤ k  if ], k,1[ I2  m is a 

constituent of 
rmSm




)1(
], k,1[ I2   of level r-1 

then each constituent of 
rmSm




)1(
], k,1[ I2  is 

either ], k,[ I2  m which is a constituent of 

)1(
], k,m[ I2 


rmS or ], k,1[ I2  m  

where δ2+…+δI = k-r .  

 

(iii) if  r = k  then each constituent of 

kmSm



)1(

], k,1[ I2  is either a constituent of 

)1(
], k,m[ I2 


kmS or a character of level 0 

which is the trivial character 1. Therefore by 

restricting the character ], k,1[ I2  m  on 

Sn-k we have each constituent of 

knSm


 ], k,1[ I2  is either a constituent of 

knSm


 ], k,[ I2  or the trivial character 1. Now 

by assumption 

knSm


 ], k,[ I2  and 
knSn


 ], k,[ I2  have 

the same constituents and on the other hand by 

lemma (2.6) the principal character is a constituent of 

knSn


 ], k,[ I2  .Thus each constituent 

of ], k,1[ I2  m is a constituent of 

knSn


 ], k,[ I2  .By using theorem (2.10) the 

character ], k,2[ I2  n  is a constituent of 

knSm


 ], k,1[ I2   with Sn-k  multiplicity one. 

This completes the proof . 

Suppose n -k ≥ k + λ2 in [λ] = [n-k,λ2 ,…,λI]for k = 

λ1,…,λI then using 

the Branching Theorem we have 

rn

rnrn

SIi

I

i

i

SIS

kn

kn













],...,,...,,[

],...,,1[][

2

2

2





for r ≥ 1. 

Now if n -r ≥ k + λ2 then the constituent of level k has 

multiplicity one and if we want to know the structure 

of 
rnS 

][ we need to know the structure of 

rnSIikn



 ],...,,...,,[ 2  .It means that if we want to 

know the structure of 

characters of level k, we should know the structure of 

characters of level k-1. Then by this recursive method 

we can get the structure of all irreducible characters 

of Sn when we restrict them on Sn-r. 

Now in the following theorem we describe the 

restriction of the irreducible characters [λ] of Sn of 

level k = 1, 2, 3.  

 

Theorem (2.12): Let r ≥ 0 then , 

1. If  [λ] = [n -1, 1] then for  n - r ≥ 2 

rnS 
][ = [n - (r + 1), 1] + r.1 

2. If  [λ] = [n -2, 2] then for  n - r ≥ 4 

rnS 
][ = [n - (r + 2), 2] + r [n-(r+1),1]+

2

)1( rr .1 

3. If  [λ] = [n -2, 1
2
] then for  n - r ≥ 3 

rnS 
][ = [n - (r + 2), 1

2
] + r [n-(r+1),1]+

2

)1( rr .1 

4. If  [λ] = [n -3, 3] then for  n - r ≥ 6 

rnS 
][ = [n - (r + 3), 3] + r [n-(r+2),2]+

2

)1( rr [n-

(r+1),1]+
6

)2)(1(  rrr .1 

5. If  [λ] = [n -3, 1
3
] then for  n - r ≥ 4 
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rnS 
][ = [n-(r + 3),1

3
] + r[n-(r+2),1

2
]+ 

2

)1( rr  [n-

(r+1),1]+ 
6

)2)(1(  rrr .1 

6. If  [λ] = [n -3, 2,1] then for  n - r ≥ 5 

rnS 
][ = [n - (r + 3),2,1] + r( [n-(r+2),2]+[n-(r+2),1

2
] ) 

+ r(r-1) [n-(r+1),1]+ 
2

)1( rr  [n-(r+1),1]+ 
3

)2)(1(  rrr .1 

Proof:  
It is clear by induction on r . 

Example(2.12.1)  
Let we consider the irreducible character [n- 4,3,1] of 

level 4 of  Sn then by induction on r ≥ 1 we can show 

)]3),4([                      

]1,2),4([(                      

]1,3),4([]1,3,4[

1

rn

rn

rn

S

S

r

i

S

irn

irn

rnn
















 

which by using parts (4) and (6) of the theorem above 

gives us all constituents and their multiplicities. 

Similarly for the other characters of level 4 of Sn we 

have 

rn

rn

S

r

i

S

irn

rnn












]3),4([(                    

]4),4([]4,4[

1

 

)]1,2),4([                           

]1),4([(                           

]1,2),4([]1,2,4[

3

1

22

rn

rn

rn

S

S

r

i

S

irn

irn

rnn
















 

rn

rn

S

r

i

S

irn

rnn












]1,2),4([                      

]2),4([]2,4[

1

22

,and     

rn

rn

S

r

i

S

irn

rnn












]1),4([                      

]1),4([]1,4[

3

1

44

 . 

3.The χ–Subgroups of  An 
In this section for all irreducible characters χ of 

degree less than 32 of alternating group An there 

exists a χ –subgroup ,and then in most cases this can 

be chosen as a p-subgroup .We list our results in the 

table -1- . 

Definition (3.1) : 

Let G be a finite group and χ be an irreducible 

character of G .The subgroup H of G is called a χ-

subgroup if there exists a linear character θ of H such 

that   ,H
= 1 . 

 

       Since the alternating group An is a normal 

subgroup of index 2 in Sn, so by Clifford's Theorem 

the restriction of each irreducible character of Sn to 

An is either irreducible or splits into two conjugate 

irreducible characters of An.  

Let λ˫n  and λˋ be the conjugate partition of λ .If 

λ=(λ1,…,λI) ˫n  with λ1≠I , then clearly λ ≠ λˋ .Under 

the condition λ ≠ λˋ, 
nA][ is irreducible. Therefore the 

following characters are irreducible 
nAn ]1,1[  for n ≥4 

, 
nAn ]2,2[  for n ≥5 , 

nAn ]1,2[ 2 , 
nAn ]3,3[  for n ≥6 , 

nAn ]1,3[ 3 for n ≥8  and 
nAn ]1,2,3[  for n ≥7.  

This proves the following theorem . 

Theorem (3.2) : 
Let r ≥ 0. Then the restrictions of irreducible 

characters of An decompose as follows:  

1. For  n - r ≥ 4 

1.]1),1([]1,1[ rrnn
rnrn AA 



 . 

2. For  n - r ≥ 4 

1.
2

)1(
]1),1([                 

]2),2([]2,2[










rr
rnr

rnn

rn

rnrn

A

AA   

3. For  n - r ≥ 6 

1.
2

)1(
]1),1([                 

]1),2([]1,2[ 22










rr
rnr

rnn

rn

rnrn

A

AA
 . 

 

4. For  n - r ≥ 6 

1.
6

)2)(1(
]1),1([

2

)1(
                      

]2),2([]3),3([]3,3[









rrr
rn

rr

rnrrnn
rnrnrn AAA   

5. For  n - r ≥ 8 

1.
6

)2)(1(
]1),1([

2

)1(
                        

]1),2([]1),3([]1,3[ 233









rrr
rn

rr

rnrrnn
rnrnrn AAA  

6. For  n - r ≥ 7 

 

1.
3

)2)(1(
]1),1([

2

)1(
                         

]1),1([ )1()]1),2([                         

]2),2(([]1,2),3([]1,2,3[

2















rrr
rn

rr

rnrrrn

rnrrnn

rnrn

rnrnrn

AA

AAA  

Now consider the characters χ := [n-1, 1] , [n-2,2] and 

[n-2,1
2
] of degrees n-1, (n

2
-3n)/2 and (n

2
-3n+2)/2, 

respectively. 

Theorem (3.3) : 
1. If n ≥ 4 and χ = 

nAn ]1,1[  , then A3 is a χ-subgroup. 

2. If n ≥ 6 and χ = 
nAn ]2,2[  or 

nAn ]1,2[ 2 ,then 

SylA6(3), a Sylow 3-subgroup of A6 ,is a χ-subgroup. 

 

Proof :  
Suppose χ = 

nAn ]1,1[  . By theorem (3.2) with n - r =4 

1).(]1,3[ rn
nn AA   .On the other hand a simple 

calculation shows that 
211]1,3[  

nA
 where φ1 

and φ2 are distinct non-trivial linear characters of A3. 

Therefore 
211).3(

3
  nA

 .This means 

1,, 21 33
  AA

and A3 is a χ–subgroup by 

definition (3.1) . 

Let H := SylA6(3) be a Sylow 3-subgroup of A6. Then 

H is an abelian subgroup of order 9 and Irr(H) = { φ1 

,…, φ2 } where  φ1 = 1 and  φ2 ,…, φ9 are non-trivial 

linear characters of H. If  χ = 
nAn ]2,2[  , then by 
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theorem (3.2) with n - r = 6 shows 

1.
2

)7)(6(
]1,5)[6(]2,4[

666




nn
n AAA

 .  

On the other hand a simple calculation shows that 





9

1

]2,4[
i

iH   and 



5

1

]1,5[
i

iH   for a suitable ordering of 

the characters φi . Therefore  

1.
2

3211
)5(

1.
2

)7)(6(
)6(

25

2

9

1

5

1

9

1















nn
n

nn
n

i

i

i

i

i

i

i

iH



  

and this implies 1,  iH  for 6 ≤ i ≤ 9 as 

required. 

 

     Now consider χ = 
nAn ]1,2[ 2 . Then by theorem 

(3.2) with n - r = 6, 

1.
2

)7)(6(
]1,5)[6(]1,4[

666

2 


nn
n AAA where 





9

1

12]1,4[ 2

i

iH 
and 





5

1

]1,5[
i

iH 
 .Therefore 

1.
2

3411
)5(

1.
2

)7)(6(
)6(2

25

2

9

6

5

1

9

1

1















nn
n

nn
n

i

i

i

i

i

i

i

iH



  

This implies 1,  iH  for 6 ≤ i ≤ 9, and by 

definition (3.1) the proof of (2) is complete . 

 (3.4)Summary 

Table -1- χ-Subgroups of An which are p-subgroup 

G |G| 1˂ χ (1) ˂ 32 χ- subgroup 

A5 2
2
.3.5 3 ,4 ,5 Syl(3) 

A6 2
3
.3

2
.5 5 ,8 ,9 ,10 Syl(2) 

A7 2
3
.3

2
.5.7 6 ,10 ,14 ,15 ,21 Syl(3) 

A8 2
6
.3

2
.5.7 7 ,14 ,20 ,21 ,28 

Syl(3) for χ(1) ˂28 

Syl(2) for χ(1) =28 

A9 2
6
.3

4
.5.7 8 ,21 ,27 ,28 

A3 for χ(1) =28 

Syl(2) for χ(1) ≠28 

A10 2
7
.3

4
.5

2
.7 9 A3 

A11 2
7
.3

4
.5

2
.7.11 10 A3 

A12 2
9
.3

5
.5

2
.7.11 11 A3 

A13 2
9
.3

5
.5

2
.7.11.13 12 A3 
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 An  شخوص الزمرة الجزئية للزمرة المتناوبة 
 افراح محمد ابراهيم ، مهدي صالح نايف

 قسم الرياضيات ، كلية التربية ، الجامعة المستنصرية ، بغداد ، العراق
 ( 9000/  00/  4   تاريخ القبول: ---- 9002/  6/  3  تاريخ الاستلام:) 

 

 الملخص :
للزمار الجزيياة مال الزمار المتناوباة – χ    لإيجاا  Anوالمتناوبة  Snللاختزال للزمر التناظرية  ةفي هذا البحث قمنا بدراسة بنية الشخوص غير القابل

 . 32غير خطية ذات  رجة اقل مل  χعندما تكون 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


