On Π-flat Modules

Raida D.M.¹, Akram S.M.²

¹Department of mathematics, College of Computers Science and Mathematics, University of Mousl, Mousl, Iraq

² Department of mathematics, College of Computers Science and Mathematics, University of Tikrit, Tikrit, Iraq

(**Received:** / / 2010 ---- Accepted: 13 / 3 / 2012)

Abstract :

We investigate the strongly Π -regularity of rings whose simple singular right R-module are Π -flat. Next we give the following notion, a ring R is said to be right (left) Π F-ring, if for any maximal right (left) ideal M of R and any $y \in M$, R/yM (R/My) is Π -flat right (left) R-module. Conditions are given for each rings to be regular rings and right Kasch rings.

1-Introduction :

Throughout this paper R denotes an associative ring with identity, and R-modules are unital. For a subset X of a ring R, the right annihilator of X in R is $r_R(X) = \{r \in R : xr = 0 \text{ for all } x \in X\}$. For any $a \in R$, we write $r_R(a)$ for $r_R(\{a\})$. Some times , we simply write r(X) for $r_R(X)$ and r(a) for $r_R(a)$. Left annihilators are defined analogously. We use J(R), Z(R)(Y(R)), for the Jacobson radical and the left (right) singular ideal of R, respectively.

Following [5] a ring R is called a right (left) SF-ring if all of its simple right (left) R-modules are flat .It is well known that a ring R is regular if and only if every right (left) R-module is flat [6] .As a generalization of this concept Mahmood and Mohammed [3] , defined right (left) simple Π -flat ring, where we call a ring R right (left) simple Π -flat if every simple right (left) R-module is Π -flat. An element k of a ring R is called left minimal if Rk is a minimal left ideal of R, and an idempotent e of R is said to be left minimal idempotent if e is a left minimal element of R, An idempotent element $e \in R$ is said to be right semicentral element if ea = eae for all $a \in R$ [9]. A ring R is called strongly right min-able if every right minimal idempotent element is left semicentral [9]. The ring R is said to be reduced if R has no nonzero nilpotent elements [13]. The ring R is called right (left) SXM [9], if for each $0 \neq a \in R$, $r(a) = r(a^n) [l(a) = l(a^n)]$ for all positive integer n satisfying $a^n \neq 0$. For example ,reduced rings are right (left)SXM ring .A ring R is called reversible [2] if for $a, b \in R$, ab = 0 implies ba = 0.A ring R is said to be regular (strongly regular) if $a \in aRa$ $(a \in a^2R)$ for every $a \in R$, and R is called strongly Π -regular if $a^n \in a^{2n}R$, for some positive integer n [8], A ring R is said to be ERT ring if every essential right ideal is a two-sided ideal of R[12]. A ring R is called right MC2-ring if eRa=0 implies aRe=0, where a, $e^2 = e$ $\in \mathbf{R}$ and \mathbf{eR} is minimal right ideal of \mathbf{R} , or

equivalently if $K \approx eR$ are minimal, $e^2 = e \in R$; then K=gR for some $g^2 = g \in R$ [11].

In section 2, we study first simple right R-module is Π -flat .Next, we show that, R is strongly Π regular if R is strongly right min-able ring and every simple right R-module is Π -flat.

In section 3, we introduce the notion of Π F-ring .Next, we show that if R is an ERT, SXM, fully right idempotent and Π F-ring, then R is regular.

2-П-Flat Modules

In this section develop meats of Π -flat modules with some of its and some basic properties are given. Also we give the connection between simple (simple singular) Π -flat modules and strongly regular rings. **Definition 2.1 : [3]**

Let I be a right (left) ideal of R. Then R/I is a right (left) **II-flat** R-modules if and only if for each $a \in I$, there exist $b \in I$ and a positive integer n such that $a^n \neq 0$ and $a^n = ba^n (a^n = a^n b)$. The ring R is called right (left) simple **II-flat** if every simple right (left) R-module is **II-flat**. While [3] and [4] took the term **N** -flat for this notion. Following [3] let I be a right (left) ideal of R. Then R/I is a right (left) generalized flat module if and only

if for each $a \in I$, there exists $b \in I$ and a positive integer n such that $a^n = ba^n (a^n = a^n b)$. The ring R is called right (left) generalized SF-ring if every simple right (left) R-module is right (left) generalized flat.

Examples and Remarks :

1-Let Z_6 be the ring of integers modulo 6 and

I={0,2,4}, J={0,3}. Then Z_6 / I , and Z_6 / J are Π -

flat .Therefore Z_6 is Π -flat ring .

2- Every SF-ring is simple Π -flat ring.

 $\ensuremath{\mathsf{3-It}}$ is clear that in case of reduced rings , generalized flat modules

coincides with Π -flat.

4-Obviously right Π -flat modules are right generalized flat modules, but the converse is not true.

5-Let Z_9 be the ring of integers modulo 9 and

K={0,3,6}. Then Z_9 / K is generalized flat which is not **II-flat**.

The following proposition gives the relation between right and left

 $\Pi\mbox{-flat}$ modules .

Proposition 2.2 :

If R is reversible ring and I is any ideal of R , then R/I is a right

 Π -flat R- module if and only if R/I is left $\ \Pi$ -flat R- module.

Proof:

Assume that R/I is a right Π -flat module, then for each $a \in I$, there exists $b \in I$ and a positive integer n such that $a^n \neq 0$ and $a^n = ba^n$ implies that $1-b \in l(a^n) = r(a^n)$ (*R* is reversible). So

 $a^n = a^n b$. Therefore R/I is left **II**-flat R-modules. Similarly we prove the convers.

The following results are given in [4] and [11] respectively.

Lemma 2.3 :

Let R be a strongly right min-able ring satisfy condition $l(a) \subseteq r(a)$, if every simple singular right R-module is **II-flat**. Then R is a semiprime ring.

Lemma 2.4 :

If for any $a \in R$ and right minimal idempotent $e \in R$ with eaR = 0

implies $a \operatorname{Re} = 0$, then R is right $MC2 \operatorname{ring}$.

Recall that , a ring R is called fully left (right) idempotent ring if every left (right) ideal of R is idempotent [12].

Theorem 2.5 :

Let R be a left SXM .Then The following conditions are equivalent :

1-R is a fully left idempotent ring .

2-R is ERT and R/N is $\Pi\mbox{-}flat$ where N is essential right ideal .

Proof :

(1) \rightarrow (2), let *E* be an essential right ideal of R which is an ideal of R. For any $y \in E$ and there exists a positive integer n such that $y^n \neq 0$ $Ry^n = (Ry^n)^2$ which implies that $y^n = uy^n$ for some $u \in Ry^n R \subseteq E$. Therefore $y^n \in Ey^n$ for each $y^n \in E$. This proves that R/E is right **II**-flat

For any $a \in R$. (2) $\rightarrow (1)$: Set T = RaR + l(RaR). Let K be a complement right ideal of T in R then $T \oplus K$ is an essential right ideal of R.Now $KRaR \subset KI RaR \subset KI T = 0$ implies that $K \subset l(RaR)$, whence $K \subset K \mid T = 0$. This show that T is essential right ideal of R, which is an ideal of R.By hypothesis R/T is right Π -flat.So for every $a \in T$, there exists a positive integer n such that $a^n \neq 0$ and $a^n = da^n$ for some $d \in T$

implies that
$$(1-d) \in l(a^n) = l(a)$$
 (R is left SXM

) and so a = da. If d = u + u + u = R a R u = l(R a R) d

$$d = u + v, u \in RaR, v \in l(RaR)$$
, then

da = a = ua + va = ua, which implies that $a \in (Ra)^2$ where $Ra = (Ra)^2$. Hence R is fully left idempotent ring.

Theorem 2.6 :

Let R be left SXM ring. Then R is regular ring if and only if every cyclic singular right R-module is Π -flat.

Proof :

Let $b \in R$. Then there exists a right ideal K such that $L = bR \oplus K$ is essential in R. Now, the cyclic singular right R-module, R/L is Π -flat, then there exists a positive integer n such that $b^n \neq 0$ and $b^n = cb^n$, with some $c \in L$. So b = cb (R is SXM) .Setting c = ba + k ($a \in R, k \in K$) implies that b = cb = bab + kb we have $b - bab = bk \in bRI$ K = 0. Therefore b = bab.

The converse direction is clear .

The following lemma is proved in [14].

Lemma 2.7 :

Let $Y(R) \neq 0$, then there exists $0 \neq x \in Y(R)$ such that $x^2 = 0$.

A consequence of the Lemmas (2.4 and 2.7), we have the following theorem :

Theorem 2.8 :

Let R be a ring with every minimal idempotent element of R be a left semicenteral and $l(a) \subseteq r(a)$ for every $a \in R$. If every simple singular right R-module is **II-flat**, then Z(R) = 0. **Proof**:

If eRa = 0 where $a \in R$ and $e \in R$ is right minimal idempotent .By hypothesis , e is left semicentral of R, thus $a \operatorname{Re} = ea \operatorname{Re} = 0$. By Lemma (2.4). R is right MC2 ring .Now suppose that $Z(R) \neq 0$, then there exists $0 \neq a \in Z(R)$, such $a^2 = 0$, Lemma (2.7) .We that claim that Z + r(a) = R. Otherewise there exists a maximal right ideal M such that $Z + r(a) \subset M$. If M is not essential, then M=r(e), $e^2 = e \in R$. Hence ea = 0, because $a \in r(a) \subset r(e)$. If $eRa \neq 0$, then eRaR = eR because eR is a minimal right ideal of R. Since $a \in Z(R)$, $eRaR \subseteq Z(R)$, then $e \in Z(R)$, which is a contradiction. Hence eRa = 0 and so aRe = 0, (*R* is MC2 ring) $e \in r(a) \subset r(e)$ which is a contradiction .Hence M is essential in R. Thus R/M is **\Pi-flat**, so there exists a positive integer n such that $a^n \neq 0$ and $a^n = ba^n$. Since $a^2 = 0$, then a = ba this implies $(1-b) \in l(a) \subseteq r(a) \subseteq M$, that so $1 \in M$, which is а contradiction .Hence Z + r(a) = R.Write 1 = x + y, $x \in Z(R)$, $y \in r(a)$, then a=ax. Since $x \in Z(R)$ and l(x) I l(1-x) = 0, l(1-x) = 0. Thus a = 0, because $a \in l(1-x)$, which is а contradiction. Therefore Z(R) = 0

Following [9], a right R-module M is called YJinjective if for any $0 \neq a \in R$ there exists a positive integer n such that $a^n \neq 0$ and every right Rhomomorphism from $a^n R$ to M extends to one from R_R to M; R is called right YJ-injective if the right R-module R_R is YJ-injective.

Proposition 2.9 :

Let R be a ring with every simple right R-module is either YJ-injective or Π -flat .Then J(R) = 0 if and only if J(R) is a reduced ideal of R.

Proof:

Suppose that J(R) is a non zero reduced ideal of R . If $0 \neq b \in J$, Set L = bR + r(b). If we suppose that L = R, then 1 = ba + c, $a \in R$, $c \in r(b)$, which implies that $b = b^2 a$. since $b \in J$, $(b-bab)^2 = 0$ $(b-bab) \in J$ and vields b = bab. Therefore b = eb, where e = ba is idempotent, Since J can not contain a non zero idempotent, then b = 0. This proves that $L \neq R$. Let M be a maximal right ideal of R containing L. If R/M is YJ-injective, then there exists a positive integer n such that $b^n \neq 0$ and any right Rhomomorphism define the map $f: b^n R \to R/M$ by $f(b^n a) = a + M$ for all $a \in R$. Then $f(b^n) = cb^n + M$ for some $c \in R$ and therefore $1 + M = cb^n + M$ which implies that $1-cb^n \in M$. whence $1 \in M$ (because $R \neq M$.If $cb^n \in J/cM$), contradicting R/M is Π -flat .Since $b \in M$ then there exists a positive integer n such that $b^n \neq 0$ and $b^n = db^n$ for some $d \in M$. Now $1-d \in l(b^n) = r(b) \subset M$ (*J* reduced) which implies that $1 \in M$, again a contradiction .This proves that if J is reduced, then J = 0. Conversely : It is trivial.

Theorem 2.10 :

Let R be a ring with the following properties :

1- J(R) = 0

2- every maximal left ideal M of R is an ideal such that R/M is either a left or right Π -flat R-module . Then R is strongly regular.

Proof :

Let $a \in R$ such that $a^2 = 0$. Suppose there exists a maximal left ideal T not containing a. Then $l(a) \not\subset T$ implies R = T + l(a) and if 1 = y + b, $y \in T$, $b \in l(a)$, when $a = ya \in T$ (an ideal of R) which is a contradiction. This proves that $a \in J = 0$ which implies that R is reduced.

Now suppose that R is not strongly regular. Then there exists $c \in R$ such that $Rc + l(c) \neq R$. Let M be a maximal left ideal containing Rc + l(c). If R/M is a left Π -flat ,Since $c \in M$ then there exists a positive integer n such that $c^n \neq 0$ and $c^n = c^n d$ for some $d \in M$ and since R is reduced, then c = dc ($l(c^n = l(c))$). The same result holds if R/M is right Π -flat. Now $(1-d) \in l(c) \subseteq M$ implies $1 \in M$, contradicting $M \neq R$. Therefore Rc + l(c) = R and R is strongly regular ring.

Now, we recall the following result which are due to Wei [9]

Lemma 2.11 :

Let R be a ring . Then R is a reduced if and only if R is semiprime reversible ring.

The next result is considered a necessary and sufficient condition for rings whose simple singular right R-module is Π -flat to be strongly ring.

Theorem 2.12:

Let R be a reversible ring . Then R is strongly Π -regular if R is strongly right min-able ring and every simple singular right R-module is Π -flat . Proof :

From Lemma (2.3 and 2.11) R is reduced . Next, we shall show that $a^n R + r(a^n) = R$ for all $a \in R$ and a positive integer n. Suppose that there exsits $b \in R$ such that $b^n R + r(b^n) \neq R$. Then there exists a maximal right ideal M of R containing $b^n R + r(b^n)$. Observe that M must be an essential right ideal of R. If not, then M is a direct summand of R .So we can write M = r(e) $0 \neq e^2 = e \in R$ some and for hence $eb^n = 0$.Because eR is a minimal right ideal of R.Since R is a strongly right min-able ring, $b^n e = eb^n e = 0$.Thus $e \in r(b^n) \subseteq r(e)$. whence e = 0. This is a contradiction. Therefore M must be an essential right ideal of R. Thus

R/M is **II**-flat ,hence there exists a positive integer m such that $(b^n)^m \neq 0$ and $(b^n)^m = c(b^n)^m$ for some $c \in M$ implies that $(1-c) \in l(b^n)^m = r((b^n))$ (R is reduced) and so $1 \in M$, which is a contradiction. Therefore $a^n R + r(a^n) = R$. In

particular $a^n x + y = 1, x \in R, y \in r(a^n)$. Thus

 $a^{2n}x = a^n$. Therefore R is strongly **II-regular**. **3. IIF- rings :**

In this section we introduces the notion of ΠF -ring . We study such

ring and give some of its basic properties . Also we give the connection $% \left({{{\mathbf{x}}_{i}}} \right)$

of ΠF -rings and other rings.

Definition 3.1 :

A ring *R* is said to be right(left) Π F-ring , if for any maximal right (left) ideal *M* of *R* and any $y \in M, R/yM$ (R/My) is Π -flat right (left) R-module.

Examples

1-Let Z_{10} be a ring of integer module 10 and $M_1 = (2), M_2 = (5)$ are both maximal ideals of Z_{10} . Clearly for every $a \in M_1$ and $b \in M_2$, Z_{10}/aM_1 and Z_{10}/bM_2 are Π -flat. Therefore Z_{10} is Π F-ring.

2- Let Z_{12} be the ring of integers modulo 12 and $M_1 = (2)$, $M_2 = (3)$, are maximal's ideals in Z_{12} . Clearly for every $a \in M_1$, $b \in M_2$, Z_{12}/aM_1 and Z_{12}/bM_2 are Π -flat .Therefore Z_{12} is Π F-ring. On the other hand Z_{12} is not Π -flat . $(Z_{12}/M_1$ is not Π -flat)

Theorem 3.2:

Let R be a right IIF-ring and M a maximal right ideal of R. Then for any $a \in M$, $R = M + l(a^{2n})$, for some positive integer n.

Proof:

Let M be a maximal right ideal of R and $a \in M$. Since R is IIF-ring, then R/aM is II-flat and there exists a positive integer n such that $a^{2n} \neq 0$ and $a^{2n} = aba^{2n}$ for some $b \in M$. This implies that $1-ab \in l(a^{2n})$. Now consider 1 = ab+1-ab. Therefore $R = M + l(a^{2n})$

In [7] proved that :

Lemma 3.3 :

If $0 \neq a \in Y(R)$, then r(1-a) = 0.

Next , we shall give several basic properties of right $\Pi F\text{-}\mathrm{rings}$.

Proposition 3.4 :

Let R be a right ΠF -ring .Then

1-Any non zero divisor of R is invertible .

 $2 - Z I Y \subseteq J(R)$

.Proof : (1)

Let $a \in R$ be a non zero divisor of R. Then there exists a positive integer n such that $l(a^n) = 0$. Suppose that $aR \neq R$. If M is maximal right ideal containing aR, then R/aM is Π -flat this implies that $(a^{2n}) = axa^{2n}$ for some $x \in M$ and $a^{2n} \neq 0$ so $(1-ax)a^{2n} = 0$. Hence $(1-ax) \in l(a^{2n})$ (because $l(a^n) = 0$), thus ax = 1, which is a contradicts $, aR \neq R$. Therefore aR = R, and hence a is a right invertible. **Proof : (2)**

Let $0 \neq y \in Z(R)$ I Y(R) .For any $a \in R$, if $c \in r(1 - ya)$, then c = yac and cR I r(ya) = 0 implies c = 0 .Similarly, if $d \in l(1 - ya)$, since $ya \in Z(R)$, then d = 0.By (1), (1-ya)w=1, for some $w \in R$, so $y \in J(R)$.

Let *R* be Π F-ring. Then J(R) = 0.

Proof :

Let $0 \neq u \in J(R) \subseteq M$. Since R/uM is Π -flat , then there exists a positive integer n such that $u^{2n} \neq 0$, and $u^{2n} = ubu^{2n}$, for some $b \in M$. So $(1-ub)u^{2n} = 0$ and this implies that either (1-ub) = 0 or $u^{2n} = 0$. But $u^{2n} \neq 0$ then 1-ub = 0, and hence $1 = ub \in J(R)$, a contradiction. Whence J(R) = 0

Theorem 3.6 :

Let R is a left SXM and M is a left maximal ideal of R with the following properties :

a- R/M is a left flat and

b- For any $a \in M$, aM is a right ideal such that R/aM is a right II-flat .Then J(R) = 0**Proof :**

If $b \in J \subseteq M$, then R/bM is a right Π -flat , and for any $c \in M$, $bc \in bM$ and there exists a positive integer n such that $(bc)^n \neq 0$ implies that $(bc)^n = bd(bc)^n$ for some $d \in M$. So $(1-bd) \in l(bc)^n = l(bc)$ (*R* is a left *SXM*) and bc = bdbc. Since w(1-bd) = 1 for some $w \in R$ (because $bd \in J$), then bc = w(1-bd)bc = w(bc-bdbc) = 0, which yields bM = 0. Now R/M is left flat which implies that b = bx for some $x \in M$. Therefore $b = bx \in bM = 0$. Whence J(R) = 0.

Now , we give the relation between Π F-ring and regular rings .

Theorem 3.7:

Let R be Π F-ring and $, l(a^2) \subseteq r(a)$ for every $a \in R$. Then every maximal ideal of R is Π -regular ring.

Proof:

Let M be a maximal right ideal of R. Since R is Π F-ring then for every $a \in M, R/aM$ is Π -flat right R-module .So there exists a positive integer n and $a^{2n} \neq 0$ such that $(a)^{2n} = aba^{2n}$ for some $b \in M$ implies that

 $(1-ab) \in l(a^{2n}) \subseteq r(a^n)$. Therefore

 $a^n = a^{n+1}b$ and so M is Π -regular ring.

A ring R is called right (left) Kasch ring if every maximal right (left) ideal of R is a right (left) annihilator [13].

Example 3 :

Let Z_3 be a ring of integer module 3 , and let

$$R = \begin{bmatrix} z_3 & z_3 \\ 0 & z_3 \end{bmatrix}$$
. Then *R* is right Kasch ring

As a parallel result to [1,Th 2.4.5], the following result was obtained:

Theorem 3.8 :

Let R a left SXM, right IIF-ring and $l(a) \subseteq r(a)$ for every $a \in R$. Then R is right Kasch ring.

Proof :

Let *M* be a maximal right ideal in *R*. Suppose that Y(R) is singular right ideal in *R*, if *M* I Y(R) = 0, then for all $y \in Y(R), y \notin M$ and this implies that r(y) right essential in *R*. From Lemma [3.3] we get r(1-y) = 0. So l(1-y) = 0 ($l(a) \subseteq r(a)$). From Proposition (3.4), (1-y) is invertible in *R*. Hence

 $y \in J(R) \subset M$, which is a contradiction. So $M I Y(R) \neq 0$. Suppose that $0 \neq a \in M \mid Y(R)$, then $a \in M$ and R/aM is Π -flat right module and there exists a positive integer n such that for any $b \in M$ $(ab)^n \neq 0$, and $(a \ b)^n = ac(a \ b)^n$ for some $c \in M$ this implies that ab = acab (left SXM) .We claim that r(ac) I (ab)R = 0.If not ,suppose that $d \in r(ac) I (ab)R$ d = (ab)r,then and acd = 0 where $r \in R$, thus ac(ab)r = 0, this implies (ab)r = 0 hence d = 0, then r(ac) I (ab)R = (0). Since r(ac) is essential right ideal then (ab)R = 0 thus (ab) = 0 and this implies that $b \in r(a)$, hence M = r(a) Therefore R is right Kasch ring

Theorem 3.9:

Let R be an ERT, SXM, fully right idempotent and Π F-ring. Then

R is regular.

Proof :

Suppose there exists $b \in R$ such that bR is not a direct summand of R.

If *K* is a complement right ideal such that $bR \oplus K$ is an essential right ideal .Let *M* be a maximal right ideal containing bR + K.Since *R* is fully right idempotent and *M* is an ideal of *R*, then R/M is a left flat which implies b = bd for some $d \in M$.Now, R/bM is Π -flat then there exists a positive integer n such that $b^{2n} \neq 0$ and $b^{2n} = bcb^{2n}$ for some $c \in M$, this implies that $b = bcb, (l(b^{2n}) = l(b))$, which proves that bR is generated by the idempotent bc, contradicting our hypothesis.

The next result will consider some conditions for Π F-rings to be a regular ring .

Reference :

1-Ahmed ,S.H. (2001), On Generalized Simple flat rings , M.SC. Thesis , Mousl University .

2-Cohn ,P.M.(1999), Reversible ring , Bull. London Math. Soc., 31, P.P 641-648 .

3-Mahmood ,R.D.and Mohammed,H.Q. (2011),On N-flat rings, AL-Rafidaen J.of Computer Science and Math. Vol. 8 ,No.1,pp.71-77 .

4-Mahmood ,R.D. and Basheer ,D.A. (2011) , On simple singular N-flat modules, Rafidaen J. of Computer Science and Math. To appear .

5-Ramamurthi ,V.S. (1975) ; On injectivity and flatness of certain cyclic module , Proc. Amer. Math. .Soc., 48,P.P.21-25.

6-Reye ,M.B. (1986); On Von Neumann regular rings and SF-ring ,Math. Japoinca ,31(6),P.P.927-936.

7-Shuker ,N.H. and Younis ,A.S. (2005) ; A note on non-Singular rings ,Al-Rafiden J. of Computer and Math. 2(2), P.P. 21-26 .

8-Von Neumann J.(1936) ; On regular rings , Proc. Nat. Sci. U.S.A. 22, p.p.707-713 .

9-Wei ,J.C.(2007); On simple singular YJ-injective modules, Sou. Asian Bull. of Math. ,31.P.P. 1-10.

10- Wei ,J.C.(2008) ; Certain rings whose simple singular modules are nil-injective, Turk J.Math.32, P.P.393-408.

11- Wei ,J.C., (2008); MC2-rings, Kyungpook Math., J.48,651-663.

12- Yue chi Ming ,R. (1983) ;Maximal ideals in regular rings ,H.Math. J. Vol.12 ,P.P.119-128 .

13- Yue chi Ming ,R.(1986); On semiprime and reduced rings, Riv. Math.Univ. Parma (4) 12,167-175.

14- Yue chi Ming ,R. (1978) ; On Von Neumann regular rings III , Montash. Math. 86, P.P.251-257 .

فى المقاسات المسطحة من النمط-∏

رائدة داؤد محمود ، أكرم سالم محمد

¹ قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة الموصل ، الموصل ، العراق

فسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق

(تاريخ الاستلام: ٩ / ١٠ / ٢٠١١ ---- تاريخ القبول: ١٣ / ٣ / ٢٠١٢)

الملخص

نحن نختبر الحلقات المنتظمة بقوة من النمط- Π عندما يكون فيها كل مقاس بسيط منفرد ايمن مسطح من النمط – Π . كذلك أعطينا صنف من الحلقات تسمى الحلقات من النمط – Π اليمنى (اليسرى)، لكل مثالي أعظمي أيمن (أيسر) M من R و R (R/My)R/yM ، $y \in M$ مقاس مسطح من النمط Π أيمن (أيسر) . كذلك أعطينا الشروط لهذه الحلقات لكي تكون حلقات منتظمة وحلقات كاش .