The χ-subgroup of the Alternating groups An

Afrah M. Ibraheem , Mahdi S. Nayef

Dep. of Mathematics, College of Education, Al-Mustansiriyah University, Baghdad, Iraq (Received: 3 / 6 / 2009 ---- Accepted: 4 / 10 / 2010)

Abstract

In this paper we study the structure of irreducible characters of Symmetric groups S_n and the Alternating groups A_n to find χ -subgroup for the Alternating groups when χ is a non-linear character of degree less than 32.

1. Introduction

Let G be a finite group, if χ is an irreducible character of G then a subgroup H of G is called a χ -subgroup if there exist a linear character θ of H such that $< \chi_H$, $\theta > =1$ where <,> is the inner product of restriction of χ to H and θ , this is define by DIXEN in [2],[3] and [4], when he using the character restriction method of χ -subgroup to construct a representation of G affording χ .

In this paper we using the Dixon's definition to find χ -subgroups of A_n when χ have degree less than 32

2. The irreducible characters of S_n

In this section we can label the irreducible characters of S_n by partitions of n, since the number of irreducible characters of a group is equal to the number of conjugate classes .We denote the irreducible character labeled by the partition λ by $[\lambda]$, and the set of all irreducible characters of S_n by $Irr(S_n)$, so $Irr(S_n) = \{ [\lambda] : \lambda \cdot n \}$, where \lfloor is a partition of n by λ . The notations used in this section can be found in [5] and [6].

Definition (2.1) :

A partition $\lambda = (\lambda_1, ..., \lambda_I)$ of $n, n \in \mathbb{N}$ is a decreasing sequence $\lambda_1 \ge ... \ge \lambda_I > 0$ of integers with $|\lambda| = \sum_{i=1}^{I} \lambda_i = n$

,for short we write $\lambda + n$. The integer I=I(λ) is the length of λ , the number λ_i are the parts of λ . We also write the partition exponentially as $\lambda = (I_1^{a_1}, ..., I_m^{a_m})$

, $I_1 > ... > I_m > 0$, when we have a_i parts of size I_i .

Definition (2.2) :

Let $\lambda = (\lambda_1, \dots, \lambda_I)$ be a partition of n. The *Ferrers* diagram of λ is an array of n dots having I leftjustified rows with row i containing λ_i dots for $1 \le i \le$ I. The dot in row i and column j has coordinates (i,j) , as in a matrix.

Example (2.2.1)

The partition $\lambda = (4,4,2,1) = (4^2,2,1)$ has Ferrers diagram

- • •
-
- - -
- •

•

Given a partition λ , one obtains another partition λ' , the conjugate partition of λ , by transposing the Ferrers diagram about its main diagonal .So for $\lambda = (4^2, 2, 1)$ the Ferrers diagram for λ' is .In the following sections we use the classification of S_n and the atlas of finite groups in[1] to show that for all characters χ of degree less than 32 there always exist χ -subgroup ,and in most cases these can be chosen as p-subgroups.

This paper has two sections .The <u>section 2</u> discuss the irreducible characters of Symmetric groups S_n , and in <u>section 3</u> we find χ -subgroups of alternating groups A_n .Finally we summarize our results with in the table -1-.

- • •
- . . .
- . .
- . .

and
$$\lambda = (4,3,2^2)$$
.

If λ is a partition of n, then each inner corner dot of the Ferrers diagram of λ is *a node* whose removal leaves a diagram, the Ferrers diagram of a partition of n-1. Note that the inner corner of λ are exactly those nodes at the end of a row and column of the diagram of λ . Thus the nodes at the end of rows of $\lambda=(4^2,2,1)$ have coordinates (1,4),(2,4),(3,2) and(4,1).

Definition (2.4) :

If $\lambda = (\lambda_1, ..., \lambda_I)$ is a partition of n. We say the partition has *level* k if $k = \lambda_2 + ... + \lambda_I (= n - \lambda_1)$. Similarly we say that the corresponding irreducible character $[\lambda]$ of S_n has level k.

Example (2.4.1)

The principal Character $\mathbf{1} = [n]$ is a character of level 0.

By the definition above the number of irreducible characters of level k of S_n is equal to the number of partitions of k so when n=9, the characters [6,2,1], [6,3] and [6,1³] have level 3.

Now the following theorem shows the behavior of irreducible characters of S_n when we restrict them to the subgroup S_{n-1} , and we can see it in [6].

Theorem (2.5) (Branching theorem) :

If
$$\lambda = (\lambda_1, \lambda_2, ..., \lambda_l) + n$$
, then
 $[\lambda]_{S_{n-1}} = \sum_{i=1}^{I} \in_i [\lambda_1, ..., \lambda_i^{\setminus}, ..., \lambda_l]$ where $\lambda_i^{\setminus} =$
 $\begin{cases} \lambda_{i-1} & \text{if } \lambda_i \rangle \lambda_{i+1} & \text{or } i = 1 \\ \lambda_i & \text{if } \lambda_i = \lambda_{i+1} \end{cases}$

And $\epsilon_i=0$ if $\lambda_i^{\setminus} = \lambda_i$ other wise $\epsilon_i=1$. Lemma (2.6): If $r \ge 1$ and $[\lambda]$ is an irreducible character of S_n of level $k \ge r$ then the level of each constituent of $[\lambda]_{S_{n-r}}$ is at most k. Furthermore $[\lambda]_{S_{n-r}}$ has at least one constituent of level k-r.

In particular for r=k the principal character is a constituent of $[\lambda]_s$.

Proof :

By the definition (2,4) and the Branching theorem the constituents of $[\lambda]_{S_{n-r}}$ have level *k*, in case $\lambda_1^{\ \ } = \lambda_1$ -1, and level *k* -1 in the other cases.

On the other hand, if k > 0 then $[\lambda_1, ..., \lambda_{I-1}, \lambda_{I}-1]$ is a constituent of level *k*-1 of $[\lambda_{I}]_{S_{n-1}}$.

Now by induction on r the constituents of $[\lambda]_{S_{n-r}}$ have level at most k and $[\lambda]_{S_{n-r}}$ has a constituent of level k - r. If r = k then $[\lambda]_{S_{n-r}}$ has a

constituent of level 0 which is the principal character. *Definition* (2.7) :

If v = (i, j) is a node in the diagram of λ , then its *hook* is

 $H_{v} = H_{i,j} := \{(i, j') : j' \ge j\} \cup \{(i', j) : i' \ge i\}$

with corresponding *hooklength* $h_v = h_{i,j} := |H_{i,j}|$. *Example (2.7.1)*

If $\lambda = (4^2, 2, 1)$, then the circle dots in

-
- 0 0 0
- 0
- •

are the hook $H_{2,2}$ with hooklength $h_{2,2} = 4$. Now the following theorem gives the degrees of irreducible characters of S_n , which we can see it in [6].

Theorem (2.8) (Hook Formula):

If
$$\lambda$$
 is a partition of n , then

 $[\lambda](1) = \frac{n \cdot}{\prod_{(i,j) \in \lambda} h_{i,j}}$

Theorem (2.9) :

Let $k \ge 0$ be fixed, and suppose $(\lambda_2, ..., \lambda_I) \vdash k$.

Consider the irreducible character $[\lambda] = [n-k, \lambda_2, \dots, \lambda_I]$ of S_n of level k. Then $[\lambda](1)$ is a polynomial in n of degree k.

Proof:

Let H_{ij} be the hooks of the diagram of $[\lambda]$ corresponding to the nodes (i, j). By definition (2.7) we have $|H_{ij}|=h_{ij}\leq k$ for $i\geq 2$. Also there exist n-k hooks, H_{1j} , such that $|H_{1j}|=h_{1j}$ has a value of the form (n - m_j) with $m_1 < m_2 < \ldots < m_{n-k}$ for $1\leq j\leq n-k$.

Simplifying the Hook Formula,

 $[\lambda](1) = \frac{n \cdot}{\prod_{(i,j) \in \lambda} h_{i,j}} = \frac{n \cdot}{(\prod_{(1,j) \in \lambda} h_{1,j})(\prod_{(i\geq 2,j) \in \lambda} h_{i,j})}$

only k factors remain in the numerator. This means $[\lambda](1)$ is a polynomial in $\,n$ of degree k .

Now we can see theorem(2.10) and theorem(2.11) in [6].

Theorem (2.10):

Let $\lambda = (\lambda_1, \lambda_2, ..., \lambda_I)$ be a partition of n of level k. If $0 \le r \le \lambda_1 - \lambda_2$, then $[\lambda_1 - r, \lambda_2, ..., \lambda_I]$ is a constituent with multiplicity one in $[\mathcal{A}]_{S_{n-r}}$ and all other constituents have level < k.

Proof:

If $\lambda_1 - \lambda_2 = 0$ then r = 0.

Now suppose $\lambda_1 - \lambda_2 > 0$. By induction on r. (i) If r =1 the Branching Theorem shows

$$\begin{bmatrix} \lambda \end{bmatrix}_{S_{n-1}} = \begin{bmatrix} \lambda_1 - 1, \lambda_2, \dots, \lambda_l \end{bmatrix} + \sum_{i=2}^{l} \in_i \begin{bmatrix} \lambda_1, \lambda_2, \dots, \lambda_i^{\vee}, \dots, \lambda_l \end{bmatrix}$$

where $\lambda_i^{\vee} = \begin{cases} \lambda_{i-1} & \text{if } \lambda_i \rangle \lambda_{i+1} & \text{or } i = 1 \\ \lambda_i & \text{if } \lambda_i = \lambda_{i+1} \end{cases}$

and $\epsilon_i=1$ if $\lambda_i^{\setminus}=\lambda_i-1$ other wise $\epsilon_i=0$

The constituent $[\lambda_1 - 1, \lambda_2, ..., \lambda_I]$ has level k and has multiplicity one in $[\lambda]_{S_{n-r}}$ and the other constituents have level k-1.

(ii) Suppose the theorem is true for $r \ge 1$ and we have

$$[\lambda]_{S_{n-r}} = [\lambda_1 - r, \lambda_2, ..., \lambda_I] + \sum_j e_j \psi_j \qquad , \text{where}$$

 $[\lambda_1 - r, \lambda_2, ..., \lambda_I]$ is the constituent of level k , and $\Psi_i \in \operatorname{Irr}(S_{n-r})$ have level< k.

(iii)We prove the theorem for r + 1. If we restrict [λ] to $S_{n-(r+1)}$ then we get

$$[\lambda]_{S_{n-(r+1)}} = [\lambda_1 - r, \lambda_2, ..., \lambda_I]_{S_{n-(r+1)}} + \sum_j e_j (\psi_j)_{S_{n-(r+1)}}$$

.Using the Branching theorem we have $[\lambda_1 - r, \lambda_2, ..., \lambda_I]_{S_n(r)} = [\lambda_1 - (r+1), \lambda_2, ..., \lambda_I]_{S_n(r)} +$

$$\sum_{i=2}^{I} \in_{i} [\lambda_{1} - r, \lambda_{2}, ..., \lambda_{i}', ..., \lambda_{I}]$$

where $[\lambda_1 - (r+1), \lambda_2, ..., \lambda_I]$ has level k

and $[\lambda_1 - r, \lambda_2, ..., \lambda_i', ..., \lambda_I]$ have level k-1.

On the other hand since the characters ψ_j have level < k so by Lemma (2.6) the constituents of $(\psi_j)_{S_{ne}(rel)}$

have level < k. This means none of the constituents of $(\Psi_j)_{S_{n-(r+1)}}$ are equal $[\lambda_1 - (r+1), \lambda_2, ..., \lambda_I]$. Therefore $[\lambda_1 - (r+1), \lambda_2, ..., \lambda_I]$ is the only constituent of $[\lambda]_{S_{n-(r+1)}}$ of level k and has multiplicity

one. Th<u>eorem (2.11) :</u>

Let $\lambda = (\lambda_1, ..., \lambda_I)$ be a partition of n have level k. Suppose $\lambda_I = n-k \ge k+\lambda_2$, then for all $m \ge n$ the characters $[m-k, \lambda_2, ..., \lambda_I]_{Sn-k}$ and $[n-k, \lambda_2, ..., \lambda_I]_{S_{n-k}}$ have the same constituents. Furthermore $[n-k, \lambda_2, ..., \lambda_I]$ is a constituent with multiplicity one for both of these characters.

Proof:

We use induction on *m*: If m = n then there is nothing to prove .

Suppose m > n and $[m-k, \lambda_2, ..., \lambda_l]_{Sn-k}$ and $[n-k, \lambda_2, ..., \lambda_l]_{Sn-k}$ have the same constituents and $[n-2k, \lambda_2, ..., \lambda_l]$ is the only constituent of level k with multiplicity one for both of these characters. We prove the Theorem for m+1.

By using the Branching Theorem we have $[m+1-k, \lambda_2, ..., \lambda_I]_{S_m} = [m-k, \lambda_2, ..., \lambda_I]_{S_{n-(r+1)}}$ where

$$+\sum_{i=2}^{\prime} \in_{i} [m+1-k, \lambda_{2}, ..., \lambda_{i}, ..., \lambda_{I}]$$

$$\lambda_{i}^{\prime} = \begin{cases} \lambda_{i-1} & \text{if } \lambda_{i} \rangle \lambda_{i+1} & \text{or } i=1 \\ \lambda_{i} & \text{if } \lambda_{i} = \lambda_{i+1} \end{cases}$$

Since $[m-k, \lambda_2,...,\lambda_I]$ is a constituent of $[m+1-k, \lambda_2,...,\lambda_I]_{S_m}$ and by assumption

 $[m-k, \lambda_2, \ldots, \lambda_I]_{S_n}$ and

 $[n-k, \lambda_2, ..., \lambda_1]_{S_{n-k}}$ have the same constituents so each constituent of $[n-k, \lambda_2, ..., \lambda_1]_{S_{n-k}}$ is a constituent of $[m+1-k, \lambda_2, ..., \lambda_1]_{S_{n-k}}$.

Now we show each constituent of

 $[m+1-k, \lambda_2, \dots, \lambda_1]_{S_{n-k}}$ is a constituent

of $[n-k, \lambda_2, \dots, \lambda_I]_{S_{n-k}}$.

Let $1 \leq r \leq k$. We claim each constituent of $[m+1-k, \lambda_2, ..., \lambda_I]_{S_{(m+1)-r}}$ is either a constituent of $[m-k, \lambda_2, ..., \lambda_1]_{S_{m-(r-1)}}$ or a character of level k -r (note that (m + 1) - r = m - (r - 1)). Using the Branching Theorem, if (i) r = 1 then $[m+1-k, \lambda_2, \dots, \lambda_1]_{S_{(m+1)-1}}$ has two different constituents, $[m-k, \lambda_2, \dots, \lambda_1] = [m-k, \lambda_2, \dots, \lambda_1]_{S_m}$ and $[m+1-k, \mu_2, ..., \mu_I]$ where $\mu_2+...+\mu_I = k-1$. (ii) r = 2 then the constituents of $[m+1-k, \mu_2, ..., \mu_I]_{S_{(m+1)-2}}$ are either $[m-k, \mu_2, ..., \mu_I]$ which is a constituent of $[m-k, \lambda_2, ..., \lambda_1]_{S_{m-(2-1)}}$ or $[m+1-k, \eta_2, ..., \eta_I]$ where $\eta_2 + ... + \eta_I = k-2$. This means each constituent of $[m+1-k, \lambda_2, ..., \lambda_1]_{S_{(m+1)-2}}$ is either a constituent of $[m-k, \lambda_2, \dots, \lambda_I]_{S_{m-(2-1)}}$ or a character of level k-2. Therefore for $1 \le r \le k$ if $[m+1-k, \tau_2, ..., \tau_1]$ is a constituent of $[m+1-k, \lambda_2, ..., \lambda_1]_{S_{(m+1)-r}}$ of level r-1 then each constituent of $[m+1-k, \tau_2, ..., \tau_I]_{S_{(m+1)-r}}$ is either $[m-k, \tau_2, ..., \tau_1]$ which is a constituent of $[m-k,\lambda_2,\ldots,\lambda_I]_{S_{m-(r-1)}} \text{ or } [m+1-k,\delta_2,\ldots,\delta_I]$

where $\delta_2 + \ldots + \delta_I = \mathbf{k} \cdot \mathbf{r}$.

(iii) if r = k then each constituent of $[m+1-k, \lambda_2, ..., \lambda_I]_{S_{(m+1)-k}}$ is either a constituent of $[m-k, \lambda_2, \dots, \lambda_1]_{S_{m-(k-1)}}$ or a character of level 0 which is the trivial character 1. Therefore by restricting the character $[m+1-k, \lambda_2, ..., \lambda_r]$ on S_{n-k} we have each constituent of $[m+1-k, \lambda_2, \dots, \lambda_1]_{S_n}$ is either a constituent of $[m-k, \lambda_2, ..., \lambda_I]_{S_{n-k}}$ or the trivial character **1**. Now by assumption $[m-k, \lambda_2, \dots, \lambda_1]_{S_{n-k}}$ and $[n-k, \lambda_2, \dots, \lambda_1]_{S_{n-k}}$ have the same constituents and on the other hand by lemma (2.6) the principal character is a constituent of $[n-\mathbf{k}, \lambda_2, \dots, \lambda_I]_{S_{n-k}}$. Thus each constituent of $[m+1-k, \lambda_2, \dots, \lambda_1]$ is constituent of а $[n-\mathbf{k}, \lambda_2, \dots, \lambda_1]_{S_{n-k}}$. By using theorem (2.10) the character $[n-2k, \lambda_2, ..., \lambda_1]$ is a constituent of $[m+1-k, \lambda_2, ..., \lambda_1]_{S_{n-k}}$ with S_{n-k} multiplicity one. This completes the proof.

Suppose $n \cdot k \ge k + \lambda_2$ in $[\lambda] = [n-k,\lambda_2,...,\lambda_I]$ for $k = \lambda_1,...,\lambda_I$ then using

the Branching Theorem we have

$$\begin{split} \left[\lambda\right]_{S_{n-r}} &= \left[n-k-1, \lambda_2, ..., \lambda_I\right]_{S_{n-r}} + \\ & \sum_{i=2}^{I} \in \left[n-k, \lambda_2, ..., \lambda_i', ..., \lambda_I\right]_{S_{n-r}} \end{split} \text{ for } r \geq 1 \end{split}$$

Now if $n \cdot r \ge k + \lambda_2$ then the constituent of level *k* has multiplicity one and if we want to know the structure of $[\lambda]_{S_{n-r}}$ we need to know the structure of

 $[n-k, \lambda_2, ..., \lambda_i, ..., \lambda_I]_{S_{n-r}}$. It means that if we want to know the structure of

characters of level k, we should know the structure of characters of level k-1. Then by this recursive method we can get the structure of all irreducible characters of S_n when we restrict them on S_{n-r} .

Now in the following theorem we describe the restriction of the irreducible characters $[\lambda]$ of S_n of level k = 1, 2, 3.

 $\frac{\text{Theorem } (2.12)}{1. \text{ If } [\lambda] = [n - 1, 1] \text{ then for } n - r \ge 2} \\ [\lambda]_{S_{n-r}} = [n - (r + 1), 1] + r.1 \\ 2. \text{ If } [\lambda] = [n - 2, 2] \text{ then for } n - r \ge 4 \\ [\lambda]_{S_{n-r}} = [n - (r + 2), 2] + r [n - (r + 1), 1] + \frac{r(r - 1)}{2}.1 \\ 3. \text{ If } [\lambda] = [n - 2, 1^2] \text{ then for } n - r \ge 3 \\ [\lambda]_{S_{n-r}} = [n - (r + 2), 1^2] + r [n - (r + 1), 1] + \frac{r(r - 1)}{2}.1 \\ 4. \text{ If } [\lambda] = [n - 3, 3] \text{ then for } n - r \ge 6 \\ [\lambda]_{S_{n-r}} = [n - (r + 3), 3] + r [n - (r + 2), 2] + \frac{r(r - 1)}{2} [n - (r + 1), 1] + \frac{r(r - 1)(r - 2)}{6}.1 \\ \end{cases}$

5. If
$$[\lambda] = [n - 3, 1^3]$$
 then for $n - r \ge 4$

$$[\lambda]_{S_{n-r}} = [n-(r+3),1^3] + r[n-(r+2),1^2] + \frac{r(r-1)}{2} [n-(r+1),1] + \frac{r(r-1)(r-2)}{2} .1$$

6
6. If
$$[\lambda] = [\mathbf{n} - 3, 2, 1]$$
 then for $\mathbf{n} - \mathbf{r} \ge 5$
 $[\lambda]_{s_{n-r}} = [\mathbf{n} - (\mathbf{r} + 3), 2, 1] + \mathbf{r}([\mathbf{n} - (\mathbf{r} + 2), 2] + [\mathbf{n} - (\mathbf{r} + 2), 1^2])$

+ r(r-1) [n-(r+1),1]+
$$\frac{r(r-1)}{2}$$
 [n-(r+1),1]+ $\frac{r(r-1)(r-2)}{3}$.1

Proof:

It is clear by induction on r.

Example(2.12.1)

Let we consider the irreducible character [n-4,3,1] of level 4 of S_n then by induction on $r \ge 1$ we can show $[n-4,3,1]_{S_{n-r}} = [n-(r+4),3,1] +$

$$\sum_{i=1}^{r} ([n - (r + 4 - i), 2, 1]_{S_{n-r}} + [n - (r + 4 - i), 3]_{S_{n-r}})$$

which by using parts (4) and (6) of the theorem above gives us all constituents and their multiplicities.

Similarly for the other characters of level 4 of S_n we have

3. The χ -Subgroups of A_n

In this section for all irreducible characters χ of degree less than 32 of alternating group A_n there exists a χ -subgroup ,and then in most cases this can be chosen as a p-subgroup .We list our results in the table -1- .

Definition (3.1) :

Let G be a finite group and χ be an irreducible character of G. The subgroup H of G is called a χ -subgroup if there exists a linear character θ of H such that $\langle \chi_{B}, \theta \rangle = 1$.

Since the alternating group A_n is a normal subgroup of index 2 in S_n , so by Clifford's Theorem the restriction of each irreducible character of S_n to A_n is either irreducible or splits into two conjugate irreducible characters of A_n .

Let $\lambda \vdash n$ and λ ' be the conjugate partition of λ . If $\lambda = (\lambda_1, \dots, \lambda_I) \vdash n$ with $\lambda_1 \neq I$, then clearly $\lambda \neq \lambda$ '. Under the condition $\lambda \neq \lambda$ ', $[\lambda]_{A_n}$ is irreducible. Therefore the following characters are irreducible $[n-1,1]_A$ for $n \geq 4$

, $[n-2,2]_{A_n}$ for $n \ge 5$, $[n-2,1^2]_{A_n}$, $[n-3,3]_{A_n}$ for $n \ge 6$, $[n-3,1^3]_{A_n}$ for $n \ge 8$ and $[n-3,2,1]_{A_n}$ for $n \ge 7$. This proves the following theorem.

<u>Theorem (3.2) :</u>

Let $r \geq 0.$ Then the restrictions of irreducible characters of A_n decompose as follows:

1. For
$$\mathbf{n} - \mathbf{r} \ge \mathbf{4}$$

 $[n-1,1]_{A_{n-r}} = [n-(r+1),1]_{A_{n-r}} + r.1$.
2. For $\mathbf{n} - \mathbf{r} \ge \mathbf{4}$
 $[n-2,2]_{A_{n-r}} = [n-(r+2),2]_{A_{n-r}} +$

$$r[n-(r+1),1]_{A_{n-r}} + \frac{r(r-1)}{2}.1$$

3. For n - r \ge 6 $[n-2,1^2]_{A_{n-r}} = [n-(r+2),1^2]_{A_{n-r}} + r[n-(r+1),1]_{A_{n-r}} + \frac{r(r-1)}{2}.1$

4. For
$$\mathbf{n} - \mathbf{r} \ge \mathbf{6}$$

 $[n-3,3]_{A_{n-r}} = [n-(r+3),3]_{A_{n-r}} + r[n-(r+2),2]_{A_{n-r}} + \frac{r(r-1)}{2}[n-(r+1),1] + \frac{r(r-1)(r-2)}{6}.1$
5. For $\mathbf{n} - \mathbf{r} \ge \mathbf{8}$
 $[n-3,1^3]_{A_{n-r}} = [n-(r+3),1^3]_{A_{n-r}} + r[n-(r+2),1^2]_{A_{n-r}} + \frac{r(r-1)}{2}[n-(r+1),1] + \frac{r(r-1)(r-2)}{6}.1$

6. For
$$n - r \ge 7^{2}$$

$$\begin{split} & [n-3,2,1]_{A_{n-r}} = [n-(r+3),2,1]_{A_{n-r}} + r([n-(r+2),2]_{A_{n-r}} + \\ & [n-(r+2),1^2]_{A_{n-r}}) + r(r-1)[n-(r+1),1]_{A_{n-r}} \\ & + \frac{r(r-1)}{2}[n-(r+1),1] + \frac{r(r-1)(r-2)}{3}.1 \end{split}$$

Now consider the characters $\chi:=[n-1,\,1]$, [n-2,2] and $[n-2,1^2]$ of degrees n-1, $(n^2-3n)/2$ and $(n^2-3n+2)/2,$ respectively.

<u>Theorem (3.3) :</u>

1. If $n \ge 4$ and $\chi = [n-1,1]_{A_n}$, then A_3 is a χ -subgroup. 2. If $n \ge 6$ and $\chi = [n-2,2]_{A_n}$ or $[n-2,1^2]_{A_n}$, then Syl_{A6}(3), a Sylow 3-subgroup of A_6 , is a χ -subgroup.

Proof :

Suppose $\chi = [n-1,1]_{A_n}$. By theorem (3.2) with n - r = 4 $\chi_{A_n} = [3,1]_{A_n} + (n-r).1$. On the other hand a simple calculation shows that $[3,1]_{A_n} = 1 + \varphi_1 + \varphi_2$ where φ_1 and φ_2 are distinct non-trivial linear characters of A₃. Therefore $\chi_{A_3} = (n-3).1 + \varphi_1 + \varphi_2$. This means $\langle \chi_{A_3}, \varphi_1 \rangle = \langle \chi_{A_3}, \varphi_2 \rangle = 1$ and A₃ is a χ -subgroup by definition (3.1).

Let H := Syl_{A6}(3) be a Sylow 3-subgroup of A₆. Then H is an abelian subgroup of order 9 and Irr(H) = { φ_1 ,..., φ_2 } where $\varphi_1 = 1$ and φ_2 ,..., φ_9 are non-trivial linear characters of *H*. If $\chi = [n-2,2]_{A_1}$, then by

 $\chi_{A_6} = [4,1^2]_{A_6} + (n-6)[5,1]_{A_6} + \frac{(n-6)(n-7)}{2}.1$ where

This implies $\langle \chi_H, \varphi_i \rangle = 1$ for $6 \le i \le 9$, and by

 $[4,1^{\circ}]_{H} = 2\varphi_{1} + \sum_{i=1}^{9} \varphi_{i}$ and $[5,1]_{H} = \sum_{i=1}^{5} \varphi_{i}$. Therefore

 $\chi_{H} = 2\varphi_{1} + \sum_{i=1}^{9}\varphi_{i} + (n-6)\sum_{i=1}^{5}\varphi_{i} + \frac{(n-6)(n-7)}{2}.1$

 $=\sum_{i=6}^{9}\varphi_{i}+(n-5)\sum_{i=2}^{5}\varphi_{i}+\frac{n^{2}-11n+34}{2}.1$

definition (3.1) the proof of (2) is complete.

theorem (3.2) with n - r = 6 shows $\chi_{A_6} = [4,2]_{A_6} + (n-6)[5,1]_{A_6} + \frac{(n-6)(n-7)}{2} \cdot 1$.

On the other hand a simple calculation shows that $[4,2]_{H} = \sum_{i=1}^{9} \varphi_{i}$ and $[5,1]_{H} = \sum_{i=1}^{5} \varphi_{i}$ for a suitable ordering of

the characters φ_i . Therefore

$$\chi_{H} = \sum_{i=1}^{9} \varphi_{i} + (n-6) \sum_{i=1}^{5} \varphi_{i} + \frac{(n-6)(n-7)}{2} \cdot 1$$
$$= \sum_{i=1}^{9} \varphi_{i} + (n-5) \sum_{i=2}^{5} \varphi_{i} + \frac{n^{2} - 11n + 32}{2} \cdot 1$$

and this implies $\langle \chi_H, \varphi_i \rangle = 1$ for $6 \le i \le 9$ as required.

Now consider $\chi = [n-2,1^2]_A$. Then by theorem

(3.2) with n - r = 6,

(3.4)Summary

Table -1- χ -Subgroups of A_n which are p-subgroup			
G	 G 	$1 \le \chi(1) \le 32$	χ- subgroup
A_5	2 ² .3.5	3 ,4 ,5	Syl(3)
A ₆	$2^3.3^2.5$	5 ,8 ,9 ,10	Syl(2)
A ₇	2 ³ .3 ² .5.7	6 ,10 ,14 ,15 ,21	Syl(3)
A ₈	2 ⁶ .3 ² .5.7	7 ,14 ,20 ,21 ,28	Syl(3) for χ(1) <28 Syl(2) for χ(1) =28
A9	2 ⁶ .3 ⁴ .5.7	8 ,21 ,27 ,28	A ₃ for χ(1) =28 Syl(2) for χ(1) ≠28
A ₁₀	2 ⁷ .3 ⁴ .5 ² .7	9	A ₃
A ₁₁	2 ⁷ .3 ⁴ .5 ² .7.11	10	A ₃
A ₁₂	2 ⁹ .3 ⁵ .5 ² .7.11	11	A ₃
A ₁₃	2 ⁹ .3 ⁵ .5 ² .7.11.13	12	\mathbf{A}_{3}

References

- J.H. Conway and R.A. Wilson, Atlas of finite groups. Maximal subgroups and Ordinary characters for Simple groups, Claredon Press, Oxford, 1985.
- 2. J.D. Dixon, *Computing irreducible representations* of groups, Math. Comput.24 (1970).
- 3. J.D. Dixon, *Constructing representations of finite groups*, Amer. Math. Soc., Providence, RI (1993).
- 4. J.D. Dixon and B. Mortimer, *Permutation Groups*, Springer, 1996.
- 5. I.M. Isaacs, *Character Theory of Finite Groups*, Dover. New York, 1994.
- B.E. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms and Symmetric Functions (2nd ed), Springer, New York, 2001.

شخوص الزمرة الجزئية للزمرة المتناوبة An

افراح محمد ابراهيم ، مهدي صالح نايف

قسم الرياضيات ، كلية التربية ، الجامعة المستنصرية ، بغداد ، العراق (تاريخ الاستلام: ٣ / ٦ / ٢٠٠٩ ---- تاريخ القبول: ٤ / ١٠ / ٢٠١٠)

ا**لملخص :** في هذا البحث قمنا بدراسة بنية الشخوص غير القابلة للاختزال للزمر التناظرية S_n والمتناوبة A_n لإيجاد χ للزمر الجزئية من الزمر المتناوبة عَنَّدما تكون x غير خطية ذات درجة أقلَّ من 32 .