Spectrophotometric Determination of Mesalazine with Phloroglycinol in Pharmaceutical Preparation

Enam A. Hamdon , Safaa A. Zakaria , Nassim M.AL-Hamdany

Department of chemistry, College of Science, University of Mousl, Mousl, Iraq (Received: 15 / 5 / 2011 ---- Accepted: 26 / 10 / 2011)

Abstract

A simple sperctrophotometric method for the determination of mesalazine in aqueous solution is achieved. The method is based on the reaction of mesalizine, with excess nitrite, in an acidic medium, to produce the corresponding diazonium salt. After the removal of residual nitrite with sulphamic acid, the diazonium salt was coupled with phlorogycinol reagent in basic medium to produce, an intense yellow-orange coloured water-soluble and stable azo dye which exhibits maximum absorption at 430 nm. Beer's law is obeyed in the concentration range of 5-300 μ g of mesalazine in a fina0.341 volume of 25 ml i.e., 0.2-12 ppm with a molar absorptivity of 3.02×10^4 l.mol⁻¹.cm⁻¹, a relative error of -0.56 to 0.19% and a relative standard deviation of \pm 0.34 to \pm 0.91 % depending on the concentration level. The proposed method has been applied successfully to determine mesalazine in pharmaceutical preparation as capsules.

Keyword: Mesalazine, Phloroglycinol, Pharmaceutical Preparation.

Introduction

Mesalazine is chemically, 5-aminosalicylic acid (5-ASA), which is used as a gastrointestinal antiinflammatory drug for the treatment of inflammatory bowel diseases [1] and active ulcerative proctitis [2,3]. is metabolized in organism to the principle biotransformation product, N-acetyl-5-ASA, is a polar compound and besides it exhibits amphoteric properties [4]. Different methods have been reported for the determination of 5-ASA including: mass spectroscopy [5], high performance liquid chromatography [6], micellar electrokinetic chromatography [7], reverse phase-high performance liquid chromatography [8], differential pulse voltammetry [9].Various spectrophotometric methods are used for the determination of 5-ASA these include oxidative coupling with 2,6-xylenol in the presence of sodium metaperiodate [10].Another method include reaction of 5-ASA with 1,2-naphthoquinone-4sulphonate (NQS) in the presence of sodium hydroxide [11], a mixture of potassium iodate and potassium iodide were used for the determination of 5-ASA in bulk and pharmaceutical formations [12], also, 5-ASA was determined by formation of three coloured chromogens, which were measured at 552 nm, 440 nm, and 494 nm respectively [13].A colouremetric method has been developed for the determination of 5-ASA in urine and feces using Bratton-Marshall reaction [14], also, 5-ASA has been determined in pharmaceutical preparations by galvanostatic coulometric method using reactions of electrogenerated bromide and chlorine with 5-ASA [15], the objective of the investigation reported in this paper is to develop of spectrophotometric method for the determination of 5-ASA based on the diazotization of 5-ASA and coupling with phloroglycinol reagent and applying the method to the determination of 5-ASA in pharmaceutical preparation as capsules.

Experimental Apparatus

All spectrophotometric measurements are performed on shimadzu UV-Visible recordingspectrophotometer UV-160 using 1-cm silica cells. pH meter types Philips PW 9420 is used for pH reading.

Reagent

All chemicals used are of the highest purity available. working 5-ASA solution,50 μ g.mL⁻¹. This solution was prepared by dissolving 0.01g of 5-ASA supplied by (Fluka) in 10 ml distilled water, and the volume was completed to 200 ml in a volumetric flask.

Hydrochloric acid solution, 1 N. This solution was prepared by diluting 8.5 ml of the concentrated acid to 100 ml with distilled water.

Sodium nitrite solution, 1%. This solution was prepared by dissoslving 1 g of sodium nitrite in 100 ml distilled water in a volumetric flask.

Sulphamic acid solutions, 3%. This solution was prepared by dissolving of 3 g of sulphamic acid in 100 ml distilled water.

Phloroglycinol solution, 0.1%. This solution was prepared by dissolving 0.1 g of phloroglycinol in distilled water in a 100 ml volumetric flask.

Sodium hydroxide solution, 1N. This solution was prepared by appropriate dilution of the concentrated (Fluka) solution with distilled water and then transferred to a plastic bottle.

Mesacol capsules solution 50 μ g.ml⁻¹. Weight and mix the contents of ten capsules (each one containe 400 mg 5-ASA), an accurately weighed amount of powder (0.0111 g) equivalent to 0.01 g 5-ASA was dissolved in 10 ml of absolute ethanol and 30 ml distilled water, after filtration of the solution, the volume was completed to 200 ml of distilled water in a volumetric flask to prepare a solution of 50 ppm 5-ASA.

Procedure and calibration graph

To a series of 25 ml volumetric flasks aliquots covering the range of 5-400 μ g (0.2-16 ppm) of 5-ASA were transferred followed by addition of 0.7 ml of 1N HCl then the mixtures were shaken. Then 0.3 ml of 1% sodium nitrite solution was added and the mixtures were allowed to stand for 3 minutes. Then 0.1 ml of 3% sulphamic acid solution was added then left for 4 minutes , 2 ml of sodium hydroxide solution

(1N) was added, The volumes were completed to the mark with distilled water and the absorbance were read after 5 minutes at 430 nm against blank solution. (Fig.1) shows the calibration curve which indicates that Beer's law was obeyed over the concentration range 5-300 μ g / 25 ml final volume, i.e., 0.2-12 ppm and concentration above 300 μ g /25 ml gives negative deviation. The molar absorptivity was 3.02×10^4 l.mol⁻¹.cm⁻¹.

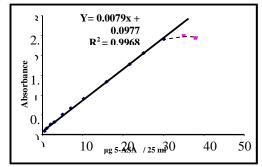
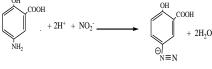
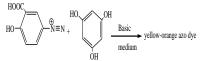



Fig.1: Calibration graph for 5-ASA determination using phloroglucinol as coupling reagent.

Results and disscusion Principles of the method

5-ASA was reacted with excess nitrite in acidic medium to form the corresponding diazonium salt:



Diazotised 5-ASA

The residual nitrite (as nitrite acid) which was undesirable due to its side reaction, such as, nitrosation of coupling agent. Therefore, it should be removed by sulphamic acid which reacts more fast than urea[16]:

$$HNO_2 + H_2N - SO_3H \longrightarrow N_2 + H_2O + H_2SO_4$$

The coloured solution formed by coupling diazotized 5-ASA with phloroglycinol in alkaline medium:

Study of the optimum reactions conditions

The various parameters effecting and related the colour intensity of the dye have been studied and optimum conditions were selected.

Effect of acids on the diazotization

The effect of the amount of different acid (week and strong) for the diazotization of 5-ASA, have been investigated. The results were indicated that 0.7 ml of 1N HCl produces the highest intensity for the dye, so it has been selected in the subsequent experiments (Table 1).

Table 1: Effect of diazotization acid on absorbance

Acid used	Absorbance (A)/ ml of acid used							
(1N)	0	0.2	0.5	0.7	1.0	1.5		
HC1	0.342	0.430	0.439	0.447	0.157	0.103		
H_2SO_4	0.328	0.419	0.432	0.441	0.203	0.162		
HNO ₃	0.355	0.420	0.424	0.436	0.444	0.107		
H ₃ PO ₄	0.258	0.389	0.390	0.406	0.248	0.195		
CH ₃ COOH	0.394	0.377	0.361	0.362	0.140	0.087		

Effect of nitrite amount and time

The colour was reached maximum intensity when using 0.3 ml of 1% (w/v) sodium nitrite solution within 3 minutes reaction time(Table 2), it seems that diazotization of 5-ASA was fast

Table 2: Effect of nitrite amount and time on absorbance .

Amount of 1%	Absor	Absorbance / minute of standing time						
NaNO ₂ solution	0	1	2	3	4	5		
0.1	0.419	0.424	0.428	0.431	0.418	0.413		
0.2	0.315	0.436	0.424	0.435	0.436	0.437		
0.3	0.431	0.434	0.432	0.449	0.431	0.436		
0.5	0.433	0.435	0.434	0.435	0.438	0.436		
0.7	0.310	0.430	0.429	0.433	0.432	0.400		

Effect of sulphamiac acid amount and time

The presence of unreacted nitrite was undesirable in diazotization reaction. Therefore, it should be removed by sulphamic acid which fastly reacts with nitrite. The results indicated that 0.1 ml of 3% sulphamic acid solution with 4 minutes standing time were considered to be the most suitable (Table 3), and therefore were selected subsequently.

 Table 3: Effect of sulphamic acid and time on absorbance

Amount of	Absorbance / minute standing time								
sulphamic acid (ml)		0	1	2	3	4	5		
0	S	0.026	0.033	0.018	0.108	0.225	0.152		
0	В	0.135	0.150	0.147	0.147	0.149	0.154		
0.1	S	0.428	0.377	0.459	0.465	0.481	0.455		
0.1	В	0.057	0.096	0.028	0.041	0.013	0.008		
0.2	S	0.415	0.459	0.441	0.453	0.443	0.450		
0.2	В	0.021	0.005	0.006	0.005	0.004	0.005		
0.3	S	0.441	0.445	0.436	0.446	0.437	0.446		
0.5	В	0.012	0.008	0.012	0.012	0.013	0.012		
0.5	S	0.428	0.437	0.437	0.442	0.437	0.442		
0.5	B	0.012	0.012	0.012	0.012	0.002	0.002		

Effect of phloroglycinol amount

The effect of phloroglycinol amount on the colour intensity of the dye has been studied. From the result, it can be observed that 4 ml of 0.1% phloroglycinol was the more suitable amount which gives the highest value of correlation coefficient (Table 4).

 Table 4: The effect of phloroglycinol amount

Tuble if The effect of philosog, effort anotate							
Amount of 0.1% phloroglycinol	Absorbance / µg of 5-ASA						
(ml)	20	50	70	100	150	200	r
1	0.226	0.446	0.617	0.858	1.255	1.646	0.9999
2	0.216	0.430	0.605	0.844	1.208	1.621	0.9995
3	0.276	0.493	0.647	0.892	1.252	1.620	0.9997
4	0.270	0.486	0.648	0.887	1.288	1.687	0.9998
5	0.206	0.489	0.650	0.869	1.279	1.761	0.9982

Effect of base

The effect of different type of base solution (which is necessary for developing the chromophore) on the colour intensity and the colour contrast was investigated. The colour of azo dye became most intense and stable with high colour contrast when 2 ml of 1N sodium hydroxide solution (pH = 12.08) was used (Table5).

Table 5: The effect of base on the absorbance and colour contrast

Base used	Base used variables		Absorbance / ml of base used								
(1N)	variables	0.5	1	1.5	2	2.5	3	4			
NaOH	Α	0.489	0.488	0.495	0.513	0.508	0.495	0.487			
NaOII	Δλ*, nm	40	45	52	57	50	49	45			
кон	Α	0.455	0.446	0.452	0.487	0.472	0.453	0.418			
кон	Δλ, nm	48	44	50	62	47	47	48			
Na ₂ CO ₃ **	Α	0.549	0.540	0.626	0.632	0.942	0.711	0.639			
Na ₂ CO ₃ ···	Δλ, nm	18	10	30	24	27	11	36			
NaHCO3**	Α	0.721	0.421	0.525	0.518	0.599	0.482	0.475			
NallCO ₃ .	Δλ, nm	17	25	25	25	30	29	32			

 $\Delta \lambda^* = \lambda \max_{s} - \lambda \max_{B}$, S= the dye; B= blank. ** Gives unstable azo-dye.

Effect of time on colour development

The colour of the formed azo dye reached the full intensity within not more than 5 minutes and it was stable for at least 1 hour (Table 6).

Table 6: Effect of time o	n the intensity of	° azo-dye.
---------------------------	--------------------	------------

μg of 5-	Absorbance / minutes standing time							
ASA / 25 ml	0	5	10	20	30	40	50	60
20	0.254	0.252	0.252	0.252	0.252	0.252	0.252	0.256
50	0.511	0.513	0.513	0.513	0.513	0.513	0.513	0.510
100	0.900	0.895	0.894	0.894	0.894	0.894	0.894	0.893
150	1.348	1.351	1.334	1.334	1.334	1.332	1.332	1.328

Final absorption spectra

When 5-ASA was treated according to the recommended procedure, the absorption spectrum shows a maximum absorption at 430 nm, characteristic of the yellow-orange dye. The reagent blank shows no absorption at this wavelength (Fig 2).

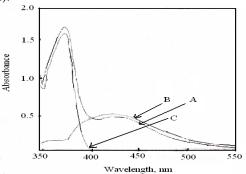
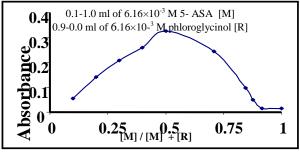
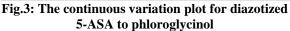


Fig.2: Absorption spectra of 50 μg 5- ASA / 25 ml treated according to the recommended procedure and measured against (A) reagent blank, (B) distilled water and (C) reagent blank measured against distilled water.

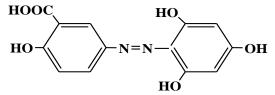
Accuracy and precision

Three different concentrations of 5- ASA are used in the determination of the accuracy and precision of the method, the result, shown inTable 7 indicate that the method has good accuracy and precision.


Table 7: Accuracy and precision of the method.	Table 7:	Accuracy	and	precision	of	the	method.
--	----------	----------	-----	-----------	----	-----	---------


ruble // needlucy and precision of the method.								
Amount of 5- ASA	Relative	Relative standard						
taken, μg	error, %*	deviation, %*						
20	- 0.50	± 0.91						
50	-0.19	± 0.77						
100	-0.56	± 0.34						
-l	C C' 1 .	• •						

* Average of five determinations


Nature of the dye

The composition of the intense yellow-orange dye that results from the reaction of diazotized 5-ASA with phloroglycinol has been established using the continuous variations method, the results indicate that the dye has a combination 1:1 ratio of diazotized 5-ASA to phloroglycinol (Fig.3).

Hence the dye may have the following suggested structure:

Yellow-orange azo-dye

Application of the method

To test the applicability of the present method, it has been applied to the determination of 5-ASA in pharmaceutical preparation (capsules). On applying proposed procedure, good recovery was obtained as shown in Table 8.

Table 8: Application of the method.

Drug	μg 5-ASA present / 25 ml	μg 5-ASA measured / 25 ml	Recovery*, %
Mesacol extended release	20	20.50	102.50
capsules 400 mg universal pharmaceutical industries-unipharma-		50.21	100.42
Damscus-Syria	100	100.43	100.43

* Average of five determinations.

Evaluation of the proposed method

Because there is no standard method in the literature for determination 5-ASA, so that this standard addition method applied in order to prove that the proposed method can be used in the determination of 5-ASA without interferences. (Table 9 and Fig.4).

µg 5-ASA µg 5-ASA Recove Drug measured / 25 present / 25 m ry*, % ml Mesacol extended release capsules 400 mg universal pharmaceutical 10 9.96 99.6 industries-unipharma-Damscus-Syria 20 20.10 100.5 * Average of five determinations.

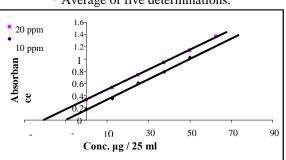


Fig. 4: Standard addition graphs for the determination of 5-ASA in pharmaceutical preparation (capsules).

References

1. N. Mahmud, DG. Weir and D. Kelleher. Systemic levels of free 5-aminosalyicylic acid depend on the nature of the 5-aminosalycylic acid derivative and not on disease activity or extent in patients with inflammatory bowel disease. Ir J. Med. Sci, 168, (1999), 228-232.

2. M. Naganuma, Y.Iwao, H. Ogata, N. Inoue, S. Funakosh, S. Yamamoto, et al. Comparison of orally administered mesalazine and sulfasalazine. Inflamm Bowel Dis, 7. (2001), 221-225.

3. T. Basturk, A. Ozagari, T. Ozturk, R. Kusaslan and A. Unsal. Crohn's disease and secondary amyloidosis. J.Ren Care, 35, (2009), 147-150.

4. ZC.Liu, RA.Celland and JP.Uetrecht. Oxidation of 5-Aminosalicylic acid by hypochlorous acid to a relative iminoquinone. J.Pharmacol and Exp. Thearp. Soc., Am., 23, (1995), 246-250.

5. E. Pastorini, M. Locateli, P. Simoni, G. Roda, E. Roda and A. Roda. Development and validation of a HPLC-ESI-MS/MS method for the determination of 5aminosalicylic acid and its major metabolite N-acetyl-5aminosalicylic acid in human plasma .JChromatogr B Analyt Technol Biomed Life Sci.,872,(2008),99-106.

6. M. Nobilis, Z. Vybiralova, K. Sladkova, M. Lisa, M. Holcapek and J. Kvetina. High-performance liquid chromatographic determination of 5-aminosalicylic acid and its metabolites in blood plasma. J. Chromatogr A., 1119, (2006), 299-308.

7. R. Gotti, R. Pomponio, C. Bertucci and V.Carrini. Determination of 5-aminosalicylic acid related impurities by micellar electrokinetic chromatography with an ion-pair reagent. J. Chromatogr. A, 916, (2001), 175-183.

8.Z. Jing, W. Xiao-shan, L. Xiu-shu, Z. Mei-kuang and W. Hong. Determination of mesalazine by RP-HPLC. Central South pharmacy, (2008).

The results in Table 10 and Fig.4 indicated that the proposed method can be used to determine 5-ASA in pharmaceutical preparation (capsules) with satisfactory results.

Conclusion

A simple and sensitive spectrophotometric method for the determination of micro amounts of 5-ASA in aqueous solution, based on the coupling of 5-ASA diazotized with phloroglycinol in basic medium, has been developed. The proposed method has been applied to the determination of 5-ASA in pharmaceutical preparation (capsules) with satisfactory results.

9. B. Nigovic and B.Imunic. Determination of 5aminosalycilyic acid in pharmaceutical formulation by different pulse voltammetry. J. Pharm. Biomed. Anal., 31, (2003), 169-174.

10. M.H.Al-Fakhry, " The use of oxidative coupling reactions for spectrophotometric determination of aniline and its substitution and the drugs dipyrone and mesalazine", M.Sc., Thesis, Mousl University, (2006), 64-80.

11. N.S.Sama, B.M.Gurupadayya and Ch.A.kumar. Spectrophotometric determination of mesalazine by pdac and Nqs reagent in bulk and tablet dosage form. Journal of Phrmacy Research, 4(1), (2011).

12. S.N. Sloka, B.M. Gurupadayya and CH.Akumar. Sensitive spectrophotometric method for the determination of mesalazine in bulk and pharmaceutical formulations. Online J. for Medicinal Chemistry, (2009).

13. K.M. Patel, CN. Patel, B. Panigrahi, AS. Parikh and HN. Patel. Development and validation of spectrophotometric method for the estimation of mesalazine in Tablet dosage forms. J. of Young Pharmacists, 2(3), (2010), 284-288.

14. HJ. Pieniaszek and TR.Bates. Colorimetric determination of 5-aminosalicylic acid and its N-acetylated metabolite on urine and feces. Res.Commun. Chem. Patrhol Pharma-col., 12, (1975), 571-581.

15. I.F. Abdullin, N.N. Chernysheva and G.K. Budnikov. Galvanostatic coulometric determination of salicylic acid and some of its derivatives using electrogenerated Halogens. J. Anal. Chem., 57(8), (2002), 721-723.

16. J.Bladyga and J.R. Bourne, Turbulent mixing and chemical reactions, Johon Wiley and Sons,Inc., New York, (1999), 644p.

التقدير الطيفى للميزالازين مع الفلور وكليسينول في مستحضر صيدلاني

انعام احمد حمدون ، صفاء عبد العليم ، نسيم ميسر قسم الكيمياء ، كلية العلوم ، جامعة الموصل ، الموصل ، العراق (تاريخ الاستلام: ١٥ / ٥ / ٢٠١١ ---- تاريخ القبول: ٢٦ / ١٠ / ٢٠١١)

الملخص

يتضمن البحث طريقة طيفية بسيطة لتقدير الميزالازين [5–امينو حامض الساليسلك ، (ASA-5)] في الوسط المائي بطريقة الازوته والاقتران. تعتمد الطريقة على مفاعلة الميزالازين مع زيادة من النتريت في وسط حامضي لتكوين ملح الدايازونيوم المقابل وازالة النتريت الفائض باستخدام حامض السلفاميك، ثم يتم اقتران الميزالازين المؤزوت مع الكاشف فلوروكليسينول في وسط قاعدي ليعطي صبغة آزوية صفراء –برتقالية اللون مستقرة وذائبة في الماء وتعطي اعلى شدة امتصاص عند الطول الموجي 430 نانوميتر. كانت حدود قانون بير في مدى التركيز من 5–300 مايكروغرام ميزالازين في حجم نهائي 25 مللتر أي 2.0-12 جزء/ مليون وكانت الامتصاصية المولارية للصبغة الناتجة 3.02×10 لتر مول[−] ¹. سر^{−1}. تراوح الخطا النسبي من −5.00 الى – 0.19% والانحراف القياسي النسبي من الى ±0.34 ±0.00% اعتمادا على مستوى التركيز وتم تطبيق الطريقة بنجاح في تقدير الميزالازين في مستحضر دوائي (الكبسول).